C₀-SEMIGROUPS OF LINEAR OPERATORS ON SOME ULTRAMETRIC BANACH SPACES

TOKA DIAGANA

Received 20 August 2005; Revised 28 February 2006; Accepted 25 April 2006

 C_0 -semigroups of linear operators play a crucial role in the solvability of evolution equations in the classical context. This paper is concerned with a brief conceptualization of C_0 -semigroups on (ultrametric) free Banach spaces \mathbb{E} . In contrast with the classical setting, the parameter of a given C_0 -semigroup belongs to a clopen ball Ω_r of the ground field \mathbb{K} . As an illustration, we will discuss the solvability of some homogeneous *p*-adic differential equations.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let $(\mathbb{K}, +, \cdot, |\cdot|)$ be a (complete) ultrametric-valued field and let Ω_r be the closed ball of \mathbb{K} centered at 0 with radius r > 0, that is, $\Omega_r = \{\kappa \in \mathbb{K} : |\kappa| \le r\}$. It is well known that Ω_r is also open in \mathbb{K} ; for this reason, Ω_r is called a *clopen*. Recall that each ball Ω_r is an additive subgroup of \mathbb{K} . From now on, the radius r of the ball Ω_r will be suitably chosen so that the series, which defines the p-adic exponential, converges. Indeed, let $\mathbb{K} = \mathbb{Q}_p$ be the field of p-adic numbers ($p \ge 2$ being a prime) equipped with the p-adic valuation $|\cdot|$ and let $\Omega_r = \{q \in \mathbb{Q}_p : |q| \le r\}$. In contrast with the classical context, the p-adic exponential given by

$$e^q := \sum_{n \ge 0} \frac{q^n}{n!} \tag{1.1}$$

is not always well defined and analytic for each $q \in \mathbb{Q}_p$. However, it does converge for all $q \in \mathbb{Z}_p$ such that $|q| < r = p^{-1/(p-1)}$, where \mathbb{Z}_p denotes the ring of *p*-adic integers. (The ring of *p*-adic integers \mathbb{Z}_p is the unit ball of \mathbb{Q}_p centered at zero, that is, the set of all $x \in \mathbb{Q}_p$ such that $|x| \le 1$, where $|\cdot|$ is the *p*-adic valuation of \mathbb{Q}_p). For more on these and related issues, we refer the reader to [1, 7, 8, 18].

In this paper, we provide the reader with a brief conceptualization of ultrametric counterparts of C_0 -semigroups in connection with the formalism of linear operators on free Banach and non-Archimedean Hilbert spaces, recently developed in [2–6].

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 52398, Pages 1–9 DOI 10.1155/IJMMS/2006/52398

The present paper is mainly motivated by the solvability of *p*-adic differential and partial differential equations [9, 11–13, 18] as strong (mild) solutions to the Cauchy problem related to several classes of differential and partial differential equations in the classical setting which can be expressed through C_0 -semigroups, see, for example, [15, 16].

As for the *p*-adic exponential defined above, here, the parameter of a given C_0 -semigroup belongs to one of those clopen balls Ω_r whose radius *r* will be suitably chosen. Let us mention however that the idea of considering one-parameter families of bounded linear operators on balls such as Ω_r was first initiated in [1] for bounded symmetric operators defined on \mathbb{Q}_p . Here, we consider those issues within the framework of free Banach and non-Archimedean Hilbert spaces, while a development of a theory of linear operators on those ultrametric spaces is underway. One of the consequences of the ongoing discussion is that if $\mathbb{K} = \mathbb{Q}_p$ and if *A* is a bounded linear operator on a free Banach space \mathbb{E} satisfying $||A|| \leq r$ with $r = p^{-1/(p-1)}$, then the function defined by

$$\nu(q) = \left(\sum_{n\geq 0} \frac{(qA)^n}{n!}\right) u_0, \quad q \in \Omega_r,$$
(1.2)

for a fixed $u_0 \in \mathbb{E}$ is the solution to the homogeneous *p*-adic differential equation given by

$$\frac{du}{dq} = Au, \quad u(0) = u_0. \tag{1.3}$$

This paper is organized as follows: Section 2 is devoted to the required background needed in the sequel. In Section 3, we study C_0 -semigroups and consider the solvability of homogeneous *p*-differential equations involving both bounded and unbounded linear operators on a free Banach space \mathbb{E} .

