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The paper investigates the linear stability of mammalian physiology time-delayed flow
for three distinct cases (normal cell cycle, a neoplasmic cell cycle, and multiple cell arrest
states), for the Dirac, uniform, and exponential distributions. For the Dirac distribution
case, it is shown that the model exhibits a Hopf bifurcation for certain values of the pa-
rameters involved in the system. As well, for these values, the structural stability of the
SODE is studied, using the five KCC-invariants of the second-order canonical extension
of the SODE, and all the cases prove to be Jacobi unstable.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Preliminaries

In the present paper, we study the dynamics of a mathematical biological model which
provides the regulation of the G1 phase of the cell cycle, while one of the state variables
is delayed in time. This process leads to structural instability and Hopf bifurcation [12].
The model investigated here is 3-dimensional; it was first introduced in “Oncogene” in
[11] and investigated in [15].

The goal of the paper is to analyze the delayed system for three types of distribution
in the cases of normal cell cycle, neoplasmic cell cycle, and multiple cell arrest states, and
determine whether Hopf bifurcations occur. The mathematical method used is essentially
based on the D-subdivision method [9] combined with crossing direction of eigenvalues.
As well, the paper aims to determine if the system provides Jacobi stability [1–3, 14].

We present first the biological background of the model. The series of events which
leads to the development of a new cell by the process of cell division is commonly re-
ferred to as the cell cycle. Most cells complete four tasks during the cell cycle: they grow,
replicate their DNA, segregate their chromosomes into two identical sets, and divide. The
instructions for these tasks are encoded into the sequence of DNA in the chromosomes.
A typical cell cycle is divided into four phases: G1, S, G2, and M.

In this paper, we will provide the mathematical analysis of a model proposed for the
G1 phase of the mammalian cell cycle. The variables used in this model are

(i) M—the maturation promoting factor (MPF);
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2 Stability of a cell division process model

Table 1.1

Parameter Normal cell Neoplasmic cell Two arrest states

aE 0.1 0.1 0.1

q1 0.506 0.0506 0.0506

q2 0.0206 0.026 0.026

aM 0.01 0.18 0.01

f 0.161 0.161 0.161

g 0.14 0.067 0.1

p1 0.2 0.2 0.6

p2 0.165 0.165 3.5

dE 0.03 0.03 1.0

dM 0.38 0.38 0.38

RT 3.0 0.0 3.0

h 0.51 1.0 0.01

(ii) E—the active complex formed by cyclin E and a cyclin-dependent kinase named
cdk2;

(iii) R—the unphosphorilated retinoblastoma protein Rb.
The time-evolution of these variables is governed by the following SODE:

dM

dt
= aME+ f

(
RT −R

)
+ gM2E−dMM,

dE

dt
= aE

h+R
−dEME,

dR

dt
= p1

(
RT −R

)
M

q1 +
(
RT −R

)
+M

− p2RE

q2 +R+E
.

(1.1)

The parameters involved are as follows:
(i) aE is the rate of forming the cyclin E/ cdk2 complex;

(ii) aM and g are rates of activation of M proportional to E (g is an autocatalitic rate);
(iii) p1 and q1 are parts of a rational term used to model the dephosphorilation of Rb;
(iv) p2 and q2 are parts of a rational term used to model the phosphorilation of Rb;
(v) dE is the rate of degradation of E promoted by M;

(vi) dM is the rate of degradation of M;
(vii) h is a constant related to the inhibition of E production by Rb;

(viii) RT—total retinoblastoma protein Rb concentration.
The parameter values for the mathematical model to obtain a normal cell cycle, a neo-
plasmic cell cycle, and multiple cell arrest states are given in Table 1.1 [15].

These parameter values were selected to obtain cell cycles for normal and neoplastic
cells and to find multiple arrest states.

