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1. Introduction

Differential invariants emerged as one of the most important tools in investigation of
differential equations in the works of Lie. In [19, 23] he proved that any nonsingular in-
variant system of differential equations can be expressed in terms of differential invariants
of the corresponding symmetry group. In the same paper he also applied differential in-
variants to integration of ODEs. If differential invariants of a Lie group are known, the
differential equations admitting this group can be easily described and the special repre-
sentation (so-called group foliation) of such differential equations can be constructed.

Differential invariants of all finite-dimensional local transformation groups on a space
of two complex variables were described by Lie himself in [18]. A modern treatment
of these results was adduced in [30]. Namely, functional bases of differential invariants,
operators of invariant differentiation, and, Lie determinants were constructed for all in-
equivalent realizations of point and contact finite-dimensional transformation groups on
the complex plane. The real finite-dimensional Lie algebras of contact vector fields and
their differential invariants were completely classified in [9]. Differential invariants of a
one-parameter group of local transformations in the case of arbitrary number of depen-
dent and independent variables were studied in [37].

The subject of this paper is exhaustive description of differential invariants and Lie
determinants of finite-dimensional Lie groups acting on the real plane. A necessary pre-
requisite to do it is classification of Lie algebra realizations in vector fields on the real
plane up to local diffeomorphisms.
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2 Transformation groups on real plane and their differential invariants

Realizations of Lie algebras by vector fields are widely applicable in the general theory
of differential equations, integration of differential equations and their systems [29, 32],
in group classification of ODEs and PDEs [2], in classification of gravity fields of a general
form with respect to motion groups [36], in geometric control theory, and in the theory
of systems with superposition principles [6, 40]. Such realizations are also applicable in
the difference schemes for numerical solutions of differential equations [4]. Description
of realizations is the first step for solving the Levine’s problem [17] on the second-order
time-independent Hamiltonian operators which lie in the universal enveloping algebra
of a finite-dimensional Lie algebra of the first-order differential operators. The Levine’s
problem was posed in molecular dynamics. In such a way, realizations are relevant in the
theory of quasi-exactly solvable problems of quantum mechanics through the so-called
algebraic approach to scattering theory and molecular dynamics. The list of possible ap-
plications of realizations of Lie algebras is not exhausted by the above-mentioned sub-
jects.

The plan of the paper is the following. In Section 2 we discuss and compare different
classifications of realizations of finite-dimensional Lie algebras on the real and complex
planes, which are available in literature. In particular, we thoroughly study the question
of parametrization and equivalence in series of realizations. The realizations of finite-
dimensional Lie algebras in vector fields on the real plane are arranged in the form of
Table 1.1. The transformations that reduce real Lie algebras to complex ones are presented
in Table 1.2. In Section 3 some definitions and results concerning differential invariants
are collected and detailed example of calculation is adduced. Using the results of Table 1.1
and technique proposed in Section 2, we obtain complete sets of bases of differential in-
variants, operators of invariant differentiation and Lie determinants and collect them in
Table 1.3. Short overview of the obtained results as well as their possible applications and
development are presented in the conclusion.

2. Realizations of Lie algebras on real and complex planes

There are two important classification problems among a variety of others in the classical
theory of Lie algebras.

The first one is classification of Lie algebra structures, that is, classification of possible
commutation relations between basis elements. A list of isomorphism classes of the Lie
algebras is in use of many authors for different purposes, for example, [1, 2, 5, 12, 33, 34,
36]. But the problem of unification and correction of the existing lists (see, e.g., [3, 8, 20–
22, 24–28, 35, 43]) is a very laborious task, even in the case of low dimensions, because
the number of entries in such lists rapidly increases with growing dimension and the
problem of classification of Lie algebras includes a subproblem of reduction of pair of
matrices to a canonical form [16]. Here we only remind that all possible complex Lie
algebras of dimensions no greater than four were listed by Lie himself [20–22] and later
the semisimple Lie algebras [15] and the Lie algebras of dimensions no greater than six
[25–28, 43] over the complex and real fields were classified.

The other problem established by S. Lie is the problem of description of different Lie
algebra representations and realizations, particularly, by vector fields up to local diffeo-
morphisms.
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Table 1.1. Realizations of Lie algebras on the real plane.

N Realizations N1 N0 N3

1 ∂x 9 57, (1) R
(
A1,1

)

2 ∂x , ∂y 22 57, (2) R
(
2A1,1

)

3 ∂x , y∂x 20 57, (4) R
(
2A1,2

)

4 ∂x, x∂x + y∂y — 57, (3) R
(
A2.1,1

)

5 ∂x, x∂x 10 57, (5) R
(
A2.1,2

)

6 ∂y , x∂y , ξ1(x)∂y 20 57, (14) R
(
3A1,5

)

7 ∂y , y∂y , ∂x 23 73, (10) R
(
A2.1⊕A1,3

)

8 e−x∂y , ∂x, ∂y 22 57, (8) R
(
A2.1⊕A1,4

)

9 ∂y , ∂x, x∂y 22 57, (9) R
(
A3.1,3

)

10 ∂y , ∂x , x∂x + (x+ y)∂y 25 57, (11) R
(
A3.2,2

)

11 e−x∂y , −xe−x∂y , ∂x 22 57, (7) R
(
A3.2,3

)

12 ∂x, ∂y , x∂x + y∂y 12 57, (10) R
(
A3.3,2

)