2. Preliminaries

2.1. Free Banach spaces

Definition 2.1. Let $(\mathbb{K}, |\cdot|)$ be a complete non-Archimedean field and let \mathbb{E} be a vector space over \mathbb{K} . A nonnegative real-valued function $\|\cdot\|$ over \mathbb{E} is called an ultrametric norm if

- (a) ||x|| = 0 if and only if x = 0;
- (b) $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{K}$ and $x \in \mathbb{E}$;
- (c) $||x + y|| \le \max(||x||, ||y||)$ for all $x, y \in \mathbb{E}$ with equality holding if $||x|| \ne ||y||$.

Definition 2.2. An ultrametric Banach space is a vector space endowed with an ultrametric norm, which is complete.

For details on ultrametric Banach spaces and related issues, see, for example, [14, 17].

Example 2.3. Let $(\mathbb{K}, |\cdot|)$ be a complete ultrametric field and let $\rho = (\rho_i)_{i \in I} \subset \mathbb{R}^+ - \{0\}$ be real numbers, where *I* is a given index set.

Define

$$l^{\infty}(I, \mathbb{K}, \rho) := \left\{ x = (x_i)_{i \in I} \in \mathbb{K}^I : \sup_{i \in I} |x_i| \rho_i < \infty \right\}.$$
(2.1)

One equips $l^{\infty}(I, \mathbb{K}, \rho)$ with the ultrametric norm defined by $||x|| := \sup_{i \in I} |x_i|\rho_i$. It is well known that $(l^{\infty}(I, \mathbb{K}, \rho), || \cdot ||)$ is an ultrametric Banach space, see [5, 6].

Example 2.4. Let $c_0(I, \mathbb{K}, \rho) \subset l^{\infty}(I, \mathbb{K}, \rho)$ be a subspace defined by

$$c_0(I, \mathbb{K}, \rho) := \left\{ x = (x_i)_{i \in I} \in \mathbb{K}^I : \lim_{i \in I} |x_i| \rho_i = 0 \right\}.$$
 (2.2)

Clearly, $(c_0(I, \mathbb{K}, \rho), \|\cdot\|)$, where $\|\cdot\|$ is the ultrametric norm given in Example 2.3, is a closed subspace of $(l^{\infty}(I, \mathbb{K}, \rho), \|\cdot\|)$, and hence it is an ultrametric Banach space.

Definition 2.5. An ultrametric Banach space $(\mathbb{E}, \|\cdot\|)$ over a (complete) field $(\mathbb{K}, |\cdot|)$ is said to be a free Banach space if there exists a family $(e_i)_{i \in I}$ of elements of \mathbb{E} such that each element $x \in \mathbb{E}$ can be written in a unique fashion as a pointwise convergent series defined by $x = \sum_{i \in I} x_i e_i$ with $\lim_{i \in I} x_i e_i = 0$, and $\|x\| = \sup_{i \in I} |x_i| \|e_i\|$.

The family $(e_i)_{i \in I}$ is then called an *orthogonal basis* for \mathbb{E} . If $||e_i|| = 1$, for all $i \in I$, then $(e_i)_{i \in I}$ is called an *orthonormal basis* for \mathbb{E} .

Example 2.6. Let $(\mathbb{K}, |\cdot|)$ be a complete ultrametric field and let M be a compact (topological) space. Let $C(M, \mathbb{K})$ denote the space of continuous functions which go from M into \mathbb{K} . The space $C(M, \mathbb{K})$ is equipped the with the sup norm defined by

$$||u||_{\infty} := \sup_{m \in M} |u(m)|.$$
 (2.3)

It can be shown that $(C(M, \mathbb{K}), \|\cdot\|_{\infty})$ is an ultrametric Banach space. In particular, when $M = \mathbb{Z}_p$ and $\mathbb{K} = (\mathbb{Q}_p, |\cdot|)$, where $p \ge 2$ is a prime number, then the resulting space $(C(\mathbb{Z}_p, \mathbb{Q}_p), \|\cdot\|_{\infty})$ is a free Banach space. Indeed, consider the sequence of functions defined by

$$f_n(x) = \frac{x(x-1)(x-2)(x-3)\cdots(x-n+1)}{n!}, \quad n \ge 1, \ f_0(x) = 1.$$
(2.4)