2. The time-delayed evolution flow

We will study the biological flow when one variable coordinate is subject to time-delay. In
our case, we assume this to be R—which denotes the concentration of unphosphorilated
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retinoblastoma protein. It is most common within physiological processes which take
place in the living cells that certain time lags might interfere. This happens because the
chemical reaction which succeeds in a chain reaction can be delayed by a lot of molecular
mechanisms. Our motivation for choosing the variable R as a delayed one is not quite
random. Namely, it is known that the change of a cell from normal to cancerous can be
caused by a simple mutation in the sequence of a certain gene—called “oncogene,” which
can be activated by a lot of biological reasons. The Rb protein is the product of a gene
from the class of the so-called “tumor supressor genes,” which helps on preventing the
development of a cancer. The Rb protein is involved in the cellular replication during the
S-phase of the cell cycle and is active only when it is not phosphorilated. We are interested
to see if a time lag in a process of phosphorilation or dephosphorilation of Rb protein
could cause Hopf bifurcation, leaving still open the question of biological interpretations
to their full extent.

To this aim, we determine first the equilibrium points of the system (1.1), obtained
by setting to zero the right side of the differential system (1.1). The resulting nonlinear
system has in general several solutions; only the positive ones can be accepted from phys-
iological point of view. We will denote such a solution as (M∗,E∗,R∗).

Further, in order to obtain the dynamical system with delayed argument in the de-
pendent variable R(t), it is known that for a given probability density g :R→R+ obeying∫∞

0 g(s)ds= 1, the transformation (perturbation) of the state variable R(t)∈R dependent
on g is the new variable R̃(t) defined by

R̃(t)=
∫∞

0
R(t− s)g(s)ds=

∫ t

−∞
R(s)g(t− s)ds. (2.1)

Applying the time-delay process to R, one changes the system (1.1) into the new SODE
[5, 12, 17]

dM

dt
= aME+ f

(
RT − R̃

)
+ gM2E−dMM,

dE

dt
= aE

h+ R̃
−dEME,

dR

dt
= p1

(
RT − R̃

)
M

q1 +
(
RT − R̃

)
+M

− p2R̃E

q2 + R̃+E
,

(2.2)

with

M(0)=M0, E(0)= E0, R(θ)= ϕ(θ), θ ∈ [−τ,0], τ ≥ 0, (2.3)

where the transform R̃(t) is defined by (2.1) and ϕ : [−τ,0]→R is a differentiable func-
tion which describes the behavior of the flow in the O direction. In other words, the initial
SODE is replaced by a differential-functional system.

Regarding the linearization of the SODE (2.2) we have the following statement [10].
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Proposition 2.1. The linearized SODE of the differential autonomous system with delayed
argument (2.2) at the equilibrium point (M∗,E∗,R∗) is

V̇(t)=M1V(t) +M2V(t− τ), (2.4)

where the t-differentation is denoted by “dot,” V(t)= t(M(t),E(t),R(t)), and

M1 =

⎛

⎜
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⎜
⎝
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∂M
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0
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0
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(2.5)

and ( f1, f2, f3) are the components of the field which provides the SODE (1.1).

We will further study the subcases when the SODE describes a normal cell cycle, a
neoplasmic cell cycle, and multiple cell arrest states. For the three cases of parameter sets
and for the three types of distributions we further develop the basic results regarding the
stability and bifurcation of the considered delayed SODE.

The values of the parameters which describe the three states are given in Table 1.1.
We attach to the autonomous SODE (1.1) the initial condition M(0) =M0, E(0) = E0,
R(0)= R0. In this case, we obtain the following.

Proposition 2.2. For the three states characterized by Table 1.1, the following data:
(i) the nonnegative equilibrium points (EQ);

(ii) the eigenvalues of the Jacobian matrix of the field at these points (EV);
(iii) the constitutive matrices of the liniarized delayed SODE (CM: M1,M2)

are provided by Table 2.1.

Proof. The results are derived using the Maple 9.5 package. �

Proposition 2.3. The characteristic equation of the differential autonomous system with
delayed argument (2.2) is

det
(
λI −M1−

∫∞

0
e−λsg(s)ds ·M2

)
= 0. (2.6)

Three notable distributions are worthy to consider: Dirac, uniform, and gamma. In
these cases, the delayed R-component of the system has, respectively, the following forms.

