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Consider two partial ∗-algebras, A1 and A2, and an ∗-homomorphism Φ from A1 into
A2. Given a biweight ϕ on A2, we discuss conditions under which the natural composition
ϕ◦Φ of ϕ and Φ is a biweight on A1. In particular, we examine whether the restriction of
a biweight to a partial ∗-subalgebra is again a biweight.
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1. Introduction

In the representation theory of ∗-algebras, one of the cornerstones is the well-known
Gel’fand-Naı̆mark-Segal (GNS) construction, which provides a way of building a con-
crete representation of an abstract ∗-algebra. This is often crucial for physical applica-
tions, for instance, in statistical mechanics or in quantum field theory.

It has been realized some time ago that ∗-algebras of bounded operators are not suffi-
cient for such applications, one needs also ∗-algebras of unbounded operators and even
partial ∗-algebras of operators. A full-fledged theory of partial ∗-algebras has been devel-
oped, covering both abstract partial ∗-algebras and their operator realizations, for which
we refer to our recent monograph [4]. There the reader will find how the GNS construc-
tion can be performed in the new extended framework.

The crucial point is to replace positive linear forms by special sesquilinear forms
(sometimes called invariant), in such a way that one can bypass many of the difficul-
ties due to the lack of a noneverywhere defined multiplication and the nonassociativity
of the partial multiplication. Moreover, for technical reasons, it has been found necessary
to specialize further the sesquilinear forms in question, thus introducing the concept of
biweight [3]. Biweights on partial ∗-algebras indeed allow a GNS construction and thus
permit to develop from there a representation theory for partial ∗-algebras. As a matter
of fact, they turn out to be the right objects for this purpose, since they are sufficiently
flexible to avoid many difficulties inherent to the “partial” character of the multiplication.

Nevertheless, biweights exhibit unfamiliar features (in particular when compared with
the sesquilinear forms defined by positive linear functionals on an ∗-algebra A): the re-
striction of a biweight to a partial ∗-subalgebra is not necessarily a biweight; if A1 and A2
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are partial ∗-algebras, ϕ is a biweight on A2, and Φ is an ∗-homomorphism from A1 to
A2, then the natural composition ϕ ◦Φ of ϕ and Φ may fail to be a biweight. This is the
subject of the Section 3, where we give sufficient conditions for a biweight to pass safely
through these two operations.

On the other hand, families of biweights having a common core can be used to define
unbounded C∗-seminorms on a given partial ∗-algebra A [7, 9, 10]; and these semi-
norms provide a relevant tool for the study of the structure of a partial ∗-algebra, in
particular when the latter carries a locally convex topology, and comparisons are possi-
ble. In Section 4, we make use of these seminorms to study the continuity properties of
an ∗-homomorphism Φ from a normed partial ∗-algebra into another one. A particu-
lar family of seminorms is used to define a locally convex topology called C∗-like, and
sufficient conditions for Φ to be continuous with respect to these topologies are given.

In Section 5, finally, we propose a notion of ∗-radical for a partial ∗-algebra, once
more in terms of the unbounded C∗-seminorms defined by families of biweights. We do
not undertake a systematic exploration of the consequences of this definition, we simply
show that it behaves as expected in some particular situation.

Clearly, the theory is far from finished. Even in the relatively simple case of Banach
partial ∗-algebras, many definitions are tentative and simply meant to open new research
avenues. We hope to make further progress on these topics and to report on it in future
papers.

2. Preliminaries

In order to keep the paper reasonably self-contained, we summarize in this section the
basic facts on partial ∗-algebras and on their topological structure. Further details and
proofs may be found in [1] or in the monograph [4].

A partial ∗-algebra is a complex vector space A, endowed with an involution x �→ x∗

(i.e., a bijection such that x∗∗ = x) and a partial multiplication defined by a set Γ⊂A×A

(a binary relation) such that
(i) (x, y)∈ Γ implies (y∗,x∗)∈ Γ;

(ii) (x, y1),(x, y2)∈ Γ implies (x,λy1 +μy2)∈ Γ, for all λ,μ∈ C;
(iii) for any (x, y)∈ Γ, there is defined a product x · y ∈A, which is distributive with

respect to the addition and satisfies the relation (x · y)∗ = y∗ · x∗.
We will assume the partial ∗-algebra A contains a unit e, that is, e∗ = e, (e,x)∈ Γ, for all
x ∈ A, and e · x = x · e = x, for all x ∈ A. (If A has no unit, it may always be embedded
into a larger partial ∗-algebra with unit, in the standard fashion [5].)

Given the defining set Γ, spaces of multipliers are defined in the obvious way:

(x, y)∈ Γ⇐⇒ x ∈ L(y) or x is a left multiplier of y

⇐⇒ y ∈ R(x) or y is a right multiplier of x.
(2.1)

For any subset N⊂A, we write

LN=
⋂

x∈N:

L(x), RN=
⋂

x∈N:

R(x), (2.2)
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and, of course, the involution exchanges the two:

(LN)∗ = RN∗, (RN)∗ = LN∗. (2.3)

Clearly, all these multiplier spaces are vector subspaces of A, containing e.
The partial ∗-algebra is abelian if L(x)= R(x), for all x ∈A, and then x · y = y · x, for

all x ∈ L(y). In that case, we write simply for the multiplier spaces L(x)= R(x)≡M(x),
LN= RN≡MN(N⊂A).

Notice that the partial multiplication is not required to be associative (and often it is
not). A partial ∗-algebra A is said to be associative if the following condition holds for any
x, y,z ∈A: whenever x ∈ L(y), y ∈ L(z), and x · y ∈ L(z), then y · z ∈ R(x) and

(x · y) · z = x · (y · z). (2.4)

This condition is rather strong and rarely realized in practice. A weaker notion is some-
times useful, however. A partial ∗-algebra A is said to be semi-associative if y ∈ R(x) im-
plies y · z ∈ R(x) for every z ∈ RA and then (2.4) holds. Of course, if the partial ∗-algebra
A is semi-associative, both RA and LA are algebras. From here on, we will write simply
xy for the product x · y.

We recall some basic definitions on ∗-representations of partial ∗-algebras. We refer
to [2, 4] for details.

Let � be a complex Hilbert space and � a dense subspace of �. We denote by �†(�,
�) the set of all (closable) linear operators X such that �(X) =�, �(X∗) ⊇�. The set
�†(�,�) is a partial ∗-algebra with respect to the following operations: the usual sum
X1 +X2, the scalar multiplication λX , the involution X �→ X† = X∗ � �, and the (weak)
partial multiplication X1�X2 = X1

†∗X2, defined whenever X2 is a weak right multiplier
of X1,X2 ∈ Rw(X1) (or X1 ∈ Lw(X2)), that is, if and only if X2�⊂�(X1

†∗) and X1
∗�⊂

�(X2
∗).

A ∗-homomorphism of a partial ∗-algebra A into another one B is a linear map ρ :
A→B such that (i) ρ(x∗) = ρ(x)∗ for every x ∈ A; and (ii) whenever x ∈ L(y) in A,
then ρ(x)∈ L(ρ(y)) in B and ρ(x)ρ(y)= ρ(x y). The map ρ is an ∗-isomorphism if it is a
bijection and ρ−1 : B→A is also a ∗-homomorphism.

