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A characterization of the invertibility of a class of matrix Wiener-Hopf plus Hankel op-
erators is obtained based on a factorization of the Fourier symbols which belong to the
Wiener subclass of the almost periodic matrix functions. Additionally, a representation of
the inverse, lateral inverses, and generalized inverses is presented for each corresponding
possible case.
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1. Introduction

Operators of Wiener-Hopf plus Hankel type have been receiving an increasing attention
in the last years (see [1, 2, 4, 6, 10, 12–16]). Some of the interest in their study arises di-
rectly from concrete applications where these kind of operators appear. This is the case
in problems of wave diffraction by some particular rectangular geometries which origi-
nate specific boundary-transmission value problems that may be equivalently translated
by systems of integral equations that lead to such kind of operators (see, e.g., [5, 7, 8]).

A great part of the study in this kind of operators is concentrated in the description of
their Fredholm and invertibility properties. In particular, for some classes of the so-called
Fourier symbols of the operators, their invertibility properties are already known (cf. the
above references). Despite those advances, for some other classes of Fourier symbols, a
complete description of the Fredholm and invertibility properties is still missing. In this
way, some of the ongoing researches try to achieve the best possible factorization proce-
dures of the involved Fourier symbols in such a way that a representation of the (general-
ized) inverses of the Wiener-Hopf plus Hankel operators will be possible to obtain when
in the presence of a convenient factorization.

Within this spirit, the main aim of the present work is to provide an invertibility cri-
terion for the Wiener-Hopf plus Hankel operators of the form

WHΦ =WΦ +HΦ :
[
L2

+(R)
]N −→ [L2(R+

)]N
, (1.1)
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2 Matrix Wiener-Hopf plus Hankel operators

where WΦ stands for the Wiener-Hopf operator defined by

WΦ = r+�−1Φ ·� :
[
L2

+(R)
]N −→ [L2(R+

)]N
, (1.2)

HΦ denotes the Hankel operator given by

HΦ = r+�−1Φ ·�J :
[
L2

+(R)
]N −→ [L2(R+

)]N
, (1.3)

and the Fourier symbol Φ belongs to the so-called APW subclass of [L∞(R)]N×N . This
will therefore extend some of the results of [15] to the matrix case.

As for the notations in (1.1)–(1.3), and in what follows, [L2
+(R)]N denotes the subspace

of [L2(R)]N formed by all vectors of functions supported in the closure of R+, r+ repre-
sents the operator of restriction from [L2(R)]N into [L2(R+)]N , � stands for the Fourier
transformation, and J is the reflection operator given by the rule JΦ(x)= Φ̃(x) :=Φ(−x),
x ∈R.

In view of defining the APW functions, let us first consider the algebra of almost pe-
riodic functions, usually denoted by AP. When endowed with the usual norm and mul-
tiplicative operation, AP is the smallest closed subalgebra of L∞(R) that contains all the
functions eλ (λ∈R), where

eλ(x) := eiλx, x ∈R. (1.4)

In this framework, it turns out that the elements of APW are those from AP which allow
a representation by an absolutely convergent series. In fact, APW is precisely the (proper)
subclass of all functions ϕ∈ AP which can be written in an absolutely convergent series
of the form

ϕ=
∑

j

ϕjeλj , λj ∈R,
∑

j

∣
∣ϕj

∣
∣ <∞. (1.5)

Let us agree on the notation �B for the group of all invertible elements of a Banach
algebra B. To end with the notation, we will say that a matrix function Φ belongs to
APWN×N , and write Φ∈APWN×N , if all entries of the matrix Φ belong to APW .

As mentioned above, the representation of the (generalized/lateral/both-sided) in-
verses of WHΦ based on some factorization of the Fourier symbol Φ is an important
goal, and will be obtained in the final part of the paper. In this way, the main contribu-
tions of the present work are described in Theorems 5.1, 4.1, and 3.3.

In the next section we will recall some useful particular known results which are any-
way presented with complete proofs for the reader’s convenience.