(1) If g is the Dirac distribution of τ ≥ 0, that is,

g(s)= δτ(s)=
⎧
⎪⎨

⎪⎩

1, s= τ,

0, s �= τ,
(2.7)

then the transform R̃(t)= R(t− τ) denotes the variableRwith delayed argument.
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Table 2.1

First equilibrium point

Normal cell cycle

EQ (0.1348761049,6.660220950,3.200693580)

EV {−21.67213347,−0.2143669685,0.01840085540}

CM

⎛

⎜
⎜
⎝

−0.1998066285 −0.004046283147 0

−0.1284746953 0.01254681891 0

26.01599213 −0.01743268202 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −0.007262561353

0 0 −0.161

0 0 −21.68083977

⎞

⎟
⎟
⎠

Neoplasmic cell cycle

EQ (0.5267488134,2.365770201,1.674869644)

EV {−0.1054623137± 0.09139869666I ,0.2315915969}

CM

⎛

⎜
⎜
⎝

−0.07097310603 −0.01580246440 0

−0.2130136694 0.1985901089 0

0.04516932401 −0.02842264971 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −0.01397638179

0 0 −0.161

0 0 −0.1069500333

⎞

⎟
⎟
⎠

Two arrest cell cycles

EQ (0.01812203076,1.792238592,3.068912253)

EV {−20651.01175,−1.808276657,0.01539183740}

CM

⎛

⎜
⎜
⎝

−1.792238592 −0.01812203076 0

−0.3735041994 0.01003284080 0

20925.06888 −1.391840174 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −0.01054885630

0 0 −0.161

0 0 −20651.02242

⎞

⎟
⎟
⎠

Second equilibrium point

Normal cell cycle

EQ (1.192962443,1.223286259,1.774146087)

EV {0.2384609282,−0.07107907874± 0.02719521086I}

CM

⎛

⎜
⎜
⎝

−0.03669858777 −0.03578887329 0

0.0286136779 0.2092423146 0

0.05131983030 −0.05764751122 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −0.01916691632

0 0 −0.161

0 0 −0.07624095606

⎞

⎟
⎟
⎠

Neoplasmic cell cycle

EQ (1.956984219,1.703301080,0.)

EV {−0.3574783446,−0.04293698589,0.4284336981}

CM

⎛

⎜
⎜
⎝

−0.05109903240 −0.05870952657 0

0.0666666668 0.4365957446 0

0 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −0.100

0 0 −0.161

0 0 −0.3574783446

⎞

⎟
⎟
⎠

Two arrest cell cycles

EQ (0.8269681423,0.1088288144,1.101136266)

EV {−0.8999561764,−0.04626925418,0.8256786612}

CM

⎛

⎜
⎜
⎝

−0.1088288144 −0.8269681423 0

−0.3620004075 0.07838763084 0

0.2881284660 −2.843630298 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −0.08099633254

0 0 −0.161

0 0 −0.0901055858

⎞

⎟
⎟
⎠
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(2) If g is the uniform distribution of τ > 0, that is,

g(s)=
⎧
⎪⎨

⎪⎩

1
τ

, 0≤ s≤ τ,

0, s > 0,
(2.8)

then R̃(t)= (1/τ)
∫ 0
−τ R(t+ s)ds.

(3) If g is the gamma distribution of τ > 0, that is,

g(s)= dm

Γ(m)
sm−1e−ds, s≥ 0, d > 0, (2.9)

then

R̃(t)= dm

Γ(m)

∫ t

−∞
R(s)(t− s)m−1e−d(t−s)ds. (2.10)

For m= 1, we obtain the exponential distribution

g(s)= d

Γ(1)
e−ds, s≥ 0, d > 0, (2.11)

and R̃(t)= (d/Γ(1))
∫ t
−∞R(s)e−d(t−s)ds.

In the following, we examine the three distribution cases with the parameter sets cor-
responding to the subcases (a), (b), and (c).

(1) The Dirac distribution. In this case, R̃(t)= R(t− τ) and (2.6) becomes

det
(
λI −M1− e−λτM2

)= 0, (2.12)

which has the form

λ3 + a2λ
2 + a4λ+

(
a1λ

2 + a3λ+ a5
)
e−λτ = 0. (2.13)

Let J(λ) be the characteristic quasipolynomial function in (2.13). The existence of τ-
independent solutions of (2.13) requires the condition

a5

[(
a1a2− a3

)2
+ a2

2

(
a5− a1a4

)2
]
= 0. (2.14)

A straightforward remark is that there exist no such solutions in this particular sub-
case. Looking for the critical values of the parameter τ at which there is an exchange of
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structural stability, we note that the solutions of the characteristic equation (2.13) are of
the form λ= λ(τ)= u(τ)± iω(τ)∈ C, and that (2.13) is equivalent to Re J(λ)= Im J(λ)=
0.