We remark that if the ∗-homomorphism ρ is not a ∗-isomorphism, the image ρ(A)
need not be a partial ∗-subalgebra of B. Indeed, there could be pairs x, y ∈ A such that
x �∈ L(y), but ρ(x) ∈ L(ρ(y)); then the product ρ(x)ρ(y) is well defined, but does not
belong to ρ(A).

A ∗-representation of a partial ∗-algebra A in the Hilbert space � is an ∗-homomor-
phism of A into �†(�,�), for some �⊂�, that is, a linear map π : A→�†(�,�) such
that: (i) π(x∗) = π(x)† for every x ∈ A; (ii) x ∈ L(y) in A implies π(x) ∈ Lw(π(y)) and
π(x)�π(y) = π(xy). The ∗-representation π is said to be bounded if π(x) ∈�(�) for
every x ∈A.

A partial ∗-algebra A is said to be a normed partial ∗-algebra [6] if it carries a norm
‖ · ‖ such that

(i) the involution x �→ x∗ is isometric: ‖x‖ = ‖x∗‖, for all x ∈A;
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(ii) for every a∈ LA, there exists a constant γa > 0 such that

‖ax‖� γa‖x‖, ∀x ∈A. (2.5)

A[‖ · ‖] is called a Banach partial ∗-algebra if, in addition, A[‖ · ‖] is a Banach space.

3. Representable forms, biweights, and ∗-homomorphisms

3.1. Representable forms. The possibility of performing a GNS construction starting
from certain noneverywhere defined sesquilinear forms, called biweights, on a given par-
tial ∗-algebra A, has been extensively studied in [3, 4]. Here we introduce the class of
representable forms. They constitute, in a sense, the largest family of positive sesquilin-
ear forms for which a GNS construction is possible. Of course, every biweight is repre-
sentable.

Let ϕ be a positive sesquilinear form on �(ϕ)×�(ϕ), where �(ϕ) is a subspace of A.
Then, we have

ϕ(x, y)= ϕ(y,x), ∀x, y ∈�(ϕ), (3.1)

∣∣ϕ(x, y)
∣∣2 � ϕ(x,x)ϕ(y, y), ∀x, y ∈�(ϕ). (3.2)

We put

Nϕ =
{
x ∈�(ϕ) : ϕ(x,x)= 0

}
. (3.3)

By (3.2), we have

Nϕ =
{
x ∈�(ϕ) : ϕ(x, y)= 0, ∀y ∈�(ϕ)

}
, (3.4)

and so Nϕ is a subspace of �(ϕ) and the quotient space �(ϕ)/Nϕ ≡ {λϕ(x)≡ x+Nϕ; x ∈
�(ϕ)} is a pre-Hilbert space with respect to the inner product 〈λϕ(x) | λϕ(y)〉 = ϕ(x, y),
x, y ∈�(ϕ). We denote by �ϕ the Hilbert space obtained by completion of �(ϕ)/Nϕ.

The construction of an ∗-representation starting from a positive sesquilinear form ϕ
on A makes use of certain subspaces of RA, called pre-cores and cores. The notion of core
for ϕ was introduced in [3].

Definition 3.1. Let ϕ be a positive sesquilinear form on �(ϕ)×�(ϕ). A subspace B(ϕ) of
�(ϕ) is said to be a precore for ϕ if

(i) B(ϕ)⊂ RA;
(ii) {ax : a∈A, x ∈ B(ϕ)} ⊂�(ϕ);

(iii) ϕ(ax, y)= ϕ(x,a∗y), for all a∈A, for all x, y ∈ B(ϕ);
(iv) ϕ(a∗x,by)= ϕ(x, (ab)y), for all a∈ L(b), for all x, y ∈ B(ϕ).

The subspace B(ϕ) is called a core if, in addition,
(v) λϕ(B(ϕ)) is dense in �ϕ.

We denote by �ϕ the set of all pre-cores for ϕ and with �ϕ the set of all cores B(ϕ) for
ϕ.
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Definition 3.2. A positive sesquilinear form ϕ on �(ϕ)×�(ϕ) such that �ϕ �= ∅ is called
a biweight on A.

Remark 3.3. If ϕ is a biweight, then condition (v) implies, in particular, that if x ∈�(ϕ),
there exists a sequence (zn), zn ∈ B(ϕ), such that ϕ(x− zn,x− zn)→ 0. This, in turn, im-
plies that |ϕ(y,x)− ϕ(y,zn)| → 0, for every z ∈�(ϕ). Moreover, if ϕ(x,x) = 1, then we
can choose (zn) such that ϕ(zn,zn)= 1 for every n∈N.

Definition 3.4. A positive sesquilinear form ϕ on �(ϕ)×�(ϕ) is called representable if
there exists a precore B(ϕ) for ϕ and an ∗-representation πϕ defined on a dense subspace
�(πϕ) of �ϕ with λϕ(B(ϕ))⊆�(πϕ) and such that

ϕ(ax,by)= 〈πϕ(a)λϕ(x) | πϕ(b)λϕ(y)
〉

, ∀a,b ∈A, x, y ∈ B(ϕ). (3.5)

Remark 3.5. The following question is natural: if B(ϕ) is a precore and ϕ is representable,
is B(ϕ) necessarily a core for ϕ? The answer is, in general, negative. Indeed, let X be a
bounded selfadjoint operator in Hilbert space � such that X2 is not a complex multiple
of X . Then, the subspace � of �(�) generated by X may be viewed as a partial ∗-algebra:
two elements αX , βX , α,β ∈ C, can be multiplied if and only if either α= 0 or β = 0. In
this case R� = {0}. The restriction to �×� of any sesquilinear form ϕ on �(�)×
�(�) such that ϕ(X ,X) > 0 is obviously representable (πϕ can be taken as the identity
map of �(�ϕ)). The null subspace is clearly a precore but it is not a core.

Now we give, for the sake of completeness, a sketch of the GNS construction for a
biweight. The corresponding statement was proven in [3, 4].

Let ϕ be a biweight on A with a core B(ϕ). We put

π◦ϕ(a)λϕ(x)= λϕ(ax), a∈A, x ∈ B(ϕ). (3.6)

Then it follows from (3.2) and Definition 3.1(v) that π◦ϕ(a) is a well-defined linear op-
erator of λϕ(B(ϕ)) into �ϕ. Furthermore, it follows from conditions (iv) and (v) of
Definition 3.1 that π◦ϕ is an ∗-representation of A. We denote by πBϕ the closure of π◦ϕ.
Then the triple (πBϕ ,λϕ,�ϕ) is called the GNS construction for the biweight ϕ on A with
the core B(ϕ). It is worth remarking that if B1(ϕ), B2(ϕ) are two different cores for the
biweight ϕ, it might happen, of course, that πB1

ϕ = πB2
ϕ . However, the set of all cores that

yield the same GNS representation for ϕ has a maximal element, namely:

BL(ϕ)= {x ∈�(ϕ)∩RA : λϕ(x)∈�
(
πBϕ
)
, ax ∈�(ϕ), λϕ(ax)= πBϕ (a)λϕ(x), ∀a∈A

}
.