2. Initial multiplicative decompositions

According to (1.1)–(1.3), we have

WHΦ = r+
(
�−1Φ ·� + �−1Φ ·�J

)= r+�−1Φ ·�
(
I[L2

+(R)]N + J
)
, (2.1)
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where I[L2
+(R)]N denotes the identity operator in [L2

+(R)]N . Furthermore, since

I[L2
+(R)]N + J = �er+, (2.2)

where �e : [L2(R+)]N → [L2(R)]N denotes the even extension operator, we may also
rewrite the Wiener-Hopf plus Hankel operator in (1.1) as

WHΦ = r+�−1Φ ·��er+. (2.3)

From the theory of Wiener-Hopf and Hankel operators, it is well known that

WΨΦ =WΨ�0WΦ +HΨ�0HΦ̃,

HΨΦ =WΨ�0HΦ +HΨ�0WΦ̃,
(2.4)

where �0 : [L2(R+)]N → [L2(R)]N denotes the zero extension operator. Additionally, from
the last two identities, it follows that

WHΨΦ =WΨ�0WHΦ +HΨ�0WHΦ̃, (2.5)

WHΨΦ =WHΨ�0WHΦ +HΨ�0WHΦ̃−Φ. (2.6)

Let C+ := {z ∈ C : Im z > 0}, C− := {z ∈ C : Im z < 0}, and H∞(C±) be the set of all
bounded and analytic functions inC±. Fatou’s theorem ensures that functions inH∞(C±)
have nontangential limits on R almost everywhere, and it is usually denoted by H∞± (R)
the set of all elements in L∞(R) that are nontangential limits of functions in H∞(C±).
Below, we will use the matrix versions [H∞(C±)]N×N and [H∞± (R)]N×N of those Hardy
spaces.

It is already interesting to observe that, due to (2.6), if we consider Φ being an even
function or Ψ∈ [H∞− (R)]N×N , we will then obtain the multiplicative relation

WHΨΦ =WHΨ �0 WHΦ (2.7)

of two corresponding Wiener-Hopf plus Hankel operators. A more general property in
this direction is formulated in the next result.

Proposition 2.1. If Ψ∈ [H∞− (R)]N×N and Φ,Ξ∈ [L∞(R)]N×N , such that Ξ= Ξ̃, then

WHΨΦΞ =WHΨ�0WHΦ�0WHΞ =WΨ�0WHΦ�0WHΞ. (2.8)

Proof. Since Ψ ∈ [H∞− (R)]N×N , we may apply the first presented multiplicative relation
for Wiener-Hopf plus Hankel operators; see (2.7). This leads us to

WHΨΦΞ =WHΨ�0WHΦΞ. (2.9)

In addition, since Ξ= Ξ̃, it also follows from (2.7) that

WHΦΞ =WHΦ�0WHΞ. (2.10)
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From (2.9) and (2.10), we have that

WHΨΦΞ =WHΨ�0WHΦ�0WHΞ. (2.11)

Since Ψ ∈ [H∞− (R)]N×N , we have HΨ = 0 due to the structure of the Hankel operators.
Therefore WHΨ =WΨ, and it follows from (2.11) that WHΨΦΞ =WΨ�0WHΦ�0WHΞ.

�

Proposition 2.2. If Φe ∈ �[L∞(R)]N×N and Φ̃e = Φe, then WHΦe is invertible and its
inverse is the operator �0WHΦ−1

e
�0 : [L2(R+)]N → [L2

+(R)]N .

Proof. Since both Φe and Φ−1
e are even functions, we directly obtain from the above mul-

tiplicative relations of Wiener-Hopf plus Hankel operators that

WHΦe �0WHΦ−1
e
�0 =WHΦe·Φ−1

e
�0 =WH1�0 =W1�0 = I[L2(R+)]N ,

�0WHΦ−1
e
�0WHΦe = �0WHΦe·Φ−1

e
= �0W1 = I[L2

+(R)]N .
(2.12)

This obviously shows that WHφe is invertible and its inverse is �0WHφ−1
e
�0. �

3. Matrix APW asymmetric factorization

The (Bohr) mean value of φ∈ AP is defined by

M(φ)= lim
α→∞

1
∣
∣Iα
∣
∣

∫

Iα
φ(x)dx, (3.1)

where {Iα}α∈A = {(xα, yα)}α∈A is a family of intervals Iα ⊂R such that |Iα| = yα− xα→∞
as α→∞ (for an unbounded set A ⊂ R+). The mean value of an element in AP always
exists, is finite, and is independent of the particular choice of the family {Iα}α∈A.

