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1. Introduction

An important and widely studied class of operator algebras is the approximately finite-
dimensional (AF) C∗-algebras. Their name stems from the fact that each element of
the algebra can be approximated, to arbitrary precision, by an element from a finite-
dimensional subalgebra. As such elements are direct sums of matrices, the AF algebras
can be thought of as builtup from relatively simple matrix algebras.

Despite their reasonably simple structure, AF algebras have come to occupy a promi-
nent place in the study of C∗-algebras. It was Glimm [12] who studied the important
class of AF algebras which have come to be known as UHF algebras. However, the first
completely general treatment of AF algebras was initiated by Bratteli [2] in his seminal
paper. It was here that the infinite graphs which bear Bratteli’s name were introduced as
a means for representing AF algebras. These Bratteli diagrams, as they came to be called,
provide a graphical representation of the AF algebra’s structure, and will play a prominent
role in the present paper’s discussion.

Subsequent to [2], Elliott [10] proved that dimension groups are complete isomor-
phism invariants for AF algebras. These ordered groups with order units can be realized
as the K0 groups (see, e.g., [1]) of the corresponding algebras, and it is this vantage point
which has led to them being considered by a number of authors [9, 11, 13, 18].

It is the structure of an AF algebra’s dimension group that will be the focus of this
paper. As motivation, we offer for consideration the situation when the AF algebra is
commutative. To be specific, let X be a compact metric space with a basis consisting of
sets which are simultaneously open and closed (clopen), such as the Cantor middle-thirds
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set. Then C(X), the continuous complex-valued functions on X , is a commutative AF
algebra, and the associated dimension group can be shown to be order isomorphic to the
scaled ordered group (C(X ,Z),C(X ,Z+), χX ) where C(X ,Z) are the continuous functions
f : X → Z, C(X ,Z+) are those functions in C(X ,Z) which only take nonnegative integer
values, and χX is the function identically equal to 1. For commutative AF algebras such as
this, the spectrum X can be identified with the set of all infinite paths in the associated
Bratteli diagram. Therefore, in such a case, the dimension group can be conveniently
described as the set of integer-valued continuous functions whose domain is, at least in
some sense, equal to the Bratteli diagram.

It was a generalization of this situation which was considered in [19]. There, Bratteli
diagrams with a certain uniqueness condition were studied, and for the associated AF
algebras, an analogue to the result mentioned above for commutative AF algebras was
established. The present paper will generalize these results further by expanding on the
results of [19]. In particular, we will show that a large class of AF algebras have dimen-
sion groups which can be viewed as groups of continuous functions. This will involve a
consideration of special Bratteli diagrams on which an order structure has been defined.
These ordered Bratteli diagrams were considered by [15] in the context of partial dynam-
ical systems. Although partial dynamical systems do not play a role in the present paper,
as in [15], the existence of a minimal subset of the Bratteli diagram will be important.

Although the results presented here are explicitly for AF algebras and their dimen-
sion groups, some of the results involve graph theoretic notions, and may therefore be of
interest to those working in such areas.

2. Preliminaries

Consider a graph with vertex sets V(n), n≥ 0, and edge sets E(n), n≥ 1, which connect
the vertices in V(n− 1) with the vertices in V(n). We will assume that V(0) is a singleton
set. For e ∈ E(n), let s(e) ∈ V(n− 1) be the vertex at level n− 1 to which e is connected
and let r(e)∈V(n) be the vertex at level n to which e is connected. Assuming that s and r
are surjective for each n≥ 1, the resulting infinite graph will be called a Bratteli diagram
(see Example 2.1 below).

For a given Bratteli diagram, we will let X represent the set of all infinite paths in the
diagram. That is,

X = {(e1,e2, . . .
)

: ei ∈ E(i), r
(
ei
)= s

(
ei+1
)∀i≥ 1

}
. (2.1)

We can then topologize X by letting, for each path of edges p = (e1,e2, . . . ,en) from V(0)
to V(n),

C(p)= {( f1, f2, . . .
)∈ X : fi = ei ∀1≤ i≤ n

}
. (2.2)

By giving X the smallest topology for which each set C(p) is open, one can verify that X
is compact and that each set C(p) is also closed, and therefore clopen. Consequently, X is
a 0-dimensional compact Hausdorff space.
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In this paper, the object of interest will not just be a Bratteli diagram, but rather an
ordered Bratteli diagram. These are Bratteli diagrams where each set E(n) is given a partial
order satisfying the property that two elements e,e′ ∈ E(n) are comparable if and only if
r(e)= r(e′). It is through a consideration of this ordering that the set Xmin ⊂ X is defined
as Xmin = {(e1,e2, . . .) ∈ X : ei is minimal in E(i) for all i}. We note that the set Xmin is a
closed subset of X , and, to illustrate that Xmin depends on the ordering, consider the
following example.