A prerequisite for studying the Hopf bifurcation consists in finding the critical values
of the parameter τ, by imposing u(τ) = 0 and ω(τ) �= 0. Under these assumptions, we
infer the nonlinear system in terms of ω and τ:

(
a5− a1ω

2)cosωτ + a3ω sinωτ = a2ω
2,

a3ωcosωτ − (a5− a1ω
2)sinωτ = ω3− a4ω.

(2.15)

We have the following proposition.

Proposition 2.4. (a) For the three states described in Table 1.1 and for the two existing
equilibrium points (EP), the following data:

(i) the coefficients of the characteristic equation (2.13) (CCE);
(ii) the real solutions (ω0,τ0) of the characteristic system (2.15) for u(τ)= 0;

(iii) the derivative λ′(τ0) of λ at τ0

are provided by Table 2.2.
(b) In all three cases, λ(τ) = ±iω(τ), and the complex values λ′(τ0) given in the table

satisfy the transversality condition Reλ′(τ0) > 0.

Proof. The results are derived using the Maple 9.5 package. �

Proposition 2.5. (a) For τ = 0, (2.13) has just three roots, which are the eigenvalues (see
Table 2.1, (EV)) of the Jacobian matrix of the vector field at the considered equilibrium point.

(b) In the cases of normal cell cycle and two arrest cell cycles, (2.13) has at least one root
with positive real part, so τ0 is not a Hopf bifurcation parameter.

In the case of neoplasmic cell cycle, (2.13) has two imaginary conjugate roots λ=±iω, an
infinity of roots with negative real part, and no root with positive real part, so this is the only
case for Dirac distribution when Hopf bifurcation occurs.

Proof. Maple 9.5 computations lead to the following results: �

(i) in the normal cell cycle case, for τ = τ0 and ω ∈ (−0.1,0.1) for the first equilib-
rium point, we get Re(λ) ∼ 0.02, and for the second equilibrium point, we get
Re(λ)∼ 0.21;

(ii) in the two arrest cell cycles case, for τ = τ0 and ω ∈ (−0.1,0.1) for the first equi-
librium point, we get Re(λ)∼ 0.02, and for the second equilibrium point, we get
Re(λ)∼ 0.55;

(iii) in the neoplasmic cell cycle, while τ passes through τ0, the function u(τ) changes
from negative to positive values. It follows that the critical value of τ for which
the Hopf bifurcation appears is exactly τ = τ0,

which prove the claims in the statement.

(2) The uniform distribution. In this case, R̃(t)= (1/τ)
∫ 0
−τ R(t+ s)ds, and (2.6) becomes

det
(
λI −M1−μ(λτ)−1M2

)= 0, (2.16)



8 Stability of a cell division process model

Table 2.2

EP First equilibrium point Second equilibrium point

Normal cell cycle

CCE

a1 = 21.68083977 a1 = 0.07624095606

a2 = 0.1872598096 a2 = 0.1725437268

a3 = 4.246086004 a3 = 0.02145250511

a4 =−0.003026782579 a4 = 0.006654846155

a5 =−0.08548650177 a5 = 0.001381121564

(ω0,τ0) {±0.1208245150,0.07243224238}(∗) {±0.1208245150,13.23965612}
λ′(τ0) 135.6645660− 212.9916676i 0.001549213968− 0.005127086353i

Neoplasmic cell cycle

CCE

a1 = 0.1069500333 a1 = 0.3574783446

a2 =−0.1276170029 a2 =−0.3854967122

a3 =−0.01191165213 a3 =−0.1378067265

a4 =−0.01746069779 a4 =−0.01839565165

a5 =−0.004510482886 a5 =−0.006576047101

(ω0,τ0) {±0.1580195697,8.755120972} {±0.3574783446,4.394102050}
λ′(τ0) 0.009921976988− 0.008975063518i 0.03685491326− 0.05789156240i