Let Ω(ψ) := {λ∈R :M(ψe−λ) �= 0} be the Bohr-Fourier spectrum of ψ. We will denote
by AP− (AP+) the smallest closed subalgebra of L∞(R) that contains all the functions eλ,
λ≤ 0 (λ≥ 0), and consider APW− (APW+) to be the set of all functions ψ ∈ APW such
that Ω(ψ)⊂ (−∞,0](Ω(ψ)⊂ [0,+∞), resp.). It is therefore clear that APW− ⊂ AP− and
APW+ ⊂ AP+.

Definition 3.1. Say that a matrix function Φ ∈ �APWN×N admits an APW asymmetric
factorization if it can be represented in the form

Φ=Φ−diag
[
eλ1 , . . . ,eλN

]
Φe, (3.2)

where λk ∈R, eλk (x)= eiλkx, x ∈R, Φ− ∈�APWN×N− , Φe ∈�[L∞(R)]N×N , and Φ̃e =Φe.

Remark 3.2. We would like to remark that an APW asymmetric factorization, if it exists,
is not unique. Anyway, the partial indices of two APW asymmetric factorizations of the
same matrix function are unique up to a change in their order (cf. Theorem 3.3). Con-
sequently the λk partial indices can be rearranged in any desired way. Namely, if (3.2)
is an APW asymmetric factorization of Φ and Π is a permutation constant matrix, then

by considering Π−1diag[eλ1 , . . . ,eλN ]Π=:�diag[eλ1 , . . . ,eλN ],
−→
Φ− :=Φ−Π, and

←−
Φe :=Π−1Φe,
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we obtain a second asymmetric APW factorization of Φ given by

Φ=−→Φ−�diag
[
eλ1 , . . . ,eλN

]←−
Φe. (3.3)

Besides this last fact, we have the following general result about the uniqueness of these
factorizations.

Theorem 3.3. Let Φ∈�APWN×N . Suppose that

Φ=Φ(1)
− D(1)Φ(1)

e , (3.4)

with D(1) = diag[eλ1 , . . . ,eλN ] and λ1 ≥ · · · ≥ λN , is an APW asymmetric factorization of Φ
and assume additionally that

Φ=Φ(2)
− D(2)Φ(2)

e , (3.5)

with D(2) = diag[eμ1 , . . . ,eμN ] and μ1 ≥ · · · ≥ μN , represents any other APW asymmetric
factorization of Φ. Then

Φ(2)
− =Φ(1)

− Ψ−1,

D(1) =D(2) =:D,

Φ(2)
e =D−1ΨDΦ(1)

e ,

(3.6)

where Ψ(x) = (ψjk(x))Nj,k=1 is a matrix function with nonzero and constant determinant,
having entries which are entire functions, and

ψjk(z)=
⎧
⎨

⎩

0, if λj > λk,

cjk = const �= 0, if λj = λk.
(3.7)

Proof. If Φ admits the above-mentioned two APW asymmetric factorizations, then we
can write

Φ=Φ(1)
− D(1)Φ(1)

e =Φ(2)
− D(2)Φ(2)

e , (3.8)

which leads to

(
Φ(2)
−
)−1

Φ(1)
− D(1) =D(2)Φ(2)

e

(
Φ(1)
e

)−1
. (3.9)

We now define Φ− := (Φ(2)
− )−1Φ(1)

− and Φe := Φ(2)
e (Φ(1)

e )−1. Thus, we have Φ− ∈
�APWN×N− , Φe ∈�[L∞(R)]N×N , and Φ̃e =Φe. From (3.9), we obtain the following iden-
tity for each ( j,k) element of that matrix:

(
Φ−
)
jk(x)eiλkx = eiμjx(Φe

)
jk(x); (3.10)

whence

(
Φe
)
jk(x)= (Φ−

)
jk(x)ei(λk−μj )x, (3.11)
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and recall that Φe is an even function. Thus

(
Φ−
)
jk(x)ei(λk−μj )x = (̃Φ−

)
jk(x)ei(μj−λk)x, (3.12)

and finally we infer from (3.12) that

(
Φ−
)
jk(x)= e2i(μj−λk)x (̃Φ−

)
jk(x). (3.13)