(3.7)

From the GNS construction outlined above, the following holds.

Proposition 3.6. Every biweight ϕ on A is representable.

Let A1, A2 be partial ∗-algebras, ϕ a representable form on A2 with domain �(ϕ) and
precore B(ϕ) and let Φ be an ∗-homomorphism of A1 into A2. We put

�
(
ϕΦ
)= {a∈A1 : Φ(a)∈�(ϕ)

}
(3.8)
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and define

ϕΦ(a,b)= ϕ(Φ(a),Φ(b)
)
, a,b ∈�

(
ϕΦ
)
. (3.9)

Then ϕΦ is a positive sesquilinear form on �(ϕΦ)×�(ϕΦ). The set

B
(
ϕΦ
)= {x ∈ RA1 : Φ(x)∈ B(ϕ)

}
(3.10)

is a precore for ϕΦ. Indeed, the conditions of Definition 3.1 are satisfied. Condition (i),
that is, B(ϕΦ) ⊂ RA1, is obvious. We prove condition (ii). Let a ∈ A1 and x ∈ B(ϕΦ).
We have to prove that ax ∈ �(ϕΦ), that is, Φ(ax) ∈ �(ϕ). This results from Φ(ax) =
Φ(a)Φ(x) and Φ(x)∈ B(ϕ).

As for conditions (iii) and (iv) in Definition 3.1, we have, for every a ∈ A and x, y ∈
B(ϕΦ),

ϕΦ(ax, y)= ϕ(Φ(ax),Φ(y)
))= ϕ(Φ(a)Φ(x),Φ(y)

))

= ϕ(Φ(x),Φ(a)∗Φ(y)
))= ϕ(Φ(x),Φ

(
a∗y

)))

= ϕΦ
(
x,a∗y

)
,

(3.11)

and for every a∈ L(b), x, y ∈ B(ϕΦ),

ϕΦ
(
a∗x,by

)= ϕ(Φ(a∗x),Φ(by)
)= ϕ(Φ(a∗)Φ(x),Φ(b)Φ(y)

)

= ϕ(Φ(x),
(
Φ(a)Φ(b)

)
Φ(y)

))

= ϕΦ
(
x, (ab)y

)
,

(3.12)

where we have used the fact that if ab is well defined, so is Φ(a)Φ(b).

Proposition 3.7. Let A1, A2 be partial ∗-algebras, ϕ a representable form on A2 with
domain �(ϕ) and precore B(ϕ) and let Φ be a surjective ∗-homomorphism of A1 into A2.
Then ϕΦ is representable.

Proof. Let λϕΦ(�(ϕΦ)) and �ϕΦ be as before. Then we define a map Φ̂ : λϕΦ(�(ϕΦ))→
λϕ(�(ϕ)) by

Φ̂
(
λϕΦ(x)

)
:= λϕ

(
Φ(x)

)
. (3.13)

This map is well defined. Indeed, if λϕΦ(x)= 0, then ϕΦ(x,x)= 0, which implies succes-

sively ϕ(Φ(x),Φ(x)) = 0 and λϕ(Φ(x)) = 0. On the other hand, Φ̂ is injective. Indeed, if
λϕ(Φ(x))= 0, then ϕ(Φ(x),Φ(x))= 0, which implies ϕΦ(x,x)= 0 and λϕΦ(x)= 0. More-
over,

∥∥Φ̂
(
λϕΦ(x)

)∥∥2 = ∥∥λϕ
(
Φ(x)

)∥∥2 = ϕ(Φ(x),Φ(x)
)= ϕΦ(x,x)= ∥∥λϕΦ(x)

∥∥2
. (3.14)

Thus Φ̂ is isometric. Since Φ is surjective, Φ̂ is also surjective and so it extends to a unitary
operator, denoted by the same symbol, from �ϕΦ onto �ϕ. Since ϕ is representable, there
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exist a dense domain �(πϕ)⊂�ϕ and an ∗-representation πϕ : A2 →�†(�(πϕ),�ϕ) such
that

ϕ(ax,by)= 〈πϕ(a)λϕ(x) | πϕ(b)λϕ(y)
〉

, ∀a,b ∈A2, x, y ∈ B(ϕ). (3.15)

Now, put �ϕΦ := Φ̂−1�(πϕ). Then �ϕΦ is a dense domain in �ϕΦ and

Φ̂λϕΦ
(
B(ϕΦ)

)= λϕ
(
Φ
(
B
(
ϕΦ
)))⊂ λϕ

(
B(ϕ)

)⊂�
(
πϕ
)
. (3.16)

Hence, λϕΦ(B(ϕΦ))⊂�ϕΦ .

Now, put πϕΦ(a)= Φ̂−1πϕ(Φ(a))Φ̂. Then, we have, for every a,b ∈A1, x, y ∈ B(ϕΦ),

ϕΦ(ax,by)= ϕ(Φ(ax),Φ(by)
)

= 〈πϕ
(
Φ(a)

)
λϕ
(
Φ(x)

) | πϕ
(
Φ(b)

)
λϕ
(
Φ(y)

)〉

= 〈πϕ
(
Φ(a)

)
Φ̂
(
λϕΦ(x)

) | πϕ
(
Φ(b)

)
Φ̂
(
λϕΦ(y)

)〉

= 〈Φ̂−1πϕ
(
Φ(a)

)
Φ̂
(
λϕΦ(x)

) | Φ̂−1πϕ
(
Φ(b)

)
Φ̂
(
λϕΦ(y)

)〉

= 〈πϕΦ(a)λϕΦ(x) | πϕΦ(b)λϕΦ(y)
〉
.

(3.17)

This proves the statement. �

Given a representable form ϕ, there is nothing in our previous discussion that prevents
the possibility that the ∗-representation πϕ is trivial, since the precore B(ϕ) may reduce
to {0}. Also, when dealing with an ∗-homomorphism Φ, it may well happen that πϕ
is nontrivial, while πϕΦ is trivial. This unpleasant situation cannot occur when ϕ is a
biweight, since in this case λϕ(B(ϕ)) is dense in �ϕ. If Φ is an ∗-homomorphism and ϕ is
a biweight on A1, then ϕΦ is certainly representable, but the corresponding representation
may again be trivial. For these reasons, we look in the next subsection for conditions that
guarantee that ϕΦ is a biweight on A1.

3.2. ∗-Homomorphisms preserving biweights. We begin with the simplest possible sit-
uation.

Let A be a partial ∗-algebra and B an ∗-subalgebra of A. This means that x, y ∈B and
(x, y)∈ Γ imply xy ∈B. The identity map iB : B→A is an ∗-homomorphism. If ϕ is a
representable form on A, then we can construct, as before, the representable form ϕiB ,
which we simply denote by ϕB. Clearly, ϕB can be viewed as the restriction of ϕ to B. Let
ϕ be a biweight on A with domain �(ϕ) and core B(ϕ). In this case,

�
(
ϕB

)=B∩�(ϕ), B
(
ϕB

)=B∩B(ϕ). (3.18)

Then ϕB satisfies conditions (i), (ii), (iii), and (iv) of Definition 3.1. But, as the next
example shows, (v) may fail and thus ϕB is not, in general, a biweight on B.
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Example 3.8. We consider the partial ∗-algebra Lp[0,1], with 2≤ p ≤∞, as discussed in
[4]. Let us put

�(ϕ)= Lp[0,1],

ϕ(x, y)=
∫ 1

0
x(t)y(t)dt, x, y ∈�(ϕ).