It is well known [10] that the family $(f_n)_{n\in\mathbb{N}}$ is an orthonormal base, that is, $||f_n||_{\infty} = 1$, and that every function $u \in C(\mathbb{Z}_p, \mathbb{Q}_p)$ has a unique uniformly convergent decomposition defined by $u(x) = \sum_{n=0}^{\infty} c_n f_n(x), c_p \in \mathbb{Q}_p$, with $|c_n| \mapsto 0$ as $n \mapsto \infty$ and $||u||_{\infty} = \sup_{n\in\mathbb{N}} |c_n|$.

Example 2.7. Let \mathbb{K} be a field which is complete with respect to a non-Archimedean valuation which will be denoted $|\cdot|$. Fix once and for all a sequence $\omega = (\omega_s)_{s \in \mathbb{N}}$ of nonzero elements of \mathbb{K} . Set $\mathbb{E}_{\omega} = c_0(\mathbb{N}, \mathbb{K}, (||e_i||_{i \in N}))$, where $||e_i|| = |\omega_i|^{1/2}$ for each $i \in \mathbb{N}$. As mentioned above, an (ultrametric) norm is defined on \mathbb{E}_{ω} by

$$x = (x_s)_{s \in \mathbb{N}}, \qquad ||x|| := \sup_{s \in \mathbb{N}} |x_s| |\omega_s|^{1/2}.$$
 (2.5)

Note that \mathbb{E}_{ω} is a free Banach space—it has a canonical orthogonal base—namely, $(e_i)_{i \in \mathbb{N}}$, where e_i is the sequence all of whose terms are 0 except the *i*th term which is 1, and

 $\langle e_i, e_j \rangle = \omega_i \delta_{ij}$, where δ_{ij} is the Kronecker symbol. An inner product (symmetric, bilinear, nondegenerate form) is defined by: for all $x = (x_s)_{s \in \mathbb{N}}$, $y = (y_s)_{s \in \mathbb{N}} \in \mathbb{E}_{\omega}$,

$$\langle x, y \rangle := \sum_{s=0}^{\infty} x_s y_s \omega_s.$$
 (2.6)

The space $(\mathbb{E}_{\omega}, \|\cdot\|, \langle\cdot, \cdot\rangle)$ is then called a non-Archimedean (or *p*-adic) Hilbert space, see, for example, [2, 5, 6].

For a free Banach space \mathbb{E} , let \mathbb{E}^* denote its (topological) dual and $B(\mathbb{E})$ the Banach space of all bounded linear operators on \mathbb{E} , see [2, 3, 5, 6]. Both \mathbb{E}^* and $B(\mathbb{E})$ are equipped with their respective natural norms. For $(u, v) \in \mathbb{E} \times \mathbb{E}^*$, we define the linear operator $(v \otimes u)$ by setting

$$\forall x \in \mathbb{E}, \quad (v \otimes u)(x) := v(x)u = \langle v, x \rangle u. \tag{2.7}$$

It follows that $||v \otimes u|| = ||v|| \cdot ||u||$.

Let $(e_i)_{i \in \mathbb{N}}$ be an orthogonal basis for \mathbb{E} . Define $e'_i \in \mathbb{E}^*$ by $x = \sum_{i \in \mathbb{N}} x_i e_i$ with $e'_i(x) = x_i$. It turns out that $||e'_i|| = 1 ||e_i||$. Furthermore, every $x' \in \mathbb{E}^*$ can be expressed as a pointwise convergent series: $x'e = \sum_{i \in \mathbb{N}} \langle x'e_i \rangle e_i$. Moreover,

$$\|x'\| := \sup_{i \in \mathbb{N}} \left[\frac{|\langle x', e_i \rangle|}{||e_i||} \right].$$

$$(2.8)$$

Now let us recall that every bounded linear operator A on \mathbb{E} can be expressed as a pointwise convergent series, that is, there exists an infinite matrix $(a_{ij})_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ with coefficients in \mathbb{K} such that

$$A = \sum_{ij} a_{ij} (e'_j \otimes e_i), \qquad (2.9)$$

and for any $j \in \mathbb{N}$,

$$\lim_{i \to \infty} |a_{ij}| ||e_i|| = 0.$$
(2.10)