13 ∂y , x∂y , y∂y 21 57, (15) R
(
A3.3,4

)

14 ∂x , ∂y , x∂x + ay∂y , 0 < |a| ≤ 1,a �= 1 12 57, (10) R
(
Aa

3.4,2
)

15 e−x∂y , e−ax∂y , ∂x , 0 < |a| ≤ 1,a �= 1 22 57, (6) R
(
Aa

3.4,3
)

16 ∂x, ∂y , (bx+ y)∂x + (by− x)∂y , b≥ 0 1 C∼ 57,(10) R
(
Ab

3.5,2
)

17 e−bx sinx∂y , e−bx cosx∂y , ∂x , b ≥ 0 22 C∼ 57, (6) R
(
Ab

3.5,3
)

18 ∂x , x∂x + y∂y ,
(
x2− y2

)
∂x + 2xy∂y 2 C∼ 57, (13); 73, (4) R

(
sl(2,R),2

)

19 ∂x + ∂y , x∂x + y∂y , x2∂x + y2∂y 17 57, (13); 73, (4) R
(
sl(2,R),3

)

20 ∂x , x∂x +
1
2
y∂y , x2∂x + xy∂y 18 57, (16); 72, (10) R

(
sl(2,R),4

)

21 ∂x , x∂x , x2∂x 11 C∼ 57, (16); 72,(10) R
(
sl(2,R),5

)

22
y∂x − x∂y ,

(
1 + x2− y2

)
∂x + 2xy∂y ,

3 C∼ 57, (13); 73, (4) R
(
so(3),1

)

2xy∂x +
(
1 + y2− x2

)
∂y

23 ∂y , x∂y , ξ1(x)∂y , ξ2(x)∂y 20 58, (8) R
(
4A1,11

)

24 ∂x , x∂x , ∂y , y∂y 13 58, (6) R
(
2A2.1,5

)

25 e−x∂y , ∂x , ∂y , y∂y 23 58, (1) R
(
2A2.1,7

)

26 e−x∂y , −xe−x∂y , ∂x , ∂y 22 57, (21) R
(
A3.2⊕A1,9

)

27 e−x∂y , e−ax∂y , ∂x, ∂y , 0 < |a| ≤ 1, a �= 1 22 57, (20) R
(
Aa

3.4⊕A1,9
)

28 e−bx sinx∂y , e−bx cosx∂y , ∂x, ∂y , b ≥ 0 22 C∼ 57, (20) R
(
Ab

3.5⊕A1,8
)

29 ∂x, x∂x, y∂y , x2∂x + xy∂y 19 58, (7) R
(
sl(2,R)⊕A1,8

)

30 ∂x , ∂y , x∂x , x2∂x 14 58, (3) R
(
sl(2,R)⊕A1,9

)

31 ∂y , −x∂y , 1
2
x2∂y , ∂x 22 57, (23) R

(
A4.1,8

)

32 e−bx∂y , e−x∂y , −xe−x∂y , ∂x 22 57, (18) R
(
Ab �=1

4.2 ,8
)

33 e−x∂y , −x∂y , ∂y , ∂x 22 57, (22) R
(
A4.3,8

)

34 e−x∂y , −xe−x∂y , 1
2
x2e−x∂y , ∂x 22 57, (19) R

(
A4.4,7

)

35 ∂y , x∂y , ξ1(x)∂y , y∂y 21 58, (9) R
(
A1,1,1

4.5 ,10
)

36 e−ax∂y , e−bx∂y , e−x∂y , ∂x , −1≤ a < b < 1, ab �= 0 22 57, (17) R
(
Aa,b,1

4.5 ,7
)

37 e−ax∂y , e−bx sinx∂y ,e−bx cosx∂y , ∂x, a > 0 22 C∼ 57, (17) R
(
Aa,b

4.6,6
)

38 ∂x, ∂y , x∂y , x∂x +
(
2y + x2

)
∂y 25 58, (5) R

(
A4.7,5

)
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Table 1.1. Continued.

N Realizations N1 N0 N3

39 ∂y , ∂x , x∂y , (1 + b)x∂x + y∂y , |b| ≤ 1 24 58, (4) R
(
Ab

4.8,5
)

40 ∂y , −x∂y , ∂x, y∂y 23 58, (2); 72, (7) R
(
A0

4.8,7
)

41 ∂x , ∂y , x∂x + y∂y , y∂x − x∂y 4 C∼ 58, (6) R
(
A4.10,6

)

42 sinx∂y , cosx∂y , y∂y , ∂x 23 C∼ 58, (1) R
(
A4.10,7

)