(3.19)

It is known [3] that ϕ is a biweight on Lp[0,1] with largest core L∞[0,1]. Let us consider
the subspace V of Lp[0,1] generated by a single real function f ∈ Lp[0,1] \ Lr[0,1], for
any r > p, that is V := {α f : α∈ C}. V can be viewed as a partial ∗-subalgebra of Lp[0,1],
the partial product of α f and β f being defined if and only if αβ = 0. We have

�
(
ϕV
)=V , B

(
ϕV
)=V ∩B(ϕ)= {0}. (3.20)

Since L∞[0,1] is the largest core of ϕ, it follows that B(ϕV ) is the largest core of ϕV . Thus,
if f /∈ L∞[0,1], ϕV cannot be a biweight.

Our first goal is to determine some conditions under which Definition 3.1(v) is satis-
fied. Since there is no need to suppose that B is a partial ∗-subalgebra of A, we will simply
assume that B is a subspace of A. It is worth remarking that any ∗-invariant subspace B

of A has always a natural structure of partial ∗-algebra: if x, y ∈B, then (x, y) ∈ ΓB ⇔
(x, y)∈ Γ and xy ∈B. Nevertheless, B is not necessarily a partial ∗-subalgebra of A.

Let ϕ be a biweight on A with domain �(ϕ) and core B(ϕ) and B a subspace of A. We
define �(ϕB) and B(ϕB) as in (3.18). We also put

NϕB =
{
x ∈�

(
ϕB

)
: ϕB(x,x)= 0

}=Nϕ∩B. (3.21)

The set NϕB is a vector subspace of �(ϕB), and �(ϕB)/NϕB is a pre-Hilbert space with
respect to the inner product

〈
λϕB(x) | λϕB(y)

〉= ϕB(x, y). (3.22)

We denote (�(ϕB)/NϕB ,〈· | ·〉) by λϕB(�(ϕB)).
Let us consider the following map:

IB : λϕB(x)∈ λϕB

(
�
(
ϕB

)) �−→ λϕ(x)∈ λϕ
(
�(ϕ)

)
. (3.23)

This map is well defined and injective. Indeed,

λϕB(x)= 0⇐⇒ ϕB(x,x)= 0⇐⇒ ϕ(x,x)= 0⇐⇒ λϕ(x)= 0. (3.24)

Clearly, IB is linear and, moreover, is isometric too. Indeed,

∥∥λϕB(x)
∥∥2 = ϕB(x,x)= ϕ(x,x)= ∥∥λϕ(x)

∥∥2
. (3.25)

Thus it extends to an isometric operator ÎB from �ϕB into �ϕ, where �ϕB and �ϕ de-
note the Hilbert space completions of λϕB(�(ϕB)) and λϕ(�(ϕ)), respectively. It follows
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that ÎB�ϕB is a closed subspace of �ϕ. Let P be the projection from �ϕ onto ÎB�ϕB .

Since ϕ is a biweight, it follows that Pλϕ(B(ϕ)) is dense in P�ϕ = ÎB�ϕB .
We notice that we have, in general,

IBλϕB

(
B
(
ϕB

))⊆ Pλϕ
(
B(ϕ)

)
. (3.26)

Indeed, if x ∈ B(ϕB), then, by definition, IBλϕB(x)= λϕ(x)∈ λϕ(B(ϕ)).

Proposition 3.9. The following statements are equivalent:
(i) λϕB(B(ϕB)) is dense in �ϕB ;

(ii) IBλϕB(B(ϕB))⊇ Pλϕ(B(ϕ)).

Proof. (i)⇒(ii). If λϕB(B(ϕB)) is dense in �ϕB , it follows that IBλϕB(B(ϕB)) is dense in

ÎB�ϕ = P�ϕ. Hence IBλϕB(B(ϕB))= ÎB�ϕB ⊇ Pλϕ(B(ϕ)).

(ii)⇒(i). If Pλϕ(B(ϕ))⊆ IBλϕB(B(ϕB)), since Pλϕ(B(ϕ)) is dense in ÎB�ϕ, it follows

that IBλϕB(B(ϕB))= ÎB�ϕ, that is, λϕB(B(ϕB))=�ϕB . �

In the special case where B(ϕ) ⊆B, it follows that B(ϕ) = B(ϕB). In this case the
restriction of IB to λϕB(B(ϕB)) is one-to-one; therefore, the density of λϕ(B(ϕ)) in �ϕ

implies the density of λϕB(B(ϕB)) in �ϕB .

Example 3.10. Consider the space Lp(I)p ≥ 2, where I is a finite interval. Then ϕ(x, y)=∫
I x(t)y(t)dt is a biweight on Lp(0,1) with �(ϕ)= Lp(I) and B(ϕ)= L∞(I). If q > p, then
Lq(I)⊂ Lp(I) and L∞(I)⊂ Lq(I). The application of the previous result gives the known
result that ϕ restricted to Lq(I) is again a biweight.

Example 3.8 shows that, in general, if A1, A2 are partial ∗-algebras, ϕ is a biweight
on A2 with domain �(ϕ) and core B(ϕ), and Φ is an ∗-homomorphism of A1 into A2,
then ϕΦ is not necessarily a biweight on A1. We give some additional examples in this
direction. They all exhibit a common feature: the corresponding precore B(ϕΦ) is too
small to allow a significant representation.

Example 3.11. Let us define the space L2
I (0,1) as the set of all functions of L2(0,1) with

support in a fixed proper subinterval I � (0,1), for example, I = (0,1/2). If f ∈ L2(0,1) \
L2
I (0,1), we define the following vector space:

A f := {g ∈ L2(0,1) : g := α f +β f ψ +φ, α,β ∈ Cφ, ψ ∈ CI(0,1)
}

, (3.27)

where CI(0,1) is the space of continuous functions on (0,1) with support in I . The partial
multiplication in A f is defined for pairs (g1,g2) ∈ A f ×A f such that either α1 = β1 = 0
or α2 = β2 = 0. Then RA f = CI(0,1). Let us consider the positive sesquilinear form

ϕ
(
g1,g2

)=
∫ 1

0
g1(x)g2(x)dx on D(ϕ)=A f . (3.28)

We have

Nϕ =
{
g ∈A f :

∫ 1

0

∣∣g(t)
∣∣2
dt = 0

}
= {0}. (3.29)
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The completion of D(ϕ) = A f with respect to the inner product ϕ(g1,g2) is �ϕ = {g ∈
L2(0,1) : g = α f + h, h ∈ L2

I (0,1)}, that is, the space {α f }+ L2
I (0,1) with f ∈ L2(0,1) \

L2
I (0,1). Since RA f is not dense in �ϕ, then there cannot exist a core B(ϕ) dense in

�ϕ, that is, ϕ is not a biweight on A f . Hence, the identity map i : A f → L2(0,1) is an
∗-homomorphism which does not preserve biweights.