Moreover, for each $j \in \mathbb{N}$, $Ae_j = \sum_{i \in \mathbb{N}} a_{ij}e_i$ and its norm is defined by

$$||A|| := \sup_{i,j} \left[\frac{|a_{ij}| ||e_i||}{||e_j||} \right].$$
(2.11)

2.2. Unbounded linear operators on free Banach spaces. Let \mathbb{E} , \mathbb{F} be free Banach spaces. Suppose that $(e_i)_{i \in \mathbb{N}}$ and $(h_j)_{j \in \mathbb{N}}$ are, respectively, the canonical orthogonal bases associated with the free Banach spaces \mathbb{E} and \mathbb{F} .

For details on the next definition, see [3, 4], in which a similar definition appears on non-Archimedean Hilbert spaces.

Definition 2.8. An unbounded linear operator A from \mathbb{E} into \mathbb{F} is a pair (D(A), A) consisting of a subspace $D(A) \subset \mathbb{E}$ (called the domain of A), and a (possibly not continuous)

linear transformation $A : D(A) \subset \mathbb{E} \mapsto \mathbb{F}$, such that the domain D(A) contains the basis $(e_i)_{i \in \mathbb{N}}$ and consists of all $u = (u_i)_{i \in \mathbb{N}} \in \mathbb{E}$, such that $Au = \sum_{i \in \mathbb{N}} u_i Ae_i$ converges in \mathbb{F} , that is,

$$D(A) := \left\{ u = (u_i)_{i \in \mathbb{N}} \in \mathbb{E} : \lim_{i \to \infty} |u_i| ||Ae_i|| = 0 \right\},$$

$$A = \sum_{i,j \in \mathbb{N}} a_{i,j} e'_j \otimes h_i, \quad \forall j \in \mathbb{N}, \lim_{i \to \infty} |a_{i,j}| ||h_i|| = 0.$$
(2.12)

The collection of those unbounded linear operators is denoted by $U(\mathbb{E}, \mathbb{F})$. For more on these and related issues, we refer the reader to [3, 4].

3. *p*-adic C₀-semigroup of bounded linear operators

Let $(\mathbb{E}, \|\cdot\|)$ be a free Banach space. Throughout the rest of this paper, we consider families $(T(\kappa))_{\kappa \in \Omega_r} : \mathbb{E} \to \mathbb{E}$ of bounded linear operators. We always suppose that *r* is suitably chosen so that $\kappa \to T(\kappa)$ is well defined.

Definition 3.1. Let r > 0 be a real number. A family $(T(\kappa))_{\kappa \in \Omega_r} : \mathbb{E} \to \mathbb{E}$ of bounded linear operators will be called a *s*emigroup of bounded linear operators on \mathbb{E} if

(i) $T(0) = I_{\mathbb{E}}$, where $I_{\mathbb{E}}$ is the unit operator of \mathbb{E} ;

(ii) $T(\kappa + \kappa') = T(\kappa)T(\kappa')$ for all $\kappa, \kappa' \in \Omega_r$.

The semigroup $(T(\kappa))_{\kappa \in \Omega_r}$ will be called of class C_0 or strongly continuous if the following additional condition holds:

(iii) $\lim_{\kappa \to 0} ||T(\kappa)x - x|| = 0$ for each $x \in \mathbb{E}$.

Remark 3.2. A semigroup $(T(\kappa))_{\kappa \in \Omega_r}$ will be called uniformly continuous if the following additional condition holds:

(iv) $\lim_{\kappa \to 0} ||T(\kappa) - I_{\mathbb{E}}|| = 0.$

Remark 3.3. One should point out that a semigroup $(T(\kappa))_{\kappa \in \Omega_r}$ of bounded linear operators is not only a semigroup, but also a group. Every $T(\kappa)$ is invertible, the inverse being $T(-\kappa)$, according to Definition 3.1(i) and (ii). Moreover, it is an infinite abelian group.

