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We obtain some new necessary conditions for wavefront propagation in the noninvolu-
tive Fuchsian operator class t∂2/∂t2 + λ(x,Dx)∂/∂t+β(x,Dx). The point of view here is to
show that cancellation of propagation of a new singularity in some semilinear systems
can be arranged by means of Fuchsian perturbation admitting exact (left and right) mi-
crolocal parametrices.
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1. Introduction

This paper is addressed to the study of some new necessary conditions for the τ-axis
propagation in the noninvolutive operator class ˜Mλ,β = t∂2/∂t2 + λ(x,Dx)∂/∂t + β(x,Dx)
treated in the paper of Nagaraj [3]. In particular, the method of constructing analytical
solutions to ˜Mλ,β = 0 (see [3, expression (5.17)]) is examined so as to obtain new neces-
sary conditions for τ-propagation in the context of [3, Theorem 5.1], notably when the
wavefront sets of λ and β intersect near (x◦,ξ◦). This study was motivated while attempt-
ing to cancel the propagation of a newly formed singularity in the following second-order
degenerate (Fuchsian) semilinear hyperbolic system in the real space-time variables x, t:

∂u

∂t
− ∂u

∂x
= 0,

∂v

∂t
+
∂v

∂x
= 0,

[

(t− 1)
∂2

∂t2
+ λ

∂

∂t
+β
]

w = u · v,

(1.1)

where λ,β are arbitrary real or complex constants. As initial values for the solution u(x, t),
v(x, t), w(x, t) of the system (1.1), we take (H =Heaviside function)

u(x,0)=H(1 + x),
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2 Propagation and cancellation in Fuchsian operators

v(x,0)=H(1− x),

w(x,0)= 0= ∂w

∂t
(x,0).

(1.2)

We note that for the case t close to 1 (neglecting the second-order term; see Remark 3.2
below), λ= 1, β = 0 produces a well-known semilinear equation in which the nonlinear-
ity u · v produces a new singularity in w at (x = 0, t = 1) which is propagated along the
half t-axis t ≥ 1; see, for instance, Taylor [4]. Now in a practical model such as simulta-
neous explosion or seismic activity, one may wish to cancel the propagation along t ≥ 1
and we demonstrate that this can be done by a second-order Fuchsian perturbation in-
troduced around the singularity (t = 1) and matching it with the nonlinearity as in the
system (1.1); in principle, a perturbation here should mean addition to ∂w/∂t by M(0,β)w
(see (1.3) below). Notice that a first-order Fuchsian perturbation around (t = 1) will be
degenerate hyperbolic at (t = 0) and not at the singularity (t = 1).

The cancellation of propagation along the base t-axis of the wavefront point at the
triple characteristic (x = x0, t = 1, ξ = ξ0, τ = 0) in WF(w), the wavefront set of the so-
lution in the perturbed system (1.1), is demonstrated by the use of an appropriate exact
(both left and right) parametrix for the noninvolutive Fuchsian operator class:

M(λ,β) = (t− 1)
∂2

∂t2
+ λ

∂

∂t
+β, (1.3)

where λ, β are real or complex constants. We remark that operators of type (1.3) are
microlocal equivalents via the MKE (Maslov-Kuranishi-Egorov) setup, of a more general
class of operators R = PQ2 + AQ + B where P, Q are pseudodifferential operators with
real principal symbols of orders 0 and 1, respectively, and A, B are operators of order 0,
with P, Q having noninvolutive intersection, that is, the Poisson bracket of their principal
symbols is nonzero at some point z◦ at which both the principal symbols vanish (see [3]).
We emphasise that we are here in a situation where we have to establish propagation or
no propagation of a point that is common to the wavefront sets of w and the right-hand
side u · v in (1.1); normally the propagation results are stated outside the wavefront set of
the right-hand side of the equation.

While attempting to avoid the base propagation in the class (1.3), it is natural to ask for
the very general circumstances, allowing λ, β to be classical pseudodifferential operators
of order 0 in the x-variables, under which there is a possibility of τ-axis propagation of
the wavefront set of the general solution. The reason here is that if the singularity is made
to stay put and not propagate in the base, then there is flexibility for it to propagate along
the other (fiber) directions.