43 ∂x, ∂y , x∂x − y∂y , y∂x , x∂y 5 71, (3) dimA= 5

44 ∂x , ∂y , x∂x , y∂y , y∂x, x∂y 6 71, (2) dimA= 6

45
∂x, ∂y , x∂x + y∂y , y∂x − x∂y ,

7 C∼ 73,(3) dimA= 6(
x2− y2

)
∂x − 2xy∂y , 2xy∂x −

(
y2− x2

)
∂y

46 ∂x , ∂y , x∂x, y∂y , x2∂x, y2∂y 16 73, (3) dimA= 6

47
∂x , ∂y , x∂x, y∂y , y∂x , x∂y ,

8 71, (1) dimA= 8
x2∂x + xy∂y , xy∂x + y2∂y

48 ∂y , x∂y , ξ1(x)∂y , . . . ,ξr(x)∂y , r ≥ 3 20 73, (2) dimA≥ 5

49 y∂y , ∂y , x∂y , ξ1(x)∂y , . . . ,ξr(x)∂y , r ≥ 2 21 72, (8) dimA≥ 5

50 ∂x , η1(x)∂y , . . . ,ηr(x)∂y , r ≥ 4 22 73, (1) dimA≥ 5

51 ∂x , y∂y , η1(x)∂y , . . . ,ηr(x)∂y , r ≥ 3 23 72, (7) dimA≥ 5

52 ∂x , ∂y , x∂x + cy∂y , x∂y , . . . ,xr∂y , r ≥ 2 24 72, (5) dimA≥ 5

53 ∂x , ∂y , x∂y , . . . ,xr−1∂y ,x∂x +
(
r y + xr

)
∂y , r ≥ 3 25 72, (6) dimA≥ 5

54 ∂x , x∂x , y∂y , ∂y , x∂y , . . . ,xr∂y , r ≥ 1 26 72, (4) dimA≥ 5

55
∂x, ∂y , 2x∂x + r y∂y , x2∂x + rxy∂y ,

27 71, (4); 72, (1) dimA≥ 5
x∂y , x2∂y , . . . , xr∂y , r ≥ 1

56
∂x , x∂x, y∂y , x2∂x + rxy∂y , 15; 28 73, (5); 72, (2) dimA≥ 5
∂y , x∂y ,x2∂y , . . . ,xr∂y ,r ≥ 0

Realizations of Lie algebras by vector fields in one real, one and two complex variables
were classified by Lie [20–22]. Gonzalez-Lopez et al. ordered the Lie’s classification of
realizations of complex Lie algebras [13] and extended it to the real case [14]. A complete
set of inequivalent realizations of real Lie algebras of dimension no greater than four
in vector fields on a space of an arbitrary (finite) number of variables was constructed
in [38]. The mentioned works do not exhaust all papers devoted to realizations of Lie
algebras, but only them will be used in the present paper.

An extended overview on both these subjects is contained in the preprint math-ph/
0301029v7.

Starting from the above results, we detailed and amended the classification of realiza-
tions of finite-dimensional Lie algebras on the real plane. The obtained classification is
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Table 1.2. Transformations of real realizations to complex ones.

N1
Transformation of
space variables

Transformation of
basis elements

N2

1 x̃ = x− iy, ỹ = x+ iy
ẽ1 = 1 + i

2

(
e1 + e2

)
, ẽ2 = 1

c+ i
e3,

2.7, k = 1

ẽ3 = 1− i
2

(
e1− e2

)

2 x̃ = x− iy, ỹ = 1
2iy

ẽ1 = e1, ẽ2 = e2, ẽ3 = e3 2.2

3 x̃ =− 1
ix+ y

, ỹ = ix+ y

1 + x2 + y2
ẽ1 = 1

2

(
ie2 + e3

)
, ẽ2 = ie1, ẽ3 = 1

2

(
e3− ie2

)
2.2

4 x̃ = y− ix
2

, ỹ =− y + ix
2

ẽ1 = ie1− e2, ẽ2 = ie1 + e2,
2.9, k = 1

ẽ3 = e3 + ie4

2
, ẽ4 = e3− ie4

2

7 x̃ = y + ix, ỹ = y− ix ẽ1 = e1 + ie2

2i
, ẽ2 = e3− ie4

2
, ẽ3 = e6 + ie5

2
,

2.4

ẽ4 = ie2− e1

2i
, ẽ5 = e3 + ie4

2
, ẽ6 = e6− ie5

2

17 x̃ = y, ỹ = 1
x− y

ẽ1 = e1, ẽ2 = e2, ẽ3 = e3 2.2

18 x̃ = x, ỹ = 1
y2

ẽ1 = e1, ẽ2 = 1
2
e2, ẽ3 = e3 2.1

19 x̃ = x, ỹ = 1
y

ẽ1 = e1, ẽ2 = e2, ẽ3 =−e3, ẽ4 = e4 2.3

compared with existing classifications on the real [14] and complex [20–22] planes and
arranged in Table 1.1.

The nontrivial transformations over the complex field that reduce realizations from
[14] to realizations from [30] are adduced in Table 1.2.

Notation. We denote ∂/∂x, ∂/∂y , . . . as ∂x, ∂y , . . .. The indices i and j run from 1 to r,
where variation range for r is to be determined additionally in each case. The label N0

consists of two parts which denote the page (from 57 to 73) and realization numbers
in [22] correspondingly. The labels N1 and N2 coincide with the numerations of real
and complex realizations in [14, 30]. N3 corresponds to the numeration of realizations
introduced in [38], namely, R(A,n) denotes the nth realization of the Lie algebra A from
[38], or, if the dimension of the algebra is larger than four, the corresponding dimension
is indicated in the column entitled N3. The symbol N without subscripts corresponds to
the numeration used in the present paper.