Definition 3.4. If $(T(\kappa))_{\kappa \in \Omega_r}$ is a semigroup, then the linear operator A defined by

$$D(A) = \left\{ x \in \mathbb{E} : \lim_{\kappa \to 0} \left(\frac{T(\kappa)x - x}{\kappa} \right) \text{ exists } \right\},$$

$$Ax = \lim_{\kappa \to 0} \left(\frac{T(\kappa)x - x}{\kappa} \right), \text{ for each } x \in D(A),$$
(3.1)

is called the infinitesimal generator associated with the semigroup $(T(\kappa))_{\kappa \in \Omega_r}$.

Remark 3.5. (i) Note that if $(T(\kappa))_{\kappa \in \Omega_r}$ is a semigroup on \mathbb{E} and if $(e_i)_{i \in \mathbb{N}}$ denotes the orthogonal basis for \mathbb{E} , then $T(\kappa)$ for each $\kappa \in \Omega_r$ can be expressed [3, 5, 6], for any $x = \sum_{i \in \mathbb{N}} x_i e_i \in \mathbb{E}$, by $T(\kappa) x = \sum_{i \in \mathbb{N}} x_i T(\kappa) e_i$, where

$$\forall s \in \mathbb{N}, \quad T(\kappa)e_s = \sum_{i \in \mathbb{N}} a_{i,s}(\kappa)e_i \quad \text{with } \lim_{i \to \infty} |a_{i,s}(\kappa)| ||e_i|| = 0.$$
(3.2)

(ii) Using (i), one can easily see that for each $0 \neq \kappa \in \Omega_r$,

$$\forall s \in \mathbb{N}, \quad \left(\frac{T(\kappa) - I_{\mathbb{E}}}{\kappa}\right) e_s = \left(\frac{a_{s,s}(\kappa) - 1}{\kappa}\right) e_s + \sum_{i \neq s} \frac{a_{i,s}(\kappa)}{\kappa} e_i \tag{3.3}$$

with $\lim_{i\neq s,i\to\infty} |a_{i,s}(\kappa)| ||e_i|| = 0$.

(iii) If $(T(\kappa))_{\kappa \in \Omega_r}$ is a semigroup on \mathbb{E} , then its infinitesimal generator A may or may not be a bounded linear operator on \mathbb{E} .

In this paper, we mainly focus on general semigroups and strongly continuous semigroups of bounded linear operators on general free Banach spaces.

We begin with the following example.

Example 3.6. Take $\mathbb{K} = \mathbb{Q}_p$ the field of *p*-adic numbers. Consider the ball Ω_r of \mathbb{Q}_p with $r = p^{-1/(p-1)}$. Let \mathbb{E} be a free Banach space over \mathbb{Q}_p and let $(e_i)_{i \in \mathbb{N}}$ be the canonical orthogonal base. Define for each $q \in \Omega_r$ and for $x = \sum_{i \ge 0} x_i e_i \in \mathbb{E}$ the family of linear operators $T(q)x = \sum_{i \ge 0} x_i e^{\mu_i q} e_i$, where $(\mu_i)_{i \in \mathbb{N}} \subset \Omega_r$ is a sequence of nonzero elements.

It is routine to check that the family $(T(q))_{q \in \Omega_r}$ is well defined.

PROPOSITION 3.7. The family $(T(q))_{q \in \Omega_r}$ of linear operators given above is a C_0 -semigroup of bounded linear operators, whose infinitesimal generator is the (bounded) diagonal operator A defined by $Ax = \sum_{i\geq 0} \mu_i x_i e_i$ for each $x = \sum_{i\geq 0} x_i e_i \in \mathbb{E}$.

Proof. First, note that T(q) is analytic on the ball Ω_r . It is routine to check that $(T(q))_{q \in \Omega_r}$ is a family of bounded linear operators on \mathbb{E} . Indeed, for each $q \in \Omega_r$,

$$T(q)e_i = e^{\mu_i q}e_i = \left(\sum_{n\geq 0} \frac{\mu_i^n q^n}{n!}\right)e_i, \quad \forall i \in \mathbb{N},$$
(3.4)

and hence, $||T(q)|| = |(\sum_{n\geq 0}(\mu_i^n q^n)/n!)| < \infty$, by the fact that $q\mu_i \in \Omega_r$ for each $i \in \mathbb{N}$. Furthermore, one can easily check that $T(0) = I_{\mathbb{E}}$, T(q+q') = T(q)T(q') for all $q,q' \in \Omega_r$, and that $\lim_{q\to 0} ||T(q)x - x|| = 0$ for each $x \in \mathbb{E}$, and hence, $(T(q))_{q\in\Omega_r}$ is a C_0 -semigroup of bounded linear operators.