Two arrest cell cycles

CCE

a1 = 20651.02242 a1 = 0.0901055858

a2 = 1.782205751 a2 = 0.03044118356

a3 = 37024.88238 a3 =−0.4317442082

a4 =−0.02474989906 a4 =−0.3078936374

a5 =−574.7734206 a5 =−0.03438150805

(ω0,τ0) {±20651.02242,0.00007606382763}(∗) {±0.3761872967,7.668064877}
λ′(τ0) 122992729.6− 193196401.0i 0.01174812478− 0.04857504222i

where μ= 1− e−λτ , which explicitly rewrites

a4λ+ a5
μ

λτ
+ a2λ

2 + a3
μ

τ
+ λ3 + a1λ

μ

τ
= 0, (2.17)

or equivalently

a4λ
2τ + a5μ+ a2λ

3τ + a3λμ+ λ4τ + a1λ
2μ= 0, (2.18)

with λ,τ �= 0, where the coefficients are given by the following Table 2.2.
Following the same steps like in the case of Dirac distribution, we obtain that there

exists no solution for (2.18) for u= 0 in terms of τ0 and ω0.

(3) The exponential distribution. In this case, we have

R̃(t)= d

Γ(1)

∫ t

−∞
R(s)e−d(t−s)ds (2.19)
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and (2.6) becomes

det
(
λI −M1− d

λ+d
M2

)
= 0 (2.20)

leading to

a4λ+ a5
d

λ+d
+ a2λ

2 + a3
dλ

λ+d
+ λ3 + a1λ

2 d

λ+d
= 0, (2.21)

where the coefficients are given by Table 2.2.
Following the same steps like in the case of Dirac distribution, we obtain that there

exists no solution for (2.21) for u= 0 in terms of ω0 and τ0.
In the case of the Dirac distribution—neoplasmic cell cycle, the initial dynamical

SODE becomes subject to the following result, known as the Hopf bifurcation theorem
[16].

Theorem 2.6. Let X ∈ �(Rn ×R) � (x,τ), let n ≥ 2 be a �∞ vector field, which differ-
entiably depends on the parameter τ and obeys the property that the set E : X(x,τ) = 0
contains the isolated point x = x(τ),τ ∈ I ⊂ R. Consider in a neighborhood of the station-
ary point x = x(τ) the linear approximation dx/dt = A(τ)x of the system dx/dt = X(x,τ),
where A(τ) = [(∂Xi/∂xj)(x(τ),τ)]. Denote by λ1(τ), . . . ,λn(τ) the eigenvalues of A(τ) and
assume that

λ1(τ)= μ(τ) + iω(τ), λ2(τ)= μ(τ)− iω(τ)= λ̄1(τ). (2.22)

For n > 2, additionally assume that Re(λk(τ)) < 0, k = 3, . . . ,n and that there exists an iso-
lated value τ0 ∈ I such that u(τ0) = 0, ω(τ0) �= 0, and du/dτ > 0. Under these hypotheses,
one of the following assertions holds true:

(a) the stationary point x = x(τ0) is a center; for τ �= τ0 neighbor to τ0, there exists no
periodic orbit around x(τ);

(b) there exists a number b > τ0 such that for each τ ∈ (τ0,b), there exists a unique
induced orbit around the stationary point x(τ) in a neighborhood of this point. This 1-
parameter family of closed orbits split at the stationary point x(τ0), that is, for τ → τ0, the
diameter of the closed orbit varies with |τ − τ0|1/2. In this case, for τ ≤ τ0, τ ∈ I , there exists
no closed orbit neighbor to x(τ);

(c) there exists a number a < τ0 such that for each τ ∈ (a,τ0), there exists a unique closed
orbit around the stationary point x(τ0) in one of its neighborhoods. This 1-parameter family
of closed orbits split at the stationary point x(τ0), that is, for τ → τ0, the diameter of the
closed orbit varies with |τ − τ0|1/2. In this case, for τ ≥ τ0, τ ∈ I , there exists no closed orbit
neighbor to x(τ).

We note that though in the case τ = 0, in a certain neighborhood of the singular point,
there exist no closed orbits, for the delayed system at a certain delay τ �= 0, the SODE
may exhibit one of the situations (b) or (c) in Theorem 2.6, hence the presence of closed
orbits arbitrarily close to the singular point may occur, and then the concentrations of the
proteins (M,E,R) may have a cyclic evolution, provided that exists a certain delay in the
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retinoblastoma protein Rb. The complete characterization of these alternatives, including
a detailed study of stability of limit cycles is the subject of further research.