Addressing these questions, the paper is organised as follows. In Section 2, for the
case of λ(x,Dx), β(x,Dx) being classical pseudodifferential operators of order zero in
x-variables (dimension x can be ≥ 1 here), we give new conditions (see [3, Theorems
5.1, and 5.2]) under which t-analytical solutions to the homogeneous equation

˜M(λ,β)u= 0 (1.4)
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can be constructed so that τ-axis propagation is then not possible in general; contraposi-
tively this gives interesting new necessary conditons for τ-axis propagation. In Section 3,
we demonstrate by wavefront estimate for an explicit choice of a two-sided parametrix
for M(1,0) that the forward propagation along the t-axis, t > 1, does not take place al-
though there is a possibility of τ-axis propagation, as the wavefront estimates indicate. In
Section 4, we observe that such a cancellation effect is indeed there, even if we consider
perturbation by M(λ,β), where for the purpose of exactness of microlocal parametrices, λ,
β are only taken arbitrary constants, real or complex. It is also appropriate here to note
that in a “correct sense” of perturbation, λ can be introduced only as a nonzero multi-
plication on both sides of the equation ∂w/∂t = u · v. Thus if λ= λ(x,Dx) were to be an
operator in the x-variables, such an operator action on u · v may in fact smooth out or
shift away the wavefront points of u · v unless of course λ is chosen to be hypoelliptic near
the point in question; notice that there are indeed hypoelliptic unsolvable operators.

2. Necessary conditions for τ-propagation in ˜M(λ,β) = t∂2/∂t2 + λ(x,Dx)∂/∂t+β(x,Dx)

We recall from [3] that τ-propagation, that is, propagation along the null bicharacter-
istics of the symbol t, is established under the noninteraction condition (near the triple
characteristic z0 = (x = x0, t = 0, ξ = ξ0, τ = 0)) WF(λ)∩WF(β)= φ and under the “dis-
crete condition” of λ0 (principal symbol of λ) avoiding a subset of the integers; see [3,
Theorem 5.1] of the paper. Also, again under the noninteraction condition when λ is
now smoothing and β elliptic, τ-propagation is established in [3, Theorem 5.2]. It is our
purpose in this section to establish necessary conditions for τ-propagation which include
the “interaction condition” when the wavefront sets of λ and β intersect near z0. We be-
gin by looking at sufficient conditions for “no τ-propagation.” It will be convenient here
to recall certain remarks made at the end of paper, [3, page 573], concerning failure of
solvability in the system (5.17) of [3] therein; we are now ready to state the following.

Theorem 2.1. Let (x◦,ξ◦)∈WF(λ)∩WF(β), and if (at all) k− 1 + λ◦(x◦,ξ◦)= 0 for some
integer k ≥ 0, then suppose λ + k − 1 is solvable near x◦. Then ˜Mλ,β does not admit τ-
propagation.

Proof. We follow the method of proof of [3, Theorem 5.1] and consider with the notation
thereof the expression u(x, t)= u◦(x) +

∑∞
m=1um(x)tm, (x0,ξ0)∈WF(βu0), and the set of

equations provided by ˜Mλ,βu= 0:

λ(x,D)u1 =−β(x,D)u◦,

m
[

λ(x,D) +m− 1
]

um =−β(x,D)um−1, m≥ 1.
(2.1)

Now if all the operators λ(x,D) + m− 1 are elliptic near (x◦,ξ◦), which is in fact a
discrete condition on λ◦, then from (5.18) in [3], we have

um = Lmu◦modC∞ near x◦,

Lm = (−1)m

m!
(λ+m− 1)−1β(λ+m− 2)−1β···λ−1β,

(2.2)
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and the convergence for u is given in [3]. If now λ0(x0,ξ0) + k− 1= 0 for some k ≥ 0, then
clearly, as the discrete conditon is violated at only this k (λ not smoothing near z0), we
can solve for

um = Lmu◦modC∞ near x◦, 1≤m< k,

uk solves k
[

λ(x,D) + k− 1
]

uk =−β(x,D)uk−1 near x◦,

uk+m = ˜Lk+muk modC∞ near x◦, m≥ 1,

˜Lk+m = (−1)m

m!
(λ+ k+m− 1)−1β···(λ+ k+ 1)−1β(λ+ k)−1β.