Now, let *B* be the infinitesimal generator of $(T(q))_{q \in \Omega_r}$. It remains to show that A = B. First of all, let us show that $D(B) = \mathbb{E} (= D(A))$. Clearly, for each $0 \neq q \in \Omega_r$, $(T(q)e_i - e_i)/q = ((e^{\mu_i q} - 1)/q)e_i$ for each $i \in \mathbb{N}$, and hence

$$D(B) = \left\{ x = (x_i)_{i \in \mathbb{N}} : \lim_{i \to \infty} |x_i| \cdot \left\| \frac{T(q)e_i - e_i}{q} \right\| = 0 \right\} = \mathbb{E}$$
(3.5)

by $|x_i| \cdot ||(T(q)e_i - e_i)/q|| \le (|x_i| ||e_i||)/|q| \mapsto 0$ as $i \mapsto \infty$, for each $x = \sum_{i \in \mathbb{N}} x_i e_i \in \mathbb{E}$.

To complete the proof, it suffices to prove that

$$\left\|Ae_i - \left(\frac{T(q)e_i - e_i}{q}\right)\right\| \longrightarrow 0 \quad \text{as } q \longmapsto 0.$$
(3.6)

The latter is actually obvious since $((e^{\mu_i q} - 1)/q) \mapsto \mu_i$ as $q \mapsto 0$, and hence B = A is the infinitesimal generator of the C_0 -semigroup $(T(q))_{q \in \Omega_r}$.

 \square

In the next theorem, we suppose $\mathbb{K} = \mathbb{Q}_p$, where $p \ge 2$ is prime. Note also that it is a natural generalization of Example 3.6.

THEOREM 3.8. Let A be a bounded linear operator on \mathbb{E} such that $||A|| < r = p^{-1/(p-1)}$. Then, A is the infinitesimal generator of a uniformly continuous semigroup of bounded operators $(T(q))_{q \in \Omega_r}$.

Proof. Suppose that *A* is a bounded linear operator on \mathbb{E} with $||A|| < r = p^{-1/(p-1)}$, and set, for each $q \in \Omega_r$,

$$T(q) = \sum_{n \ge 0} \frac{(qA)^n}{n!}.$$
(3.7)

Clearly, the series given by (3.7) converges in norm and defines a family of bounded linear operators on \mathbb{E} , by $|q| \cdot ||A|| < r$. It is also routine to check that $T(0) = I_{\mathbb{E}}$, T(q+q') = T(q)T(q') for all $q, q' \in \Omega_r$.

It remains to show that $(T(q))_{q \in \Omega_r}$ given above is uniformly continuous. Indeed, $0 \neq q \in \Omega_r$; one has $T(q) - I_{\mathbb{E}} = qA\{\sum_{n\geq 0}((qA)^n/(n+1)!)\}$, and hence

$$\left\| \frac{T(q) - I_{\mathbb{E}}}{q} - A \right\| \le \|A\| \cdot \left\| T(q) - I_{\mathbb{E}} \right\| < \left\| T(q) - I_{\mathbb{E}} \right\|.$$
(3.8)

Now, $||T(q) - I_{\mathbb{E}}|| \le |q| \cdot ||A|| \cdot ||\zeta(q)||$, where $\zeta(q) = \sum_{n \ge 0} ((qA)^n / (n+1)!)$ converges, and hence

$$\lim_{q \to 0} ||T(q) - I_{\mathbb{E}}|| = 0.$$
(3.9)

Consequently,

$$\lim_{q \to 0} \left\| \frac{T(q) - I_{\mathbb{E}}}{q} - A \right\| = 0$$
(3.10)

by both (3.8) and (3.9).

Remark 3.9. (i) Note that the mapping $\Omega_r \mapsto B(\mathbb{E})$, $q \mapsto T(q)$ is analytic. Furthermore, dT(q)/dt = AT(q) = T(q)A.