If μj ≥ λk, then the element in the left-hand side of (3.13) is in the class APW−, and the
function in the right-hand side belongs toAPW+, which implies that there exist constants
cjk such that

(
Φ−
)
jk(x)= cjk =

(̃
Φ−
)
jk(x)e2i(μj−λk)x. (3.14)

Therefore, cjk = cjke2i(μj−λk)x. Thus, if μj > λk, we obtain cjk = 0, and in the case where
μj = λk, we conclude that cjk are nonzero constants. Altogether, we have

(
Φ−
)
jk(x)=

⎧
⎨

⎩

0, if μj > λk,

cjk = const �= 0, if μj = λk.
(3.15)

Let us now assume that μj < λk. By the hypothesis, we know that (Φ−) jk ∈ APW− and
so (Φ−) jk can be represented in the following form:

(
Φ−
)
jk(x)=

∑

m

(
am
)
jke

i(νm) jkx, (3.16)

with
∑

m |(am) jk| <∞ for all j,k = 1,N . From (3.16) we directly have

(̃
Φ−
)
jk(x)=

∑

m

(
am
)
jke
−i(νm) jkx. (3.17)

Combining (3.13), (3.16), and (3.17) we obtain

∑

m

(
am
)
jke

i(νm) jkx = e2i(μj−λk)x
∑

m

(
am
)
jke
−i(νm) jkx, (3.18)

or equivalently

∑

m

(
am
)
jke

i(νm) jkx =
∑

m

(
am
)
jke

i(2(μj−λk)−(νm) jk)x, (3.19)

and this leads us to the following identity:

(
νm
)
jk = 2

(
μj − λk

)− (νm
)
jk. (3.20)

In conclusion, we have in the present case

(
νm
)
jk = μj − λk < 0. (3.21)
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So, for any couple ( j,k), we will obtain only one real number (νm) jk, which is precisely
the difference μj − λk and this means that in the representation of (Φ−) jk (cf. (3.16)) we
need to have (Φ−) jk(x) = cjkei(νm) jkx, with some constant cjk = const, for all j,k = 1,N .
Thus, we arrive at the conclusion that (Φ−) jk are entire functions when μj < λk.

We will now prove that D(1) = D(2), that is, μj = λj for all j. Let us first assume that
μj > λj , for some j. Then μl > λk for l ≤ j ≤ k and from (3.15) we infer that (Φ−)lk = 0
for l ≤ j ≤ k. This and the Laplace expansion theorem show that detΦ−(x) = 0 for all
x ∈R, which is impossible simply because Φ− is invertible. If for some j we would assume

μj < λj , we can repeat the above reasoning starting from (3.8) with D(1)Φ(1)
e (Φ(2)

e )−1 =
(Φ(1)
− )−1Φ(2)

− D(2) instead of (3.9) and obtain once again a contradiction. Thus, μj = λj for
all j.

Letting Ψ := Φ− we immediately have that Ψ is an entire function. Additionally, by
virtue of the equality D(1) =D(2) =: D and (3.15), Ψ satisfies (3.7). The block-triangular

structure of Ψ implies that detΨ is a constant, and since Ψ = (Φ(2)
− )−1Φ(1)

− this con-
stant cannot be zero. Finally, identity (3.9) gives that Φe =D−1ΨD, and therefore Φ(2)

e =
D−1ΨDΦ(1)

e . This together with the identity Φ(2)
− =Φ(1)

− Ψ−1 concludes the proof. �

4. Invertibility characterization

Let S : X → Y be a bounded linear operator acting between Banach spaces. If Im S is
closed, the cokernel of S is defined as Coker S = Y/Im S. Then, in this case, S is said to
be properly d-normal if dim Coker S is finite and dim Ker S is infinite, properly n-normal
if dim Ker S is finite and dim Coker S is infinite, and Fredholm if both dim Ker S and
dimCoker S are finite. An operator is called semi-Fredholm if it is properly n-normal,
or properly d-normal, or Fredholm.

For further purposes let us also recall that two linear operators T and S are said to be
equivalent operators if there exist two bounded invertible operators E and F such that
T = ESF.

Theorem 4.1. LetΦ have anAPW asymmetric factorization, with partial indices λ1, . . . ,λN .