Remark 2.1. The realization of rank two of the non-Abelian two-dimensional real Lie
algebra 〈∂x,x∂x + y∂y〉 (case N = 4) is missed in [14] from the formal point of view.
But it can be joined to the realization series 〈∂x,∂y ,x∂x + cy∂y ,x∂y , . . . ,xr∂y〉, r ≥ 1 (case
N1 = 24), written in the form 〈∂x,x∂x + cy∂y ,xk∂y ,k =−1,0, . . . ,r〉 under the supposition
for k =−1, x−1 = 0 and c = 1.
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Table 1.3. Differential invariants, operators of invariant differentiation, and Lie determinants of real-
izations of Lie algebras on the real plane.

N Basis of differential invariants Operator Lie determinant

1 y Dx const

1∗ x, y′ Dx const

2 y′, y′′ Dx const

3 y,
y′′

y′3
1
y′
Dx −(y′)2

3∗ x, y′′ Dx const

4 y′ yDx y

5 y,
y′′

(y′)2

1
y′
Dx y′

5∗ x,
y′′

y′
Dx y′

6 x, y′′ξ′′′1 (x)− y′′′ξ′′1 (x) Dx ξ′′1 (x)

7
y′′

y′
Dx y′

8 y′′ + y′ Dx −e−x
9 y′′ Dx const

10 y′′ey′ ey
′
Dx const

11 y′′ + 2y′ + y Dx −e−2x

12
y′′′

(y′′)2

1
y′′
Dx −y′′

13 x,
y′′′

y′′
Dx −y′′

14 y′′y′(2−a)/(a−1) (y′)(1)/(a−1)Dx (a− 1)y′

15 y′′ + (a+ 1)y′ + ay Dx (1− a)e−(1+a)x

16 y′′e−carctan y′B−3/2
1 e−carctan y′B−1/2

1 Dx B1

17 y′′ + 2by′ +
(
b2 + 1

)
y Dx −e−2bx

18
(
y′′y + (y′)2 + 1

)
B−3/2

1 2yB−1/2
1 Dx 2y2B1

19
(
y′′(x− y) + 2y′(1 + y′)

)
(y′)−3/2 (x− y)(y′)−1/2Dx 2y′(x− y)2

20 y3y′′ y2Dx y2

21 x, (y′)−2Q3 Dx y(y− x)y′

21∗ y,
(
3y′′2− 2y′y′′′

)
(y′)−4 1

y′
Dx y′

22 y′′B0B
−3/2
1 + 2(y− xy′)B−1/2

1 B0B
−1/2
1 Dx B2

0B1

23 x, y′′′P2,4
(
ξ1,ξ2

)
+ y′′P4,3

(
ξ1,ξ2

)
+ y(4) Dx P2,3

(
ξ1,ξ2

)

24
y′y′′′

(y′′)2

y′

y′′
Dx y′y′′

25
y′′′ + y′′

y′′ + y′
Dx −e−x(y′′ + y′)

26 y′′′ + 2y′′ + y′ Dx −e−2x

27 y′′′ + (1 + a)y′′ + ay′ Dx a(a− 1)e−(1+a)x
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Table 1.3. Continued.

N Basis of differential invariants Operator Lie determinant

28 y′′′ + 2by′′ +
(
1 + b2

)
y′ Dx −(1 + b2

)
e−2bx

29 S3Q
−3/2
2

√
y

y′′
Dx −2y2y′′

30 Q3(y′)−4 1
y′
Dx 2y′2

31 y′′′ Dx const

32 y′′′ + (b+ 2)y′′ + (2b+ 1)y′ + by Dx (b− 1)2e−(b+2)x

33 y′′′ + y′′ Dx −e−x
34 y′′′ + 3y′′ + 3y′ + y Dx −e−3x

35 x,
P2,4(ξ1, y)
P2,3(ξ1, y)

Dx P2,3(ξ1, y)

36 y′′′ + (a+ b+ 1)y′′ + (ab+ a+ b)y′ + aby Dx
(b− a)(1− a)(1− b)

e(a+b+1)x

37 y′′′ + (2b+ a)y′′ +
(
b2 + 2ab+ 1

)
y′ + a

(
b2 + 1

)
y Dx ((b− a)2 + 1)e−(2b+a)x

38 y′′′ey′′/2 ey
′′/2Dx const

39
b = 1 : y′′, yiv(y′′′)−2 1

y′′′
Dx y′′′

b �= 1 : (y′′)(2−b)/(b−1) y′′(1)/(b−1)Dx (1− b)y′′

40
y′′′

y′′
Dx −y′′

41 (y′′)−2B1y′′′ − 3y′
B1

y′′
Dx 3y′′B1

42
y′′′ + y′

y′′ + y
Dx y′′ + y

43 (3y′′yiv− 5(y′′′)2)(y′′)−8/3 (y′′)−1/3Dx y′′

44 S5R
−3/2
4 y′′R−1/2

4 Dx (y′′)2R4

45 Ũ5Q̃
−3
3 B1Q̃

−1/2
3 Dx −16B1Q̃

2
3

46 U5Q
−3
3 y′Q−1/2

3 Dx −4y′Q−2
3

47 V7S
−8/3
5 y′′S−1/3

5 Dx −2y′′S2
5

48 x, W
(
y′′,ξ′′1 ,ξ′′2 , . . . ,ξ′′r

)
Dx W

(
ξ′′1 ,ξ′′2 , . . . ,ξ′′r

)

49 x, Dx ln
∣
∣W

(
y′′,ξ′′1 ,ξ′′2 , . . . ,ξ′′r

)∣∣ Dx W
(
y′′,ξ′′1 , . . . ,ξ′′r

)