(2.3)

It is therefore clear from (2.3) that the series for u(x, t) has L2 convergence on compact
t sets. It follows that (x◦,0,ξ◦,0)∈WF(u) as reasoned in the proof of [3, Theorem (5.1)]
which is not τ-propagated, completing the proof. �

Remark 2.2. With regard to the statement of Theorem 2.1, we note that if λ verifies
the discrete condition instead, then the fact that β is not smoothing near (x0,ξ0) im-
plies the assertion in view of [3, Theorem 5.1]. We also note from Theorem 2.1 that
under the “interaction condition” WF(λ)∩WF(β) �= φ, if ˜M(λ,β) admits τ- propagation,
then this necessarily implies that λ+ k− 1 is unsolvable for any integer k ≥ 0 (at which
λ◦(x◦,ξ◦) + k− 1 = 0) near the “interacting point” x◦ (i.e., (x◦,ξ◦) ∈ WF(λ) ∩ WF(β)).
We may thus take note of the “weaker” necessary conditions for τ-propagation given in
the [3, Theorems 5.1 and 5.2].

3. Perturbation by M(0,0)

We first note that the “Hörmander product” u · v in (1.1) is well defined at the level of
wavefront sets, since, solving for u and v in (1.1) respectively as H(1− t∓ x) in terms of
the Heaviside function H it is easy to see

WF(u)⊂ {(1− t, t,τ �= 0,τ)
}

,

WF(v)⊂ {(t− 1, t,τ1 �= 0,−τ1)
}

.
(3.1)

Thus clearly the fiber sum (τ + τ1,τ − τ1) �= (0,0), so that u · v is well defined. Now
one solves for w from the equation ∂w/∂t = u · v by simple integration noting that the
integrand is smooth for t < 1 in (x, t) space, outside the union of the lines 1− t± x = 0.
The “joint” singularity in u and v at x = 0, t = 1 is picked up by w (in view of microlocal
regularity) and propagated along the half t-axis, t ≥ 1, as per the solution w(x, t) = 1−
|x|,|x| ≤ 1; see [4]. A question arises as to why the singularity in w is not propagated in
both directions of the t-axis from t = 1 in view of Hörmander’s propagation theorem; but
this cannot be since propagation results are normally valid outside the wavefront set of
the right-hand side, which is not the case here. Now we allow the second-order Fuchsian
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perturbation near the singularity t = 1 and study the equation

M(1,0)w = u · v,

w = ∂w

∂t
= 0 on t = 0.

(3.2)

Solving (3.2) “factor-wise,” we easily see that

w(x, t)=
∫ t

0

(

1
r− 1

∫ r

0
u(s) · v(s)ds

)

dr. (3.3)

Now by smoothness of the integrand in t < 1 as observed in the paragraph following
(3.1), it follows that w is smooth in the interior of the triangular region bounded by the
x-axis and the lines 1− t± x = 0 passing through (t = 1, x = 0). In particular, the singu-
larity in an “extended” solution near t = 1 is not per se by uniqueness of solution of (3.2)
propagated in t < 1 ; this is also confirmed by microlocal analysis below (see the para-
graph above Theorem 3.1). A method of extension of this solution to a neighbourhood
of t = 1 is given in (3.5) below, which is well defined in terms of the kernels (3.6). Now
as to whether this singularity in w at t = 1 propagates in t > 1 along the t-axis, we show
that such is not the case. It will now be our purpose to construct appropriate two-sided
microlocal parametrices for M(1,0) in such a way that as far as the “base” t-propagation
is concerned, the singularity in w at t = 1, x = 0 stays put there. We note that both the
necessary conditions of Theorem 2.1 are satisfied for the operator M(1,0), giving “hint” of
flexibility for τ-propagation.