(a) If there exist positive and negative partial indices, then WHΦ is not semi-Fredholm.
(b) If λi ≤ 0, i = 1,N , and if for at least one i, λi < 0, then WHΦ is properly d-normal

and right-invertible.
(c) If λi ≥ 0, i = 1,N , and if for at least one index i, λi > 0, then WHΦ is properly n-

normal and left-invertible.
(d) If λi = 0, i= 1,N , then WHΦ is invertible.

Proof. Since by hypothesis Φ admits an APW asymmetric factorization, we have

Φ=Φ−DΦe, (4.1)

where Φ− ∈ �APWN×N− , D = diag[eλ1 , . . . ,eλN ], and Φe is an invertible even element.
Without lost of generality (cf. Remark 3.2), we will assume that λ1 ≥ ··· ≥ λN . As
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previously observed, from (4.1) we therefore obtain the operator factorization

WHΦ =WΦ−�0WHD�0WHΦe . (4.2)

We know that WΦ− is invertible because Φ− ∈ �APWN×N− (and its inverse is given by
�0WΦ−1− �0). Additionally,WHΦe is also invertible becauseΦe is an even element (cf. Propo-
sition 2.2). Thus, (4.2) shows us an operator equivalence relation between WHΦ and
WHD (note that �0 : [L2(R+)]N → [L2

+(R)]N is invertible by r+ : [L2
+(R)]N → [L2(R+)]N ).

We will therefore analize the regularity properties of WHD.
Suppose that at least some of the partial indices are greater than zero, some of them

may be equal to zero, and that some of them are less than zero; for instance, λ1, . . . ,λi > 0,
λi+1 = ··· = λj = 0, and λj+1, . . . ,λN < 0. This means that

�0WHD = diag
[
�0WHeλ1

, . . . ,�0WHeλi
,�0WHeλi+1

, . . . ,�0WHeλj
,�0WHeλj+1

, . . . ,�0WHeλN

]

= diag
[
�0WHeλ1

, . . . ,�0WHeλi
,I , . . . ,I ,�0Weλj+1

, . . . ,�0WeλN

]
,

(4.3)

because WHeλk
=Weλk

, for k = j + 1,N , due to the condition λj+1 < 0, . . . ,λN < 0 and due

to the structure of the Hankel operators (and also because �0WHeλk
= I , k = i+ 1, j due to

the condition λi+1 = ··· = λj = 0). The nonzero scalar operators in the diagonal matrix
operator (4.3) are such that WHeλ1

, . . . ,WHeλi
are properly n-normal and left-invertible

(cf. [15, Theorem 6]);Weλj+1
, . . . ,WeλN

are d-normal and right-invertible (cf. the Gohberg-
Feldman-Coburn-Douglas theorem [9, 11], [3, Theorem 2.28]). Therefore, WHD cannot
be semi-Fredholm, hence WHΦ cannot be semi-Fredholm. This proves part (a) of the
theorem.

Suppose now that λi ≤ 0, i = 1,N . This implies that D ∈ APN×N− . Since APN×N− =
APN×N ∩ [H∞− (R)]N×N , it holds that D ∈ [H∞− (R)]N×N and hence WHD =WD. So, in
this case, WHΦ is equivalent to WD. If we employ again the Gohberg-Feldman-Coburn-
Douglas theorem to the each one of the operators in the main diagonal of the operator
WD, it follows the assertion (b) of the theorem.

Part (c) can be deduced from the assertion (b) by passing to adjoints.
If all partial indices are zero, we have that �0WHD is just the identity operator. This,

together with the operator equivalence relation (4.2) presented in the first part of the
proof, leads us to the last assertion (d). �

5. Inverses representation

We now reach to our final goal: the representation of generalized/lateral/both-sided in-
verses of WHΦ based on a factorization of the Fourier symbol. This result extends the
scalar version obtained in [15, Theorem 7].