50 Kr

(
η1, . . . ,ηr

)
Dx W

(
η1,η2, . . . ,ηr

)

51 Dx ln
∣
∣Kr

(
η1, . . . ,ηr

)∣∣ Dx W
(
y,η1, . . . ,ηr

)

52
c �= r + 1 :

(
y(r+1)

)(2−c+r)/(c−r−1)
y(r+2)

(
y(r+1)

)1/(c−r−1)
Dx y(r+1)

c = r + 1 : y(r+1),
y(r+3)

(
y(r+2)

)2

1
y(r+2)

Dx y(r+2)

53 y(r+1)ey
(r)/r! ey

(r)/r!Dx const

54
y(r+1)y(r+3)

(
y(r+2)

)2

y(r+1)

y(r+2)
Dx y(r+1)y(r+2)

55 Qr+3
(
y(r+1)

)−(2r+8)/(r+2) (
y(r+1)

)−2/r+2
Dx y(r+1)

56 Sr+4Q
−3/2
r+3 y(r+1)Q−1/2

r+3 Dx y(r+1)Qr+3
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Remark 2.2. There are two different approaches to classification of Lie algebra realiza-
tions by vector fields. According to the first approach, one should start from classification
of Lie algebras and then look for basis vector fields that satisfy the given commutation re-
lations. The second approach consists in direct construction of finite-dimensional spaces
of vector fields, which are closed with respect to the standard Lie bracket. If a complete
list of realizations of a fixed dimension is constructed, then the problem of separation of
the realizations for a given Lie algebra from others arises and becomes nontrivial in the
case of parameterized series of realizations.

Example 2.3. Consider the series {Ab4.8} [27] of real four-dimensional Lie algebras pa-
rameterized with the parameter |b| ≤ 1. For a fixed value of b, the basis elements of Ab4.8
satisfy the canonical commutation relations

[
e2,e3

]= e1,
[
e1,e4

]= (1 + b)e1,
[
e2,e4

]= e2,
[
e3,e4

]= be3 . (2.1)

In the framework of the first approach we obtain two inequivalent realizations in vector
fields on a space of two variables [38]

〈
∂x,∂y , y∂x, (1 + b)x∂x + y∂y

〉
,

〈
∂x, y∂x,−∂y , (1 + b)x∂x + by∂y

〉
(2.2)

of the algebra Ab4.8 if |b| < 1. There is a unique inequivalent realization in the case b =±1
since under this condition realizations (2.2) are equivalent and we have to choose only
one of them.

Lie [20–22] used the second approach to construct all possible realizations of finite-
dimensional Lie algebras on the plane. The algebras from the series {Ab4.8} are represented
in the obtained list by the following realizations:

〈
∂y ,∂x,x∂y ,x∂x + b̃y∂y

〉
, b̃ ∈R,

〈
∂y ,−x∂y ,∂x, y∂y

〉
. (2.3)

In fact, the sets of realizations (2.2) and (2.3) coincide. To show this, we redenote the
variables x and y in (2.3) (namely, x↔ y) at first and shift the parameter b̃: b̃ = 1 + b′.
After reordering the basis in the first realization from (2.3) in the case |b′| ≤ 1, we obtain
the first realization from (2.2), where b = b′. If |b′| > 1, the first realization from (2.3) is
reduced to the second realization from (2.2) with b = 1/b′ by the additional simultaneous
transformations of the basis and realization variables: ẽ1 = b′e1, ẽ2 = e3, ẽ3 =−b′e2, ẽ4 =
be4; x̃ = bx, ỹ = by. The second realization from (2.3) coincides with the second one from
(2.2), where b= 0.

The above consideration explains in some way why the parameter values b = ±1 are
singular for the Lie algebra series {Ab4.8} from the viewpoint of number of realizations.

Remark 2.4. It is clear that the realizations from different series adduced in Table 1.1 are
inequivalent each to other, but there can exist equivalent realizations belonging to the
same series.
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Example 2.5. Consider the series of realizations

N = 6,23,48 :
〈
ξ1(x)∂y ,ξ2(x)∂y , . . . ,ξr+2(x)∂y

〉
, r ≥ 1, (2.4)

N = 35,49 :
〈
y∂y ,ξ1(x)∂y ,ξ2(x)∂y , . . . ,ξr+2(x)∂y

〉
, r ≥ 1 (2.5)

parameterized with arbitrary linearly independent real-valued functions ξi.
Any realization from series (2.4) or (2.5) pass into realizations from the same se-

ries under the basis transformations with nonsingular constant matrices (ci j) and the
nonsingular variable transformations x̃ = ϕ(x), ỹ = ψ(x)y. By means of these equiva-

lence transformations the parameter functions ξi change in the following way ξ̃i(x̃) =
ci jψ(x)ξj(x)|x̃=ϕ(x). Consequently, without loss of generality we can put ξ̃r+1 = 1 and

ξ̃r+2 = x̃. Hence, the series of realizations (2.4) and (2.5) takes the form adduced in
Table 1.1, namely,

〈
∂ỹ , x̃∂ỹ , ξ̃1(x̃)∂ỹ , . . . , ξ̃r(x̃)∂ỹ

〉
,

〈
ỹ∂ỹ ,∂ỹ , x̃∂ỹ , ξ̃1(x̃)∂ỹ , . . . , ξ̃r(x̃)∂ỹ

〉
. (2.6)

Accurately speaking, the series with normalized forms (2.6) also contain equivalent real-
izations, and the corresponding equivalence transformations are restrictions of the afore-
said ones.