The translation t→ t− 1 gives

˜M(1,0)w̃ =
[

t
∂2

∂t2
+

∂

∂t

]

w̃ = (ũv)= f (x, t), (3.4)

where (ũv) has now a “base” singularity at t = 0, x = 0. Now a formal solution to (3.4)
can be written:

w̃(x, t)=
∫ t
[

log|t|− log|s|] f (x,s)ds. (3.5)

This formal solution leads to well-defined distribution kernels which represent the
following microlocal parametrices, each being both a left as well as a right exact inverse
for ˜M(1,0):

[

log|t|⊗ 1s− 1t ⊗ log|s|] ·H(t± s)⊗ δ(x− y). (3.6)

The fact that the kernels (3.6) are left parametrices as well follows from their action
in the s-variable on ˜M(1,0) f (x,s) and integrating by parts. It can be verified that the (t,s)
parts of the distributions in (3.6) are well defined in terms of the Hörmander product
condition, since, for instance, WF(H(t± s)) ⊂ {(t,∓t,−τ,τ) : t ∈R, τ �= 0}.

Now consider the kernel

K(1,0) =
[

log|t|⊗ 1s− 1t ⊗ log|s|] ·H(t− s)⊗ δ(x− y). (3.7)
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Using the fact that

WF
(

log|t|)⊂ {(0,τ) : τ ∈R∗ \ 0
}

(3.8)

and recalling the “tensor and Hörmander product formulae” for wavefront sets, we ob-
tain the following wavefront estimate on the kernel K(1,0) (in the following ξ �= 0 when it
occurs below):

WF
(

K(1,0)
)⊂ {(x,0,ξ,τ; x,s,−ξ,0) : s∈R, τ ∈R∗ \ 0

}

∪ {(x, t,ξ,0;x,0,−ξ,σ) : t ∈R, σ ∈R∗ \ 0
}

∪ {(x, t,ξ,τ; x, t,−ξ,−τ) : (t,τ)∈ T∗(R) \ 0
}

∪ {(x,0,ξ,τ; x,0,−ξ,σ) : τ ∈R∗, σ ∈R∗ \ 0
}

∪ {(x,0,ξ,τ;x,0,−ξ,σ) : τ,σ ∈R∗,τ �= 0
}

∪of sets above in each of which ξ = 0

∪ {(x, t,ξ,0; x,s,−ξ,0) : t ≥ s
}

.

(3.9)

Now from the equation

w̃(x, t)= K(1,0)˜M(1,0)w̃ = K(1,0)(ũv) (3.10)

we obtain, applying wavefront calculus (composition formula),

WF(w̃)= [WF′
(

K(1,0)
)◦WF(ũv)

]∪ [WF′(x,t)

(

K(1,0)
)]

(3.11)

in relation to the singular point (0,0,ξ0,0) of (ũv), the following: in order that (0,0,ξ0,0)
be a possible first coordinate in the union (3.9), which must be the case since w̃ has such a
singular point, it is necessary that the sets {(0,s,−ξ0,0) : 0≥ s} and {(0,0,−ξ0,σ) : σ �= 0}
form second coordinates with (0,0,ξ0,0) in the union (3.9). But, by the “mapping prin-
ciple” of the composition, since (ũv) does not have singularities on the t-axis other than
at t = 0, only one point, that is, (0,0,ξ0,0), is relevant in the last set (only this accounts
for the “base” propagation) in the union (3.9). Note also that the second set in the union
of WF(w̃) adds nothing since zero section does not occur in the second 4-tuple in (3.9).
We thus see that w̃ does not have singularities in t < 0 (a fact already observed in the
paragraph following (3.3)) and the same analysis performed using the other parametrix
in (3.6) shows that w̃ has no singularities in t > 0 as well; we note here that the formula
(3.3) works as long as t �= 1 and the distribution kernels constructed in a neighbourhood
of t = 0 are exact inverses and thus only one solution is possible, either in t < 0 or in t > 0.
Thus the singularity in w̃ at the point (0,0,ξ0,0) can at best propagate only along the τ-
axis and we have achieved the cancellation effect in fact in w along the t-axis. We thus
obtain the following.
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Theorem 3.1. For the degenerate hyperbolic semilinear system on Rx ×Rt,

ut −ux = 0,

vt + vx = 0,

(t− 1)∂2
t w+ ∂tw = uv,

u(x,0)=H(1− x),

v(x,0)=H(1 + x),

w(x,0)= ∂w

∂t
(x,0)= 0,

(3.12)

the joint singularity at x = 0, t = 1 is not propagated along the t-axis for t > 1, that is (x, t)
projection of

WF

⎛

⎜

⎝

u
v
w

⎞

⎟

⎠ (3.13)

intersects the t-axis only at x = 0, t = 1. (Thus there is “guided” propagation only along the
characteristics t− 1± x = 0. Such is not the case if the term (t− 1)∂2

t w is absent, in which
case new singularity at x = 0, t = 1 occurs and will be propagated along the t-axis for t ≥ 1.)