Example 3.12. Let us consider a selfadjoint operator X ∈�†(�,�) such that X(�)��,
for example, X = P = i(d/dx) and � = {AC[0,1] : g(0) = g(1)}; then X† = X ∈
�†(�,�). We can define the subspace

�X := {Y ∈�†(�,�) : Y = αX + c1, α,c ∈ C}. (3.30)

It follows that �X is a partial O∗-algebra, with partial multiplication

(
Y1,Y2

)∈ Γ⇐⇒ α1α2 = 0, (3.31)

where Yi = αi + ci1, (i = 1,2). Clearly, R�X = {c1 : c ∈ C} is not dense in �X . If ξ ∈�,
let us consider the positive sesquilinear form

ωξ
(
Y1,Y2

)= (Y†1
∗
ξ | Y†2

∗
ξ
)
;

�
(
ωξ
)= {Y ∈�X : ξ ∈�

(
Y†∗

)}=�X .
(3.32)

The null space of ωξ is given by

Nωξ := {Y ∈�
(
ωξ
)

: ωξ(Y ,Y)= 0
}= {Y ∈�

(
ωξ
)

: (αX + c1)ξ = 0
}
. (3.33)

If ξ is not an eigenvector of X , it follows that Nωξ = {0}. Since the completion of �X with
respect to the inner product ωξ(Y1,Y2) is �X too, and B(ωξ)⊂ R�X , it follows that ωξ is
not a biweight. Now we consider the identity map

i : �X −→�†(�,�). (3.34)

It is known that ωξ is a biweight in �†(�,�) for all ξ ∈� (see also Example 5.3). Fur-
thermore, the identity map is a faithful ∗-homomorphism of the partial O∗-algebra �X

into �†(�,�) (see [4, Lemma 2.5.17]).

The following proposition shows that, under certain conditions, biweights can be
pulled back from one partial ∗-algebra to another one by an ∗-homomorphism.

Proposition 3.13. Let A1, A2 be partial ∗-algebras, ϕ a positive sesquilinear form on A2

defined on �(ϕ)×�(ϕ) and B(ϕ) a precore for ϕ. Let Φ be an ∗-homomorphism of A1 into
A2. Define

�
(
ϕΦ
)= {a∈A1 : Φ(a)∈�(ϕ)

}
,

B
(
ϕΦ
)= {x ∈ RA1 : Φ(x)∈ B(ϕ)

}
,

ϕΦ(a,b)= ϕ(Φ(a),Φ(b)
)
.

(3.35)
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If Φ(B(ϕΦ)) is a core for ϕ, then B(ϕΦ) is a core for ϕΦ and, therefore, ϕΦ is a biweight on
A1 with domain �(ϕΦ) and core B(ϕΦ). In particular, if Φ is surjective, then Φ(B(ϕΦ)) is a
core for ϕ if and only if B(ϕΦ) is a core for ϕΦ.

Proof. We already know from Proposition 3.7 that B(ϕΦ) is a precore. We consider once
more the isometric map Φ̂ introduced in the proof of that proposition. Since, by defi-
nition, Φ̂(λϕΦ(B(ϕΦ))) = λϕ(Φ(B(ϕΦ))), the density of λϕ(Φ(B(ϕΦ))) in �ϕ implies the
density of λϕ(Φ(B(ϕΦ))) in �ϕΦ .

If Φ is surjective, then Φ̂ is unitary and the converse implication also holds. �

Remark 3.14. If Φ : A1 → A2 is an ∗-homomorphism and ϕ is a biweight on A2, then
Φ(A1) is a vector subspace (but not necessarily a partial ∗-subalgebra of A2). We may
consider, as before, the restriction of ϕ to Φ(A1), denoted as ϕΦ(A1). Then,

�
(
ϕΦ(A1)

)=Φ
(
A1
)∩�(ϕ)=Φ

(
�
(
ϕΦ
))

,

B
(
ϕΦ(A1)

)=Φ
(
A1
)∩B(ϕ)=Φ

(
B
(
ϕΦ
))

,

NϕΦ(A1) =
{
Φ(x), x ∈A1 : ϕ

(
Φ(x),Φ(x)

)= 0
}=Φ

(
NϕΦ

)
.

(3.36)

We define the map

Φ̃ : λϕΦ
(
�
(
ϕΦ
))−→ λϕΦ(A1)

(
�
(
ϕΦ(A1)

))
(3.37)

by

Φ̃
(
λϕΦ(x)

)
:= λϕΦ(A1)

(
Φ(x)

)
. (3.38)

It is easily seen that Φ̃ = Î−1
Φ(A1)Φ̂. Then, as expected, if λϕΦ(A1) (B(ϕΦ(A1))) is dense in

λϕΦ(A1) (�(ϕΦ(A1))), then ϕΦ is a biweight on A1, with domain �(ϕΦ(A1)) and core
B(ϕΦ(A1)).

Proposition 3.13 suggests the following.

Definition 3.15. Let A1, A2 be partial ∗-algebras, Φ : A1 →A2 an ∗-homomorphism, and
ϕ a biweight on A2 with domain �(ϕ) and core B(ϕ). Define �(ϕΦ)= {a∈A1 : Φ(a)∈
�(ϕ)} and B(ϕΦ)= {x ∈ RA1 : Φ(x)∈ B(ϕ)}.

The ∗-homomorphism Φ is said to preserve biweights if, for any biweight ϕ on A2 and
for any core B(ϕ) for ϕ, Φ(B(ϕΦ)) is a core for ϕ.

Moreover, Φ is said to strictly preserve biweights if, for any biweight ϕ and for any core
B(ϕ), the equality Φ(B(ϕΦ))= B(ϕ) holds.

Assume now that Φ is an ∗-isomorphism of A1 → A2 and ϕ a biweight on A2 with
domain �(ϕ) and core B(ϕ).

As before, we put �(ϕΦ)= {a∈A1 : Φ(a)∈�(ϕ)}. We consider the following set:

B′
(
ϕΦ
)

:= {x ∈A1 : Φ(x)∈ B(ϕ)
}
. (3.39)

One has B′(ϕΦ)= B(ϕΦ)= {x ∈ RA1 : Φ(x)∈ B(ϕ)}. Indeed, if x ∈ B′(ϕΦ), then Φ(x)∈
B(ϕ)⊂ RA2. It follows that the product Φ(a)Φ(x) is well defined for all a∈A1. Since Φ−1
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is an ∗-homomorphism, Φ−1(Φ(a)) ·Φ−1(Φ(x)) is well defined, so ax is well defined for
all a ∈ A1, and x ∈ RA1. Hence, x ∈ B(ϕΦ). The equality just proven is equivalent to
Φ(B(ϕΦ))= B(ϕ). Therefore, we have proved the following.

Proposition 3.16. Every ∗-isomorphism strictly preserves biweights.

A slight modification of the previous argument shows the following.

Proposition 3.17. Every ∗-homomorphism Φ : A1 →A2 such that Φ(RA1)= RA2 strictly
preserves biweights.