Example 2.6. Another example is given by two series of realizations

N = 50 :
〈
∂x,η1(x)∂y , . . . ,ηr(x)∂y

〉
, r ≥ 4,

N = 51 :
〈
∂x, y∂y ,η1(x)∂y , . . . ,ηr(x)∂y

〉
, r ≥ 3,

(2.7)

parameterized with real functions ηi which form a fundamental system of solutions for
an r-order ordinary differential equation with constant coefficients

η(r)(x) + c1η
(r−1)(x) + ···+ crη(x)= 0. (2.8)

The transformations that reduce any realization from the series N = 50 and N = 51 to
a realization from the same series are generated by the changes of basis with nonsingu-
lar constant matrices (ci j) and the variable transformations x̃ = a1x + a0, ỹ = by + f (x),
where f (x)= b0η0(x) + b1η1(x) + ···+ brηr(x), a1,a0,b,b0, . . . ,br ∈R, a1b �= 0. The func-

tion η0(x) is a solution of the ODE η(r)
0 (x) + c1η

(r−1)
0 (x) + ···+ crη0(x)= 1 and in the case

N = 51 additionally b0 = 0. These equivalence transformations act on the functions ηi as
follows: η̃i(a1x+ a0)= ci jη j(x).

3. Differential invariants

Foundations of the theory of differential invariants were established in classical works of
Tresse [41, 42], Lie, and Cartan, and are developed in our days [10, 11, 30–32]. We shortly
formulate necessary definitions and statements following [31, 32] in general outlines.
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Consider a local r-parametric transformation group G acting on M ⊂ X ×Y =R×R
and denote a prolonged transformation group acting on the subset of jet space M(n) =
M ×Rn as pr(n)G. Let g be the r-dimensional Lie algebra with basis of infinitesimal op-
erators {ei = ξi(x, y)∂x +ηi(x, y)∂y} which corresponds to G. Then the prolonged algebra
pr(n) g is generated by the prolonged first-order differential operators [31, 32]:

e(n)
i = ξi(x, y)∂x +ηi(x, y)∂y +

n∑

k=1

ηki
(
x, y(k)

)
∂y(k) . (3.1)

Hereafter n,k ∈ N, i = 1, . . . ,r, the symbol y(k) denotes the tuple (y, y′, . . . , y(k)) of the
dependent variable y and its derivatives with respect to x of order no greater than k.

Definition 3.1. A smooth function I = I(x, y(n)) :M(n) →R is called a differential invariant
of order n of the group G if I is an invariant of the prolonged group pr(n)G, namely,

I
(
pr(n)g · (x, y(n)

))= I(x, y(n)
)
,
(
x, y(n)

)∈M(n), (3.2)

for all g ∈G for which pr(n)g · (x, y(n)) is defined.

In infinitesimal terms, I(x, y(n)) is an nth-order differential invariant of the group G if

e(n)
i I(x, y(n))= 0 for any prolonged basis infinitesimal generators e(n)

i of pr(n)g.
Consider the series of the ranks rk = rank{(ξi,ηi,η1

i , . . . ,ηki ), i = 1, . . . ,r}. For further
statements we introduce the number ν =min{k ∈ Z|rk = r}. Since the sequence {rk} is
nondecreasing, bounded by r, and reaches the value r, the number ν exists and the rela-
tion rν = rν+1 = ··· = r holds true.

Definition 3.2. Let pr(ν) g be generated by the set of the prolonged infinitesimal operators

{e(ν)
i }, and let L be the matrix formed by their coefficients:

L=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1 η1 η1
1 ··· η(ν)

1

ξ2 η2 η1
2 ··· η(ν)

2
...

...
...

. . .
...

ξr ηr η1
r ··· η(ν)

r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

A maximal minor of L, which does not vanish identically, is called a Lie determinant.

Importance of the adduced notions is explained by the following fact. If a system of
ordinary differential equations is invariant under action of the prolonged group pr(n)G
then it can be locally presented as a union of conditions of vanishing Lie determinants
and equations written in terms of differential invariants of G.

A natural question is whether it is possible to choose a minimal set of differential
invariants that allows us to obtain all differential invariants of the given order by a finite
number of certain operations. The answer to this question is affirmative.

Below we will briefly state several results concerning differential invariants of Lie
groups acting on the plane. The presented statements are well known and adduced only
on purpose to complete the picture of differential invariants on the plane. Detailed def-
initions and statements on the theory of differential invariants in general cases, review
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of main results, and approaches to differential invariants that are different from the pre-
sented one (such as differential one-forms and moving coframes) and possibly more con-
venient for other applications could be found, for example, in [10, 11, 31, 32].

Definition 3.3. A maximal set In of functionally independent differential invariants of
order no greater than n (i.e., invariants of the prolonged group pr(n)G) is called a universal
differential invariant of order n of the group G.

Note that the dimension of the jet space M(n) is dimM(n) = n+ 2 and the number of
functionally independent differential invariants of order n is dn = n + 2− rn. Any nth-
order differential invariant I of G is necessarily an (n+ l)th-order differential invariant of
G, l ≥ 0. Therefore for any n, l ≥ 0, a universal differential invariant In+l can be obtained
by extension of a universal differential invariant In.