Remark 3.2. From the expression (3.5) we may formally compute at x = 0,

wt = 1
t

∫ t

f (s)ds,

twtt =−1
t

∫ t

f (s)ds+ f (t)−→ 0 as t −→ 0,

(3.14)

by L’Hospital’s rule. Thus for our choice of f =H(−t+ x)H(−t− x), twtt(0, t) is small for
small t; hence the term “perturbation” makes sense.

4. Perturbation by M(λ,β)

Given the equation ∂w/∂t = u · v, one can obviously multiply both sides by an arbitrary
nonzero constant λ, real or complex, without affecting the singular nature of the solution
w, in relation to formation and propagation of new singularities due to nonlinear inter-
action in λ ·u · v. This suggests that we consider the perturbed system as in (1.1), where
λ, β are taken as arbitrary real or complex constants, to examine whether the cancella-
tion effect is still there. We demonstrate that this is so by the use of the Bessel integral
method of eliciting the singularities, as is done in [3, Section 3]. Accordingly, the solution
of ˜M(λ,β)w̃ = (ũv)= f (x, t) may be written in the form (see [3, expression (3.3)])

u(x, t)= 2
c
tk/2

t
∫
[

Jk

(

2
√

βs
)

Nk

(

2
√

βt
)

− Jk

(

2
√

βt
)

Nk

(

2
√

βs
)

]

s−k/2 f (x,s)ds. (4.1)
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Now, introducing limits from the “upper and lower” half spaces in the expression (4.1)
(see [1, 2] and [3, expressions (3.7), (3.8)]), we obtain the following four right which are
also left parametrices:

H(t± s) ·F±(λ,β)(t,s)⊗ δ(x− y),

F±(λ,β)(t,s)=−
2
c
g
(

2
√

βt
)

(t± i0)1−λ⊗ g̃
(

2
√

βs
)

(s± i0)λ−1

(mod a smooth function).

(4.2)

It is noticed that the distribution kernels in (4.2) are well defined since the Hörmander
product condition is verified.

Now, following [1, 2], it is observed that the wavefront estimates on these kernels in-
dicate that at most the union of two transverse half characteristics through the triple
characteristic (0,0,ξ0,0) is involved for each parametrix; we thus observe on the lines of
proof of Theorem 3.1 that there is no propagation along the base t-axis and this leads to
the following.

Theorem 4.1. For the degenerate hyperbolic semilinear system on Rx ×Rt with λ, β arbi-
trary constants, real or complex,

ut −ux = 0,

vt + vx = 0,

(t− 1)∂2
t w+ λ∂tw+βw = u · v,

u(x,0)=H(1− x),

v(x,0)=H(1 + x),

w(x,0)= ∂w

∂t
(x,0)= 0,

(4.3)

the joint singularity at x = 0, t = 1 is not propagated along the t-axis for t > 1, that is, (x, t)
projection of

WF

⎛

⎜

⎝

u
v
w

⎞

⎟

⎠ (4.4)

intersects the t-axis only at x = 0, t = 1. (Thus there is “guided” propagation only along the
characteristics t− 1± x = 0. Such is not the case if the term (t− 1)∂2

t w is absent, in which
case (λ �= 0) new singularity at x = 0, t = 1 occurs and will be propagated along the t-axis
for t ≥ 1.)

Remark 4.2. Our procedure of perturbation in this section has centred around “multipli-
cation” by λ of the equation ∂w/∂t = u · v. Obviously, unless by elliptic (or indeed hypoel-
liptic) multiplication, we cannot use action by an arbitrary pseudodifferential operator λ
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in the x-variables, in order to maintain wavefront sets. With such perturbations however,
microlocal analysis in [3] indicates that we do indeed have validity of Theorem 4.1.
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