Still, one may take into account as well the alternative when there exists no periodic
orbit around the isolated point x(τ). In this case, it is very interesting that the only cell in
which the Hopf bifurcation occurs is the neoplasmic one, which is intuitively expected.
This might mean that if someone induces a delay in the processes which involve the Rb
protein, there exists a possibility for the cell to defeat the onset of cancer. The study of
stability of limit cycles can provide more information in this matter as well.

3. Jacobi structural stability

From a physiological point of view, Jacobi structural stability adds a degree of accuracy to
the classical linear analysis, by studying the robustness and fragility of a biological system.
In the case of a cancerous cell, of main interest for medicine is to locate the region where
the cell exhibits “robust arrest” (i.e., the region where one has both Lyapunov and Jacobi
stability).

We recall first some basics of KCC-theory [1, 2, 14]. Let x = (x1, . . . ,xn),

ẋ =
(
dx

dt

)
=
(
dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

)
, (3.1)

and let t be the 2n+ 1 coordinates of an open connected subset Ω ⊂ Rn ×Rn ×R1. We
consider a second-order system of differential equations of the form

d2xi

dt2
+ gi(x, ẋ, t)= 0, i∈ 1,n, (3.2)

where each function gi(x, ẋ, t) is smooth in a neighborhood of some initial conditions
(x0, ẋ0, t0) ∈Ω. In order to find the basic differential invariants of the system (3.2) (see
Kosambi [8], Cartan [6], and Chern [7]) under the nonsingular coordinate transforma-
tions

xi = f i
(
x1, . . . ,xn

)
, i∈ 1,n, t̄ = t, (3.3)

we define the KCC-covariant differential of a contravariant vector field ξi(x) on the open
subset Ω via

Dξi

dt
= dξi

dt
+

1
2
gi;rξ

r , (3.4)

where “;” indicates partial differentiation with respect to ẋ, and the Einstein summation
convention is used throughout. Using (3.4), the system (3.2) becomes

Dẋi

dt
= 1

2
gi;r ẋ

r − gi = εi, (3.5)

where εi defined here is a contravariant vector field on Ω and is called the first KCC-
invariant, which is interpreted as an external force [1]. For the normal cell cycle case,
denoting (M,E,R)= (x, y,z), the first invariant is given in Table 3.1.
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Table 3.1

ε := vector([−0.14ẋxy + 0.19ẋ− 0.5e−2 ẏ− 0.7e−1 ẏx2− 0.805e−1ż+ (0.28xy− 0.38)ẋ

+(0.1e−1 + 0.14x2) ẏ, (0.7803e−2yẋ+ 0.306e−1yẋz+ 0.3e−1yẋz2 + 0.7803e−2xẏ

+0.306e−1xẏz+ 0.3e−1xẏz2 + 0.1ż)/(2(0.51 + z)2)− 0.3e−1yẋ− 0.3e−1xẏ

−0.1ż/(0.51 + z)2,(0.3992342794e−1zẏ + 0.1166e−1żxyz− 0.330żxzy2 + 0.4żx2yz

−0.9436067888e−1ẋz− 1.83036ẋy2− 1.76756896ẋz2 + 1.19972ẋz3− 0.2ẋz4

−1.002408z3 ẏ + 0.165z4 ẏ + 1.535516459ży2 + 0.1352e−3żx2 + 0.684112e−5żx

+0.3992342795e−1ży + 1.509342311z2 ẏ + 2.40984yẋz2− 3.59779376yẋz

+0.998118xẏz2 + 0.261741480e−1xẏz− 0.2ẋy2z2− 0.4ẋyz3 + 0.429e−2zẏx2

−0.33z3 ẏx+ 0.165z2 ẏx2 + 0.52624e−3żxz+ 1.016818żxy2 + 0.1012e−1żxz2

+0.365żx2y2 + 0.165ży2z2 + 0.26700388e−1żxy + 0.1469e−1żx2y

−0.26174148e−1żyz− 0.9517872e−1yẋ+ 0.2żx2z2− 0.123732336e−2ẋ

+0.429e−2żyz2 + 1.21012ẋzy2 + 0.104e−1żx2z− 1.006698żzy2)/(2(−3.0506

+z− x)2(0.26e−1 + y + z)2) + (0.2(3.0− z)/(3.0506− z+ x)− .2(3.0− z)