Let us first recall that a bounded linear operator S− : Y → X (acting between Banach
spaces) is called a reflexive generalized inverse of a bounded linear operator S : X → Y if
(i) S− is a generalized inverse (or an inner pseudoinverse) of S, that is, SS−S= S; (ii) S− is
an outer pseudoinverse of S, that is, S−SS− = S−.
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Theorem 5.1. Suppose Φ admits an APW asymmetric factorization and

T = �0r+�−1Φ−1
e ·��er+�−1diag

[
e−λ1 , . . . ,e−λN

] ·��er+�−1Φ−1
−

·�� :
[
L2(R+

)]N −→ [L2
+(R)

]N
,

(5.1)

where Φ−1
e and Φ−1− are the inverses of the corresponding factors of an APW asymmetric

factorization of Φ, Φ = Φ−DΦe, and the operator � : [L2(R+)]N → [L2
+(R)]N denotes an

arbitrary extension operator (i.e., T is independent of the particular choice of the extension
�). Then the operatorT is a reflexive generalized inverse ofWHΦ and, in the following special
cases, T is additionally

(a) the right inverse of WHΦ, if λi ≤ 0 for all i= 1,N ;
(b) the left inverse of WHΦ, if λi ≥ 0 for all i= 1,N ;
(c) the both-sided inverse of WHΦ, if λi = 0 for all i= 1,N .

In the case when there exist partial indices with different signs, the operator WHΦ is not
Fredholm but T is still a (reflexive) generalized inverse of WHΦ.

Proof. We start with the cases (a), (b), and (c). Since Φ admits an APW asymmetric
factorization, we can write

Φ=Φ−diag
[
eλ1 , . . . ,eλN

]
Φe (5.2)

(with the corresponding factor properties). Consequently, from (2.3), it follows that

WHΦ = r+A−EAe�er+, (5.3)

where A− =�−1Φ− ·�, E =�−1diag[eλ1 , . . . ,eλN ] ·� and Ae =�−1Φe ·�.
(a) If λi ≤ 0 for all i= 1,N , consider

WHΦT = r+A−EAe�er+�0r+A
−1
e �er+E

−1�er+A
−1
− �

= r+A−EAe�er+A
−1
e �er+E

−1�er+A
−1
− �,

(5.4)

where the term �0r+ was omitted due to the fact that r+�0r+ = r+. Since A−1
e preserves the

even property of its symbol, we may also drop the first �er+ term in (5.4), and obtain

WHΦT = r+A−E�er+E
−1�er+A

−1
− �. (5.5)

Additionally, due to the definition of E and E−1 in the present case (λi ≤ 0 for all i= 1,N),
we have �0r+E�er+E−1�er+ = �0r+; also because A− is a minus type factor it follows r+A− =
r+A−�0r+. Therefore, from (5.5), we have

WHΦT = r+A−�0r+A
−1
− � = r+� = I[L2(R+)]N . (5.6)

(b) If λi ≥ 0 for all i= 1,N , we will now analyze the composition

TWHΦ = �0r+A
−1
e �er+E

−1�er+A
−1
− �r+A−EAe�er+. (5.7)
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In the present case, due to the definition of E−1, it follows �er+E−1�er+ = �er+E−1. The
same reasoning applies to the minus type factor A−1− , and therefore the equality (5.7) takes
the form

TWHΦ = �0r+A
−1
e �er+Ae�

er+ = �0r+�
er+ = �0r+ = I[L2

+(R)]N , (5.8)

where we have used the fact that �er+Ae�er+ = Ae�er+.
(c) From the last two cases (a) and (b), it directly follows that in the case of λi = 0 for

all i= 1,N , the operator T is the both-sided inverse of WHΦ (cf. (5.6) and (5.8)).
Let us now turn to the more general case: assume now that there exist partial indices

with different signs.
In this case, we recall that the assertion about the non-Fredholm property was already

provided in Theorem 4.1, assertion (a).
As about the generalized inverse, we will start by rewriting the operator E in the fol-

lowing new form:

E = diag
[
�−1eλ11 ·�, . . . ,�−1eλ1N ·�

]
diag

[
�−1eλ21 ·�, . . . ,�−1eλ2N ·�

]

=: E1E2,
(5.9)

where

λ1 j =
⎧
⎨

⎩

λj , if λj ≤ 0,

0, if λj ≥ 0,
λ2 j =

⎧
⎨

⎩

λj , if λj ≥ 0,

0, if λj ≤ 0,
(5.10)

for j = 1,N .
We will then directly compute WHΦTWHΦ, in the following way:

WHΦTWHΦ (5.11)

= (r+A−E1E2Ae�
er+
)(
�0r+A

−1
e �er+E

−1
2 E−1

1 �er+A
−1
− �
)(
r+A−E1E2Ae�

er+
)