4. Topological considerations

As shown in [10], biweights having a common core may be used to define certain un-
bounded C∗-seminorms on partial ∗-algebras, in the sense of [4]. Unbounded C∗-semi-
norms play a relevant role in the theory, since they often provide precious information on
the structure of the partial ∗-algebra and on its ∗-representations. This is true a fortiori
when the partial ∗-algebra is endowed with some locally convex topology. The inter-
play between unbounded C∗-seminorms and the original topology can be useful when
looking for continuity properties of ∗-homomorphisms or ∗-representations. This is the
subject of this section. For simplicity, we limit ourselves to the case of norm topologies.

Let A be a partial ∗-algebra. We denote by BW(A) the set of all biweights of A.
Moreover, if B is a subspace of RA, following [10], we call BW(A;B) the subset of all
ϕ∈ BW(A) having B as core.

If B is a subspace of RA, we put

pB(a)2 = sup
{
ϕ(ax,ax) : ϕ∈ BW(A;B), x ∈B, ϕ(x,x)= 1

}
,

�
(
pB

)= {a∈A : pB(a) < +∞}. (4.1)

If BW(A;B)= {0}, we put pB(a)= 0 for every a∈A and �(pB)=A.
If ϕ ∈ BW(A;B), we denote by πB

ϕ the GNS representation for ϕ with core B. It
is easily seen that �(pB) consists of all a ∈ A for which πB

ϕ (a) is bounded for every
ϕ∈ BW(A;B) and

sup
{∥∥πB

ϕ (a)
∥∥ : ϕ∈ BW(A;B)

}
< +∞. (4.2)

Moreover,

pB(a)= sup
{∥∥πB

ϕ (a)
∥∥ : ϕ∈ BW(A;B)

}
, a∈�(pB). (4.3)

Then (see also [10])
(1) �(pB) is a partial ∗-subalgebra of A;
(2) pB is an unbounded C∗-seminorm on �(pB), that is, pB(a∗a) = pB(a)2, for

every a∈�(pB) and a∗ ∈ L(a);
(3) the setN(pB)= {a∈A : pB(a)= 0} is a partial ∗-ideal in the sense that if b ∈A,

a∈N(pB), and ba is well defined, then ba∈N(pB).
We prove the following.
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Lemma 4.1. Let B be a subspace of RA and B0 a subspace of B such that λϕ(B0) is dense
in �ϕ, for every ϕ∈ BW(A,B). Then

(i) �(pB0 )⊆�(pB) and pB(a) � pB0 (a), for all a∈�(pB0 );
(ii) if a∈�(pB), then

pB(a)2 = sup
{
ϕ(ax,ax) : ϕ∈ BW(A;B), x ∈B0, ϕ(x,x)= 1

}
. (4.4)

Proof. Since B0 is a subspace of B with λϕ(B0) dense in �ϕ, for every ϕ ∈ BW(A,B),

then BW(A,B)⊆ BW(A,B0). If πB
ϕ and πB0

ϕ denote, respectively, the GNS representa-

tions for ϕwith cores B and B0, then we have πB0
ϕ ⊆ πB

ϕ . For each a∈A such that πB
ϕ (a)

is bounded, we have, clearly,

∥∥∥πB
ϕ (a)

∥∥∥=
∥∥∥πB0

ϕ (a)
∥∥∥. (4.5)

This, in turn, implies that �(pB0 )⊆�(pB) and

pB(a) � pB0 (a), ∀a∈�
(
pB0

)
. (4.6)

This proves (i).
As for (ii), if a∈�(pB), we have, taking into account (4.5),

pB(a)= sup
{∥∥πB

ϕ (a)
∥∥ : ϕ∈ BW(A;B)

}

= sup
{∥∥πB0

ϕ (a)
∥∥ : ϕ∈ BW(A;B)

}

= sup
{
ϕ(ax,ax)1/2 : ϕ∈ BW(A;B), x ∈B0, ϕ(x,x)= 1

}
.

(4.7)

�

Let now A1, A2 be partial ∗-algebras andΦ : A1 →A2 an ∗-homomorphism preserving
biweights. Let B2 be a subspace of RA2 and

B1 =
{
x ∈ RA1;Φ(x)∈B2

}
. (4.8)

Then, by Proposition 3.13, B1 is a core for all biweights ϕΦ, with ϕ∈ BW(A2;B2). More-
over, Φ(B1) is a core for ϕ2.

Proposition 4.2. Given a1 ∈�(pB1 ), then Φ(a1)∈�(pB2 ) and

pB2

(
Φ
(
a1
))

� pB1

(
a1
)
. (4.9)
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Proof. Making use of Lemma 4.1(ii) and of the fact that Φ(B1) is a core for ϕ2, for every
ϕ2 ∈ BW(A2;B2), we have

pB2

(
Φ
(
a1
))2

= sup
{
ϕ2
(
Φ
(
a1
)
z,Φ

(
a1
)
z
)

: ϕ2 ∈ BW
(
A2;B2

)
, z ∈B2, ϕ2(z,z)= 1

}

= sup
{
ϕ2
(
Φ
(
a1
)
Φ
(
x1
)
,Φ
(
a1
)
Φ
(
x1
))

: ϕ2 ∈ BW
(
A2;B2

)
,

x1 ∈B1,
(
ϕ2 ◦Φ

)(
x1,x1

)= 1
}

= sup
{
ϕ2
(
Φ
(
a1x1

)
,Φ
(
a1x1

))
: ϕ2 ∈ BW

(
A2;B2

)
, x1 ∈B1,

(
ϕ2 ◦Φ

)(
x1,x1

)= 1
}

= sup
{(
ϕ2 ◦Φ

)(
a1x1,a1x1

))
: ϕ2 ∈ BW

(
A2;B2

)
, x1 ∈B1,

(
ϕ2 ◦Φ

)(
x1,x1

)= 1
}

� sup
{
ϕ
(
a1x1,a1x1

))
: ϕ2 ∈ BW

(
A1;B1

)
, x1 ∈B1, ϕ

(
x1,x1

)= 1
}

= pB1

(
a1
)2
.

(4.10)
�

Proposition 4.2 has an obvious counterpart for ∗-algebras. In that case, the seminorms
to consider are those constructed by Yood [11] using families of positive linear functionals
and it holds, of course, for arbitrary ∗-homomorphisms Φ. It is worth noticing that, in
the case of C∗-algebras, the analogue of (4.9) implies the continuity of Φ. Here, however,
we need additional assumptions in order to obtain similar results.

Let now A be a normed partial ∗-algebra with norm ‖ · ‖ and B a subspace of RA (for
shortness, we write, from now on, B� RA).