·x/(3.0506− z+ x)2)ẋ+ (−0.165z/(0.26e−1 + y + z) + 0.165yz/(0.26e− 1 + y+

+z)2) ẏ + (−0.2x/(3.0506− z+ x) + 0.2(3.0− z)x/(3.0506− z+ x)2− .165

·y/(0.26e−1 + y + z) + 0.165yz/(0.26e−1 + y + z)2)ż])

The functions gi = gi(x, ẋ, t) are 2 homogeneous ones in ẋ if and only if εi = 0. In
other words, εi = 0 is a necessary and sufficient condition for a semispray to be a spray.
It is obvious that for the geodesic spray of a Riemannian or Finsler manifold, the first
invariant vanishes.

It can be easily seen that, since the system is of the form ẋ = X(x), the first invariant
has the components εi = (1/2)(∂Xi/∂xr)ẋr , and hence this vanishes for null velocities, that
is, on the stationary points of the field X . The obtained strongly nonlinear equation does
not depend on velocities, and admits solutions in the first octant of the position variables.
In the general extended case, when (M,E,R)∈R3, there exists a region in TR3 where the
first invariant cancels.

On the other hand, it is known that if the trajectories xi(t) of (3.2) are varied into
nearby ones with respect to x as x̄i(t)= xi(t) + ξi(t)η with the parameter η small, one gets
the variational equations

d2ξi

dt2
+ gi;r

dξr

dt
+ gi,rξ

r = 0, (3.6)

where “,” indicates partial differentiation with respect to x. Using now the KCC-covariant
differential (3.4), one obtains (3.6) in the covariant form

D2ξi

dt2
= Pi

rξ
r , (3.7)

where

Pi
j =−gi, j −

1
2
grgi;r; j +

1
2
ẋrgi,r; j +

1
4
gi;rg

r
; j +

1
2

∂gi; j
∂t

(3.8)
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is called the second KCC-invariant of the system (3.2), or deviation curvature tensor. Its
eigenstructure is an alternative to the Floquet theory, with the eigenvalues of Pi

j replacing
the characteristic multipliers (also called Floquet exponents, [3, 13]). In our case, it has
the generic form

Pi
j =

1
2

∂2Xi

∂x j∂xr
ẋr +

1
4
∂Xi

∂xr
∂Xr

∂x j . (3.9)

Note that (3.7) is the Jacobi field equation when the starting system (3.2) is geodesic
equations in either Finsler or Riemannian geometry. This justifies the usage of the term
Jacobi stability for KCC-theory.

On the other hand, the Jacobi (3.7) of the Finsler manifold (M,F) can be written in
the scalar form

d2v

ds2
+K · v = 0, (3.10)

where ξi = v(s)ηi is a Jacobi field along γ : xi = xi(s), ηi is the unit normal vector field
along γ, and K is the flag curvature of (M,F) [4].

It is also known that the sign of K influences the geodesic rays [4]. Indeed, if K > 0,
then the geodesic rays bunch together (are Jacobi stable), and if K < 0, then they disperse
(are Jacobi unstable).

Hence negative flag curvature is equivalent to positive eigenvalues of Pi
j , and positive

flag curvature is equivalent to negative eigenvalues of Pi
j . The following is known.

Theorem 3.1 [1, 2]. The trajectories of (3.2) are Jacobi stable if and only if the real parts of

the eigenvalues of the deviation tensor P
j
i are strict negative everywhere and Jacobi unstable,

otherwise.

The notion of Jacobi stability presented until here can be extended to the general case
of the SODE (3.2) using the theorem above as the definition for the Jacobi stability of
the trajectories of a SODE. The third, fourth, and fifth invariants of the system (3.2) are,
respectively,

Ri
jk =

1
3

(
Pi
j;k −Pi

k; j

)
, Bi

jkl = Ri
jk;l, Di

jkl = gi; j;k;l . (3.11)

These invariants prove to cancel in our case.
A basic result of the KCC-theory which points out the role of the five invariants is the

following.