(ii) An abstract version of Theorem 3.8, that is, in a general ultrametric-valued field \mathbb{K} , remains an unsolved problem.

Now, let \mathbb{K} be a (complete) ultrametric-valued field and let $\Omega_r \subset \mathbb{K}$ be a clopen, where r is chosen so that $\Omega_r \mapsto B(\mathbb{E}), \kappa \mapsto T(\kappa)$ is well defined.

We have the following theorem.

THEOREM 3.10. Let $(T(\kappa))_{\kappa \in \Omega_r}$ be a C_0 -semigroup satisfying $||T(\kappa)|| \le M$ for each $\kappa \in \Omega_r \subset \mathbb{K}$ with M > 0, and let A be its infinitesimal generator. Then, for each $x \in D(A)$, $T(\kappa)x \in D(A)$ for each $\kappa \in \Omega_r$. Furthermore,

$$\left(\frac{dT(\kappa)}{d\kappa}\right)x = AT(\kappa)x = T(\kappa)Ax.$$
(3.11)

Proof. The proof in some extent, is similar to that of the classical one; however, for the sake of clarity, we will provide the reader with all details.

Let $x \in D(A)$ and let $0 \neq \kappa \in \Omega_r$. Using Definition 3.1, Definition 3.4, and the boundedness of the C_0 -semigroup $T(\kappa)$, it easily follows that

$$\left(\frac{T(\kappa) - I_{\mathbb{E}}}{\kappa}\right) T(\kappa') x = T(\kappa') \left(\frac{T(\kappa) - I_{\mathbb{E}}}{\kappa}\right) x \longmapsto T(\kappa') A x$$
(3.12)

as $\kappa \mapsto 0$.

Consequently, $T(\kappa')x \in D(A)$ and $AT(\kappa')x = T(\kappa')Ax$, by (3.12). Furthermore, since $T(\kappa')((T(\kappa) - I_{\mathbb{E}})/\kappa)x \mapsto T(\kappa')Ax$ as $\kappa \mapsto 0$, it follows that the right derivative of $T(\kappa')x$ is $T(\kappa')Ax$. Thus, to complete the proof, we have to show that for each $0 \neq \kappa' \in \Omega_r$, the left derivative of $T(\kappa')x$ exists and is $T(\kappa')Ax$. (Note that if $\sigma, \sigma' \in \Omega_r$, so is $\sigma - \sigma'$, by $|\sigma - \sigma'| \leq \max(|\sigma|, |\sigma'|) < r$.) Now

$$\lim_{\kappa \to 0} \left(\frac{T(\kappa')x - T(\kappa' - \kappa)x}{\kappa} - T(\kappa')x \right) = \lim_{\kappa \to 0} T(\kappa' - \kappa) \left(\frac{T(\kappa)x - x}{\kappa} - Ax \right) + \lim_{\kappa \to 0} \left[T(\kappa' - \kappa)Ax - T(\kappa')Ax \right].$$
(3.13)

Clearly, $\lim_{\kappa\to 0} T(\kappa' - \kappa)((T(\kappa)x - x)/\kappa - Ax) = 0$, by $||T(\sigma)|| \le M$ for each $\sigma \in \Omega_r$. Using the strong continuity of the semigroup $T(\kappa)$, it follows that

$$\lim_{\kappa \to 0} \left[T(\kappa' - \kappa) A x - T(\kappa') A x \right] = 0.$$
(3.14)

Consequently, $\lim_{\kappa \to 0} ((T(\kappa')x - T(\kappa' - \kappa)x)/\kappa - T(\kappa')x) = 0$, and hence the left derivative of $T(\kappa')x$ exists and equals $T(\kappa')Ax$. This completes the proof.

Remark 3.11. One of the consequences of Theorem 3.10 is that the function $v(\kappa) = T(\kappa)u_0, \kappa \in \Omega_r$, for some $u_0 \in D(A)$, is the solution to the homogeneous *p*-adic differential equation given by

$$\frac{d}{d\kappa}u(\kappa) = Au(\kappa), \quad \kappa \in \Omega_r,$$

$$u(0) = u_0,$$
(3.15)

where $A : D(A) \subset \mathbb{E} \mapsto \mathbb{E}$ is the infinitesimal generator of the C_0 -semigroup $(T(\kappa))_{\kappa \in \Omega_r}$, and $u : \Omega_r \mapsto D(A)$ is an \mathbb{E} -valued function.