Let ϕ∈ BW(A,B), then, following [10], we say that ϕ has a ‖ · ‖-continuous B-orbit
if

∀x ∈B, ∃γx > 0 :
∣∣ϕ(ax,bx)

∣∣≤ γx‖a‖ · ‖b‖, ∀a,b ∈A. (4.11)

The set of all these biweights is denoted by CO(B). We define

COe(B)= {ϕ∈ CO(B) :
∣∣ϕ(ax,bx)

∣∣≤ ϕ(x,x)‖a‖ · ‖b‖, ∀a,b ∈A, x ∈B
}
. (4.12)

We denote by qB the C∗-seminorm

qB(a)= sup
{
ϕ(ax,ax)1/2 : ϕ∈ COe(B), ϕ(x,x)= 1

}
. (4.13)

Proposition 4.3. The following statements hold:
(i) qB(a)≤ ‖a‖, for all a∈A (therefore �(qB(a))=A);

(ii) for every ϕ∈ COe(B), one has

∣∣ϕ(ax,bx)
∣∣≤ ϕ(x,x)qB(a)qB(b). (4.14)

Proof. Both statements come directly from the definitions. �
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Now assume that the family of seminorms {qB; B� RA} satisfies the condition

a∈A, qB(a)= 0, ∀B� RA=⇒ a= 0. (4.15)

Then {qB; B� RA} defines a locally convex Hausdorff topology τC∗ on A (which we will
call the C∗-like topology). The topology τC∗ is coarser than the norm topology because
of Proposition 4.3(i).

Example 4.4. What we have done so far applies, of course, to the particular case where
A is a Banach ∗-algebra with unit. Let ϕ be a biweight on the Banach ∗-algebra A with
domain �(ϕ) and core B. If x ∈B, then ϕx(a,b) := ϕ(ax,bx) is a sesquilinear form on
A×A. Therefore, we can define ωx(a) = ϕ(ax,x), a ∈ A. Then ωx is a positive linear
functional on A and hence one has

∣∣ωx(a)
∣∣≤ ωx(e)‖a‖, ∀a∈A. (4.16)

Therefore,

∣∣ϕx(a,b)
∣∣= ∣∣ωx

(
b∗a

)∣∣≤ ϕ(x,x)‖a‖‖b‖. (4.17)

Thus, for any core B, one has ϕ ∈ COe(B) and pB(a) = qB(a) for all a ∈ A. If A is an
∗-semisimple Banach ∗-algebra, the topology τC∗ reduces to that defined by the unique
norm

p(a)= sup
ω∈S(A)

ω
(
a∗a

)1/2
, (4.18)

where S(A) denotes the set of states of A. This topology is coarser than the norm topology,
in general. When p∼ ‖ · ‖, then A is an A∗-algebra, whereas A is a C∗-algebra if p(a)=
‖a‖ for all a∈A.

Remark 4.5. Let A1, A2 be Banach partial ∗-algebras and let Φ : A1 →A2 be a continuous
∗-homomorphism. Then, even in this case, we cannot be sure that for a given biweight ϕ
on A2, with domain �(ϕ) and core B(ϕ), the corresponding form ϕΦ is a biweight on A1.
Indeed, let f ∈ L2(0,1), and consider the following space:

A f := {g ∈ L2(0,1) : g = α f + c, α,c ∈ C}. (4.19)

In this space, a partial multiplication is defined: (g1,g2)∈ Γ if and only if α1α2 = 0. Fur-
thermore, A f and L2(0,1) are Banach partial ∗-algebras in obvious way.

In this case, RA f consists only of constant functions. Hence, RA f is not dense in A f .
The everywhere-defined positive sesquilinear form on A f

ϕ1
(
g1,g2

)=
∫ 1

0
g1(x)g2(x)dx, (4.20)

is not a biweight on A f . Indeed, Nϕ1 = {0}. Then �ϕ1 = A f , and λ(RA f ) = RA f , which
is not dense in �ϕ1 . It is clear that ϕ1 = ϕΦ, where ϕ is the following positive sesquilinear
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form on L2(0,1):

∫ 1

0
f (x)h(x)dx, f ,h∈ L2(0,1), (4.21)

which is a biweight with largest core given by L∞(0,1) and Φ is the identity map of A f

into L2(0,1), which is trivially a continuous ∗-homomorphism of A f into L2(0,1).

Let A1 and A2 be Banach partial ∗-algebras, and Φ : A1 → A2 a continuous ∗-homo-
morphism, hence ‖Φ(a)‖A2 ≤ ‖Φ‖‖a‖A1 for all a ∈ A1. Assume that Φ preserves bi-
weights.

We have the following.

Proposition 4.6. Let B be a subspace of RA2 and put

BΦ := {a∈ RA1 : Φ(a)∈B
}
. (4.22)

If ϕ∈ CO(B), then ϕΦ ∈ CO(BΦ). Moreover, if ϕ∈ COe(B), then there exists γ > 0 such
that γϕΦ ∈ COe(BΦ).

Proof. Let ϕ∈ CO(B). Then, we have

∣∣ϕ
(
Φ(a)Φ(x),Φ(b)Φ(x)

)∣∣≤ γΦ(x)
∥∥Φ(a)

∥∥
A2

∥∥Φ(b)
∥∥

A2

≤ C2γΦ(x)‖a‖A1‖b‖A1 , ∀a,b ∈A1, x ∈BΦ.
(4.23)

Let now ϕ∈ COe(B). Then

∣∣ϕ
(
Φ(a)Φ(x),Φ(a)Φ(x)

)∣∣≤ ϕ(Φ(x),Φ(x)
) ·∥∥Φ(a)

∥∥
A2

∥∥Φ(b)
∥∥

A2

≤ ϕΦ(x,x)‖Φ‖2‖a‖A1‖b‖A1 , ∀a,b ∈A1, x ∈BΦ.
(4.24)

Thus (1/‖Φ‖2)ϕΦ ∈ COe(BΦ). �

The next question we want to consider is the following: under which conditions is an
∗-homomorphism continuous from A1[‖ · ‖A1 ] to A2[‖ · ‖A2 ]?

We begin with the case where Φ is an ∗-isomorphism. Then, as already proven, for
every core B(ϕ) for ϕ, one has Φ(B(ϕΦ))= B(ϕ).

Now let B� RA2 and consider the family of biweights COe(B). Then, for every a,b ∈
A1 and for every x ∈B1 := {x ∈ RA1 : Φ(x)∈B}, we have

∣∣ϕΦ(ax,bx)
∣∣= ∣∣ϕ(Φ(ax),Φ(bx)

)∣∣= ∣∣ϕ(Φ(a)Φ(x),Φ(a)Φ(x)
)∣∣

≤ ϕ(Φ(x),Φ(x)
)∥∥Φ(a)

∥∥
A2

∥∥Φ(b)
∥∥

A2
.

(4.25)

Thus, in general, ϕΦ need not be an element of COe(B1). But, according to Proposition
4.6, this is a necessary condition for continuity. The same discussion as above applies to
the case where Φ is an ∗-homomorphism strictly preserving biweights.

As for the continuity of an ∗-homomorphism, we can now state the following prelim-
inary result.
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Proposition 4.7. Let A1, A2 be normed partial ∗-algebras and Φ an ∗-homomorphism of
A1 into A2 strictly preserving biweights and with the property that, for every B� RA2, the
following implication holds:

ϕ∈ COe(B)=⇒ γϕΦ ∈ COe
(
BΦ

)
for some γ > 0, (4.26)

where BΦ = {x ∈ RA1 : Φ(x)∈B}. Then Φ is continuous for the τC∗ topologies of A1 and
A2, respectively.