Theorem 3.2 [1]. Two SODE’s of form (3.2) on Ω can be locally transformed, relative to
(3.3), one into another, if and only if their five invariants εi, Pi

j , R
i
jk, Bi

jkl, D
i
jkl are equivalent

tensors. In particular, there are local coordinates (x) for which gi(x, ẋ, t)= 0 if and only if all
five KCC-tensors vanish.

Based on Maple computations, we can infer straightforwardly that for our SODE—
subject to the requirement of having real (positive) solutions (M,E,R), there exists no
coordinate change such that the coefficients of the new second-order SODE semispray
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do all vanish. According to [1], this implies that the trajectories of the second-order ex-
tended system (including the field lines of the initial SODE) can never be lines, whatever
coordinate system one might choose.

The following results regarding the KCC stability of the SODE can be stated.

Proposition 3.3. In the “neoplasmic cell” subcase—that is, the parameter values in Table
1.1, the deviation curvature tensor Pi

j has
(a) three positive eigenvalues:

λ1 = 0.06108676262, λ2 = 0.00077698878, λ3 = 0.00669736958 (3.12)

if the first equilibrium point is considered
(
M1,E1,R1

)= (0.5267488134,2.365770201,1.674869644); (3.13)

(b) two complex conjugate eigenvalues λ1,2 =−0.01378179321± 0,01981549689i and
a positive real eigenvalue λ3 = 0,001159806479 for the second equilibrium point
(M2,E2,R2) = (1.956984219,1.703301080,0.), hence the field lines of the system
are Jacobi unstable.

Remark 3.4. The first equilibrium point (M1,E1,R1) is Lyapunov stable and the second
equilibrium point (M2,E2,R2) is Lyapunov unstable; in conclusion the cell is in a state of
“fragile arrest” in the first case and in a state of “fragile oscillations” in the second case.

Considering the parameter p1, which is the first parameter involved in the dephospho-
rilation of Rb protein, variable within the interval (0,1) and the other parameters taking
the values as in the case of neoplasmic cell, we get the following results regarding the
Jacobi stability.

Proposition 3.5. For p1 ∈ (0,1), the discriminant of the characteristic polynomial of the
Jacobi matrix attached to (1.1) is positive and depends continuously on p1. The Jacobi matrix
has two complex conjugates and a positive real eigenvalue for p1 ∈ (0,1) and, hence the field
lines of the system are Jacobi unstable.

In the following, we consider the parameter q1, which is the second rate involved in the
rational term modeling the dephosphorilation Rb protein, freely varying in the interval
(0,1); the effect on this paths of the SODE (1.1) is described by the following result.

Proposition 3.6. For q1 ∈ (0,1), the discriminant of the characteristic polynomial of the
Jacobi matrix attached to (1.1) is positive and depends continuously on q1. In this case, the
Jacobi matrix has two complex conjugates and a positive real eigenvalue; hence the field lines
of the SODE are Jacobi unstable.

Using Maple programming, one can easily infer that the system is not Lyapunov stable
for any values (p1,q1)∈ (0,1)× (0,1).

The study of Jacobi stability is complementary to the study of linear stability and is
based on the study of Lyapunov stability of whole trajectories in a region. Therefore the
perturbation yields trajectories closed by to the reference trajectory. It is well known that
in the case of Lyapunov stability, the perturbations of a stable equilibrium point lead to
trajectories which will be dumped out, provided that these are small enough so as not to
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escape from a basin of attraction (see [2, 14]). By varying the parameters p1 and q1 which
model the process of dephosphorilation of Rb protein, we obtain only cells in a state of
“fragile oscillation.”

4. Conclusions

An analysis of the delayed system was performed in Section 2, for three typical distribu-
tions: Dirac, uniform, and exponential; still, it was shown that significant results concern
just the first one. In this case, for the neoplasmic cell cycle, a value τ0 for the time-delay
parameter was determined, such that for any τ < τ0, the positive equilibrium point is lo-
cally asymptotically stable, for τ = τ0 the system exhibits Hopf bifurcation, and for τ > τ0,
the equilibrium point is unstable. In Section 3, the Jacobi stability (which characterizes
robustness/fragileness) of the nondelayed dynamical system was studied, with focus on
the case of the neoplasmic cell. It was shown that for the parameters p1 and q1 varying in
the interval (0,1), the field lines of the system are Jacobi unstable.
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