Example 3.12. Take $\mathbb{K} = \mathbb{Q}_p$. Let *A* be the multiplication operator on $\mathbb{E} = C(\mathbb{Z}_p, \mathbb{Q}_p)$ defined by

$$Au = Q(x)u, \quad \forall u \in C(\mathbb{Z}_p, \mathbb{Q}_p), \tag{3.16}$$

where $Q = \sum_{n=0}^{\infty} q_n f_n \in C(\mathbb{Z}_p, \mathbb{Q}_p)$.

Suppose that $||Q||_{\infty} = \sup_{n \in \mathbb{N}} |q_n| < r$ with $r = p^{-1/(p-1)}$ (here, one can take M = 1).

In view of Theorem 3.10, the function defined by $v(q) = (\sum_{n\geq 0} ((qA)^n/n!))u_0, q \in \Omega_r$, for some $u_0 \in \mathbb{E}$, is the solution to the homogeneous *p*-adic differential equation

$$\frac{d}{d\kappa}u(\kappa) = Q(k)u(\kappa), \quad \kappa \in \Omega_r,$$

$$u(0) = u_0 \in \mathbb{Q}_p.$$
(3.17)

References

- S. Albeverio and A. Khrennikov, *Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions*, Journal of Physics. A. Mathematical and General 29 (1996), no. 17, 5515–5527.
- [2] S. Basu, T. Diagana, and F. Ramaroson, *A p-adic version of Hilbert-Schmidt operators and applications*, Journal of Analysis and Applications **2** (2004), no. 3, 173–188.
- [3] T. Diagana, *Towards a theory of some unbounded linear operators on p-adic Hilbert spaces and applications*, Annales Mathématiques Blaise Pascal **12** (2005), no. 1, 205–222.
- [4] _____, Erratum to: "Towards a theory of some unbounded linear operators on p-adic Hilbert spaces and applications", Annales Mathématiques Blaise Pascal 13 (2006), 105–106.
- [5] B. Diarra, An operator on some ultrametric Hilbert spaces, Journal of Analysis 6 (1998), 55-74.
- [6] _____, Geometry of the p-adic Hilbert Spaces, preprint, 1999.
- [7] F. Q. Gouvêa, *p-Adic Numbers*, 2nd ed., Universitext, Springer, Berlin, 1997.
- [8] A. Khrennikov, *p-Adic Valued Distributions in Mathematical Physics*, Mathematics and Its Applications, vol. 309, Kluwer Academic, Dordrecht, 1994.
- [9] A. N. Kochubei, A Schrödinger-type equation over the field of *p*-adic numbers, Journal of Mathematical Physics **34** (1993), no. 8, 3420–3428.
- [10] _____, *p-adic commutation relations*, Journal of Physics. A. Mathematical and General **29** (1996), no. 19, 6375–6378.
- [11] _____, *Heat equation in a p-adic ball*, Methods of Functional Analysis and Topology **2** (1996), no. 3-4, 53–58.
- [12] _____, Differential equations for \mathbf{F}_q -linear functions, Journal of Number Theory 83 (2000), no. 1, 137–154.
- [13] _____, Pseudo-Differential Equations and Stochastics Over Non-Archimedean Fields, Monographs and Textbooks in Pure and Applied Mathematics, vol. 244, Marcel Dekker, New York, 2001.
- [14] H. Ochsenius and W. H. Schikhof, Banach spaces over fields with an infinite rank valuation, p-Adic Functional Analysis (Poznań, 1998), Lecture Notes in Pure and Appl. Math., vol. 207, Marcel Dekker, New York, 1999, pp. 233–293.
- [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer, New York, 1983.
- [16] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Texts in Appl. Math., vol. 13, Springer, New York, 1992.
- [17] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math., vol. 51, Marcel Dekker, New York, 1978.
- [18] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, *p-Adic Analysis and Mathematical Physics*, Series on Soviet and East European Mathematics, vol. 1, World Scientific, New Jersey, 1994.

Toka Diagana: Department of Mathematics, Howard University, 2441 6th Street, NW Washington, DC 20059, USA *E-mail address*: tdiagana@howard.edu