Proof. Let qB be any one of the seminorms defining the topology τC∗ of A1. Then, we
have

qB

(
Φ(a)

)= sup
{
ϕ
(
Φ(a)x2,Φ(a)x2

)1/2
: ϕ∈ COe(B), x2 ∈B, ϕ

(
x2,x2

)= 1
}

= sup
{
ϕ
(
Φ
(
ax1
)
,Φ
(
ax1
))1/2

: ϕ∈ COe(B), x1 ∈BΦ, ϕΦ
(
x1,x1

)= 1
}

≤ 1
γ
qB1 (a).

(4.27)
�

5. The ∗-radical

The seminorms {pB : B � RA}, defined as in the previous section by families of bi-
weights on A having B as core, can be used to introduce a notion of ∗-radical for a partial
∗-algebra. We will not carry out here a detailed analysis of this notion, but we will only
show that the proposed definition leads to what is expected in some special situations.

If p is any seminorm on A, we put N(p)= {a∈A : p(a)= 0}.
Definition 5.1. Given a partial ∗-algebra A, the algebraic ∗-radical of A is defined as fol-
lows:

Rad∗(A)=

⎧
⎪⎪⎨
⎪⎪⎩

A if BW(A)= {0};
⋂

B⊂RA

N
(
pB

)
if BW(A) �= {0}. (5.1)

A partial ∗-algebra A for which Rad∗(A)= {0} is called algebraically ∗-semisimple.

Proposition 5.2. The algebraic ∗-radical Rad∗(A) coincides with the intersection of the
kernels of all GNS representations πϕ constructed from biweights ϕ∈ BW(A).

Proof. Let ϕ be a biweight with domain �(ϕ) and core B(ϕ). Then, we have for the GNS
representation πBϕ ,

∥∥πBϕ (a)λϕ(x)
∥∥2 = ϕ(ax,ax). (5.2)

Thus, if a∈ Rad∗(A), then πBϕ (a)λϕ(x)= 0, for all x ∈ B(ϕ), and so πBϕ (a)= 0.
Conversely, if πBϕ (a)= 0 for every biweight ϕ with core B(ϕ), then ϕ(ax,ax)= 0, for all

x ∈ B(ϕ), and therefore a∈ Rad∗(A). �
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Example 5.3. Let M be a partial O∗-algebra on � in � and ξ ∈�. As in [4, Example
9.1.12], we construct a biweight ϕξ on M in the following way. We put

D
(
ϕξ
)= {X ∈M; ξ ∈�

(
X†∗

)}
,

ϕξ(X ,Y)= (X†∗ξ | Y†∗ξ), X ,Y ∈�
(
ϕξ
)
.

(5.3)

Then ϕξ is a positive sesquilinear form on �(ϕξ)×�(ϕξ).
(1) Suppose that ξ ∈� and put

B
(
ϕξ
)≡ {X ∈ Rw(M); Xξ ∈�∗∗(M)

}
. (5.4)

Assume that B(ϕξ)ξ is dense in D(ϕξ)ξ. Then ϕξ is a biweight on M with core B(ϕξ).
(2) On the other hand, suppose that ξ ∈� \� and put

Bo
(
ϕξ
)= {X ∈ Rw(M); ξ ∈�(X), Xξ ∈�

}
,

B
(
ϕξ
)= linear span of Bo

(
ϕξ
)
.

(5.5)

Then, B(ϕξ) is a subspace of �(ϕξ) satisfying the conditions (i), (ii), (iv), and (v) of
Definition 3.1.

Whenever B(ϕξ)ξ is dense in D(ϕξ)ξ, then ϕξ is a biweight on M with a core B(ϕξ).
For every vector ξ ∈�, ϕξ is a biweight on the maximal partial O∗-algebra �†(�,�).

This holds true because {η⊗ ξ; η ∈�} ⊂ B(ϕξ) and {(η⊗ ξ)ξ; η ∈�} =�.

From the previous example, the following holds.

Proposition 5.4. �†(�,�) is algebraically ∗-semisimple.

Proof. Let A∈�†(�,�) and assume that for every biweight ϕ on �†(�,�) and every X
in a core B(ϕ), ϕ(AX ,AX)= 0. Then this is true, in particular, for the biweights of the type
ϕξ , ξ ∈�, defined in the previous example. Since I ∈ B(ϕξ), we get ‖Aξ‖2 = ϕξ(A,A)= 0,
for every ξ ∈�. Thus A= 0. �

Consider now the special case where A is a Banach ∗-algebra. Then there is a stan-
dard notion of ∗-radical (see, e.g., [8, Chapter 4]), denoted here by R∗(A), that can be
expressed as

R∗(A)=
{
a∈A : sup

ω∈S(A)
ω
(
a∗a

)= 0
}

, (5.6)

where S(A) is the set of all states on A. The notion of algebraic ∗-radical introduced
in Definition 5.1 is a genuine generalization of this standard one, as it should. We have
indeed the following.

Proposition 5.5. Let A be a Banach ∗-algebra. Then,

R∗(A)= Rad∗(A). (5.7)

Proof. Let ϕ be a biweight with domain �(ϕ) and core B(ϕ). If x ∈ B(ϕ), then ϕx(a,b)=
ϕ(ax,bx) is a sesquilinear form on A×A. Define ωx(a) := ϕ(ax,x). This is a positive
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linear functional on A. Indeed,

ωx
(
a∗a

)= ϕ(a∗ax,ax
)= ϕ(ax,ax) � 0, (5.8)

by the condition (iv) of Definition 3.1. Moreover, ωx is a state if and only if, ϕ(x,x)= 1.
So if a∈ R∗(A), we have ωx(a∗a)= 0, then ϕ(ax,ax)= 0, which implies a∈ Rad∗(A).

Conversely, assume that a∈ Rad∗(A) and let ω ∈ S(A). Put ϕω(a,b) = ω(b∗a). Then
ϕω is clearly a biweight with domain �(ϕω) = B(ϕω) = A. Thus, for every x ∈ A,
ϕω(ax,ax)= 0. In particular, for x = e, we get ϕω(a,a)= 0, which impliesω(a∗a)= 0. �

In the previous example, all sesquilinear forms ϕx, x ∈B, are, in fact, continuous and
the corresponding GNS representations are bounded. This fact suggests considering for
normed partial ∗-algebras a stronger notion of radical, using this time the seminorms
{qB : B� RA}, which are defined by biweights ϕ for which ϕx,x ∈B, are bounded.

Definition 5.6. Given a normed partial ∗-algebra A, the topological ∗-radical of A is de-
fined as follows:

Rad∗top(A)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A if COe(B)= 0, ∀B∈ RA;

⋂

B⊂RA

N
(
qB

)
.

(5.9)

If Rad∗top(A)= {0}, then A is said to be ∗-semisimple.
Of course, if A is ∗-semisimple, it follows that A is algebrically ∗-semisimple. The

converse is not true in general.
An interesting question, which we leave open, is the following: for which normed par-

tial ∗-algebras do the algebraic ∗-radical and the topological ∗-radical coincide?
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