(5.12)

= r+A−E1E2Ae�
er+A

−1
e �er+E

−1
2 E−1

1 �er+A
−1
− �r+A−E1E2Ae�

er+ (5.13)

= r+A−E1E2�
er+E

−1
2 E−1

1 �er+E1E2Ae�
er+ (5.14)

= r+A−E1E2Ae�
er+ (5.15)

=WHΦ, (5.16)

where in (5.14) we omitted the first term �er+ of (5.13) due to the factor (invariance)
property of A−1

e that yields Ae�er+A−1
e �er+ = �er+. Similarly we dropped the term �r+ in

�er+A−1− �r+A− due to a factor property of A−1− . Analogous arguments apply to the factors
E−1

1 and E−1
2 . In a more detailed way: (i) if one of the factors E1 or E2 equals I , then it is

clear that E2(�er+E
−1
2 �er+)E2 = E2(�er+E

−1
2 )E2 = E2�er+ or �0r+E1�er+E

−1
1 �er+E1 = �0r+E1

holds, respectively; (ii) in the general diagonal matrix case, the situation is identical just
because in each place of the main diagonal we have the last situation. This justifies the
simplification made in obtaining (5.15) from (5.14).
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As about the composition TWHΦT , it follows that

TWHΦT

= (�0r+A
−1
e �er+E

−1
2 E−1

1 �er+A
−1
− �
)(
r+A−E1E2Ae�

er+
)(
�0r+A

−1
e �er+E

−1
2 E−1

1 �er+A
−1
− �
)

(5.17)

= �0r+A
−1
e �er+E

−1
2 E−1

1 �er+A
−1
− �r+A−E1E2Ae�

er+A
−1
e �er+E

−1
2 E−1

1 �er+A
−1
− � (5.18)

= �0r+A
−1
e �er+E

−1
2 E−1

1 �er+A
−1
− � (5.19)

= T , (5.20)

where the third �er+ is unnecessary in (5.18) due to the factor (invariance) property of Ae
that yields Ae�er+A−1

e �er+ = �er+, and we also can omit the term �r+ in (5.18) since A−1−
is a minus type. Additionally, a similar reasoning as above was also used for obtaining
equality (5.19) since due to the definitions of E1 and E2 it holds �er+E1�er+ = �er+E1, and
�er+E

−1
2 �er+E2�er+E

−1
2 = �er+E

−1
2 . �

We end up by mentioning that almost all the above methods also work—without cru-
cial changes—in the case of matrix Wiener-Hopf plus Hankel operators with almost pe-
riodic Fourier symbols. However, a corresponding version of Theorem 3.3 for invertible
APN×N elements is an open problem. This has to do with the difficulties in substituting
the arguments in the part of the proof of Theorem 3.3 where some representations of
APW elements are used.
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sachusetts, 2001.

[13] V. G. Kravchenko and G. S. Litvinchuk, Introduction to the Theory of Singular Integral Operators
with Shift, Mathematics and Its Applications, vol. 289, Kluwer Academic, Dordrecht, 1994.

[14] A. B. Lebre, E. Meister, and F. S. Teixeira, Some results on the invertibility of Wiener-Hopf-Hankel
operators, Zeitschrift für Analysis und ihre Anwendungen 11 (1992), no. 1, 57–76.

[15] A. P. Nolasco and L. P. Castro, Factorization of Wiener-Hopf plus Hankel operators with APW
Fourier symbols, International Journal of Pure and Applied Mathematics 14 (2004), no. 4, 537–
550.

[16] S. Roch and B. Silbermann, Algebras of Convolution Operators and Their Image in the Calkin
Algebra, Report MATH, vol. 90–05, Akademie der Wissenschaften der DDR Karl-Weierstrass-
Institut für Mathematik, Berlin, 1990.

G. Bogveradze: Department of Mathematics, University of Aveiro, 3810-145 Aveiro, Portugal
E-mail address: giorgi@mat.ua.pt

L. P. Castro: Department of Mathematics, University of Aveiro, 3810-145 Aveiro, Portugal
E-mail address: lcastro@mat.ua.pt

mailto:giorgi@mat.ua.pt
mailto:lcastro@mat.ua.pt