Definition 3.4. A vector field (or a differential operator) δ on the infinitely prolonged
jet space M(∞) is called an operator of invariant differentiation of the group G if for any
differential invariant I of G the expression δI is also a differential invariant of G.

Any operator δ commuting with all formally infinitely prolonged basis infinitesimal
generators e∞i of the corresponding Lie algebra is an operator of invariant differentiation
ofG. For any Lie group acting on the real or complex planes, there exists exactly one inde-
pendent (over the field of invariants of this group) operator of invariant differentiation.

For any Lie group G there exists a finite basis of differential invariants, that is, a finite
set of functionally independent differential invariants such that any differential invariant
of G can be obtained from it via a finite number of functional operations and operations
of invariant differentiation. A basis of differential invariants of the group G is always
contained in a universal differential invariant Iν+1.

To describe completely differential invariants of all transformation groups acting on
the real plane, we obtain a functional basis of differential invariants and operators of
invariant differentiation for each algebra from the known list of inequivalent Lie algebras
of vector fields on the plane.

Bases of differential invariants are constructed as a part of the (ν + 1)th-order universal
differential invariants using the infinitesimal approach. The constructive procedure for
finding invariant differentiation operators is directly derived from the condition of their
commutation with formally infinitely prolonged elements of the algebra. Namely, we look
for an operator of invariant differentiation as the operator of total differentiationDx with
a multiplier λ depending on x and y(ν):X = λ(x, y(ν))Dx, where λ :M(ν) →R. The function
λ is implicitly determined by the equation ϕ(x, y(ν),λ)= 0, where ϕ satisfies the condition

ζν
i ϕ= 0, ζν

i = ξi∂x +ηi∂y +η1
i ∂y′ + ···+ην

i ∂y(ν) +
(
λDx

)
ξi∂λ. (3.4)

In other words, ϕ(x, y(ν),λ) should be an invariant of the flows generated by vector fields
ζν
i . Let us note that rank{(ζν

i ), i = 1, . . . ,r} = r. A universal invariant I of ζν
i can be pre-

sented as I = (Iν, Î), where Î : M(ν)×R→ R, ∂Î/∂λ �= 0. So, the unknown function λ can
be found from the condition Î(x, y(ν),λ)= C for a fixed constant C.

All the obtained results obtained are presented in Table 1.3 and may be used for group
classification of ODEs of any finite order. In a similar way one can describe the differential
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invariants of the transformations groups acting in the spaces of more than two variables
and having a low number of parameters by means of using the classification of realiza-
tions of real low-dimensional Lie algebras [38] and then applying them to investigation
of systems of ODEs or PDEs.

Example 3.5. Let us illustrate the above statements by considering the Lie algebra Ab3.5,
b ≥ 0, generated by the basis elements (case N = 17 in Tables 1.1 and 1.3)

e1 = ∂y , e2 = x∂y , e3 =−
(
1 + x2)∂x + (b− x)y∂y. (3.5)

The second prolongations of these operators are

e(2)
1 = ∂y ,

e(2)
2 = x∂y + ∂y′ ,

e(2)
3 =−(1 + x2)∂x + (b− x)y∂y −

(
y− (b+ x)y′

)
∂y′ + (b+ 3x)y′′∂y′′ .

(3.6)

Inasmuch as dimension of the algebra is r = 3 and the rank of the first prolongation
is r1 = 3, the ranks of all other prolongations also equal to 3: r1 = r2 = ··· = r = 3. In
this case ν = 1. Hence, the basis of differential invariants is contained in the universal
differential invariant Iν+1 = I2. The Lie determinant � is calculated as the determinant of
the matrix formed by the coefficients of e(2)

i , i= 1,2,3:

�= det

⎛

⎜
⎜
⎝

0 1 0

0 x 1

−(1 + x2
)

(b− x)y −(y− (b+ x)y′
)

⎞

⎟
⎟
⎠=−

(
1 + x2). (3.7)

It produces no invariant differential equations.
Let us look for a basis of differential invariants. There are no differential invariants

of orders 0 and 1 (because of d0 = 0 + 2− 2 = 0 and d1 = 1 + 2− r1 = 0). The universal
differential invariant I2, as well as the basis of differential invariants, is formed by a single
(because of d2 = 2 + 2− r2 = 1) function I = I(x, y, y′, y′′). It is defined by the conditions

e(2)
i I = 0, i= 1,2,3, which are equivalent to the overdetermined system of first-order lin-

ear PDEs

∂I

∂y
= 0,

x
∂I

∂y
+
∂I

∂y′
= 0,

−(1 + x2) ∂I

∂x
+ (b− x)y

∂I

∂y
− (y− (b+ x)y′

) ∂I

∂y′
+ (b+ 3x)y′′

∂I

∂y′′
= 0.

(3.8)

It is follows from the first two equations that I = I(x, y′′). The basis of differential
invariants of the considered realization is obtained as the set of functionally independent
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integrals for the reduced characteristic system of the third equation:

I2 =
{
y′′
(
1 + x2)3/2

ebarctanx}. (3.9)

The last task which should be solved in order to describe all differential invariants of
this realization is construction of an operator of invariant differentiation.

We look for the operator of invariant differentiation in the form λ(x, y, y′)Dx. Here Dx

is the operator of total differentiation. The function λ is implicitly given by the equation
ϕ(x, y, y′,λ)= 0, where ϕ is a nonconstant solution of the overdetermined system of first-
order linear PDEs

∂ϕ

∂y
= 0, x

∂ϕ

∂y
+
∂ϕ

∂y′
= 0,

(
1 + x2)∂ϕ

∂x
− (b− x)y

∂ϕ

∂y
+
(
y− (b+ x)y′

) ∂ϕ

∂y′
+ 2xλ

∂ϕ

∂λ
= 0.

(3.10)

The first two equations result in the condition ϕ = ϕ(x,λ). Then the latter implies
ϕ= ϕ(ω), where ω = λ(1 + x2)−1, that is, the function λ can be found from the equation
λ(1 + x2)−1 = 1. The corresponding operator of invariant differentiation is (1 + x2)Dx.

Remark 3.6. The form of differential invariants essentially depends on explicit form of re-
alizations. Therefore, to construct an optimal set of invariants, one should choose an op-
timal form of realizations. For example, for the realization 〈e−bx sinx∂y , e−bx cosx∂y , ∂x〉,
where b ≥ 0 (N = 17), a fundamental differential invariant, an operator of invariant dif-
ferentiation and a Lie determinant have the following form:

I2 = y′′ + 2by′ +
(
b2 + 1

)
y, X =Dx, L=−e−2bx. (3.11)

For the equivalent form 〈∂y ,x∂y ,−(1+x2)∂x+(b−x)y∂y〉 which is considered in Example
3.5, the corresponding invariant objects are more complicated:

I2 = y′′
(
1 + x2)3/2

ebarctanx, X = (1 + x2)Dx, L=−(1 + x2). (3.12)

Remark 3.7. The cases marked with “∗” in Table 1.3 differ from the cases with the same
numbers by changes of dependent and independent variables. They are adduced simul-
taneously because different forms may be convenient for different applications.

4. Concluding remarks

In this paper we provide a complete description of differential invariants and Lie deter-
minants of finite-dimensional Lie groups acting on the real plane. Obtained results are
presented in Table 1.3. As preliminaries of the above problem, known results on classifica-
tion of realizations of real Lie algebras in vector fields in two variables were reviewed and
amended (Table 1.1). Namely, the low-dimensional Lie algebras were extracted from the
general cases and presented in explicit form, which made this classification more conve-
nient for applications. Additionally, the problem of equivalence of realizations belonging
to the same series of Lie algebra was discussed.
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Results of the paper could be applied to group classification of ODEs of any finite
order over the real field. In the future we plan to review and to generalize results of group
classification of the third- and fourth-order ODEs that were obtained in [7, 39]. In a
similar way one can describe the differential invariants of the transformations groups
acting in the spaces of more than two variables and having a low number of parameters
by means of using the classification of realizations of real low-dimensional Lie algebras
and then applying them to investigation of systems of ODEs or PDEs.

In Table 1.1 the functions 1, x, ξ1, . . . ,ξr are linearly independent. The functions η1, . . . ,
ηr form a fundamental system of solutions for an r-order ordinary differential equation
with constant coefficients η(r)(x) + c1η(r−1)(x) + ···+ crη(x)= 0.

In Table 1.3 we use the following notations:

Sk+3 = (k+ 1)2(y(k))2
y(k+3)− 3(k+ 1)(k+ 3)y(k)y(k+1)y(k+2) + 2(k+ 2)(k+ 3)

(
y(k+1))3

,

Qk+2 = (k+ 1)y(k)y(k+2)− (k+ 2)
(
y(k+1))2

, Q̃3 = y′′′B1− 3y′(y′′)2,

B0 = 1 + x2 + y2, B1 = 1 + (y′)2,

Pi, j(ϕ,ψ)= ϕ(i)ψ( j)−ϕ( j)ψ(i), R4 = 3y′′yıv − 5(y′′′)2,

Ũ5 = 4yvB3
1Q+ 10yivy′′B3

1

(
4y′′′y′ + 3(y′′)2)− 5

(
yiv)2

B4
1 + 40(y′′′)2(y′′)2((y′)2− 2

)
B2

1

− 40(y′′′)3y′B3
1 − 180y′′′y′(y′′)4((y′)2− 1

)
B2

1 − (y′′)6(45
(
6(y′)2 + 1

)− 135(y′)4),

U5 = (y′)2
(
Q3D

2
xQ3− 5

4

(
DxQ3

)2)
+ y′y′′Q3DxQ3−

(
2y′y′′′ − (y′′)2)Q2

3,

V7 = (y′′)2
(
S5D

2
xS5− 7

6

(
DxS5

)2
)

+ y′′y′′′S5DxS5− 1
2

(
9y′′yıv − 7(y′′′)2)S2

5,

W
(
f1, f2, . . . , fr

)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f1(x) f2(x) ··· fr(x)

f ′1 (x) f ′2 (x) ··· f ′r (x)

··· ··· ··· ···
f (r−1)
1 (x) f (r−1)

2 (x) ··· f (r−1)
r (x)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Kr
(
η1,η2, . . . ,ηr

)= y(r) + c1y
(r−1) + c1y

(r−1) + ···+ cr y,
(4.1)

where c1, . . . ,cr are the constant coefficients of the rth-order ODE,

η(r)(x) + c1η
(r−1)(x) + ···+ crη(x)= 0, (4.2)

which is satisfied by the functions η1(x), . . . ,ηr(x).
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