Example 2.1. To see that nonhomeomorphic copies of Xmin are possible when different
orders are placed on a given Bratteli diagram, consider the diagram with the two different
orders as shown below:

•
1 1

•
1 2

•
1 1

•
1 2

•
1 2

•
1 1

...

•
1 1

•
1 2

•
1 1

•
1 1

•
2 1

•
2 1

...

(2.3)

The resulting possibilities for the set Xmin will correspond to the following graphs:

•
• •

• • •

...

•
• •

• • •

...

(2.4)

The sets of all infinite paths in these diagrams are homeomorphic to the closures of {1/n :
n ∈ Z+} and {±(1− 1/n) : n ∈ Z+}, respectively. Since the former has one nonisolated
point and the latter two such points, they are clearly not homeomorphic.

3. Minimal Bratteli diagrams

For a given Bratteli diagram, there exists a sequence of matrices with nonnegative integer
entries An,n+1 ∈Mmn+1,mn , n≥ 0, which completely describes the diagram. In Example 2.1,
the given diagram has, for example,

A0,1 =
[

1
1

]

, A1,2 =
⎡

⎢
⎣

1 0
1 1
0 1

⎤

⎥
⎦ . (3.1)

In particular, the rth row of An,n+1 describes the edges connected to the rth vertex in
V(n+ 1). The first entry of this row gives the number of edges connecting the first vertex
in V(n) to the rth vertex in V(n+ 1), the second entry the number of edges connecting
the second vertex in V(n) to the rth vertex in V(n+ 1), and so forth. These multiplicity
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matrices, as they completely describe the Bratteli diagram, also give, up to unitary equiv-
alence, a complete description of the associated AF algebra. Because deleting or inserting
levels of edges and vertices in Bratteli diagrams (telescoping and microscoping in the ter-
minology of [8]) does not affect the associated AF algebra (see [7, 17]), for the purposes
of this paper we will assume, without loss of generality, that the sequence {mn} is either
(i) constant or (ii) strictly increasing.

At this point, as it will be necessary for our main result, we make the assumption
that each of the multiplicity matrices has full rank. That is, for all n ≥ 0, we assume
rank(An,n+1) = mn. Since any AF algebra has many different sequences of subalgebras
which can be used to describe it, this means the results presented here will be valid for
any AF algebra for which there exists a sequence of subalgebras whose multiplicity matri-
ces have full rank.

With this in mind, we see that in case (i), where the sequence {mn} is constant, we are
assuming that each of the multiplicity matrices is invertible. Such a situation, which is
treated extensively by [3–6], will not be the focus of this paper. It is the situation in case
(ii), when the sequence {mn} is strictly increasing, to which we will devote our primary
efforts. As such, this paper can be seen as an attempt to generalize some of the ideas in [3–
6]. In this case it is possible to further assume, without loss of generality, that mn = n+ 1,
a fact whose verification we leave to the reader. It will be under these assumptions that we
will proceed.

As illustrated in Example 2.1, for a given Bratteli diagram, different possibilities may
exist for the set Xmin. For the proof of this paper’s main result, it will be necessary for Xmin

to be chosen so that it is, in some sense, large. Our assumption that each multiplicity
matrix has full rank is sufficient to guarantee that there always exists an ordering such
that the resulting ordered Bratteli diagram gives an appropriate Xmin. The remainder of
this section will be devoted to a consideration of precisely what we mean by the word
“large.”

To begin that discussion, we consider the situation wheremn=n+ 1 and rank(An,n+1)=
n+ 1, for all n≥ 0. For the moment, we adopt a general perspective. Let n ≥ 1 be given.
We will consider graphs with the following properties.

Properties 3.1. (I) There are 2n+ 1 vertices which are arranged so that n vertices appear
in one horizontal row (which we will refer to as level 1) and the remaining n+ 1 vertices
appear in a horizontal row below the first (which we will refer to as level 2).

(II) The only edges are those connecting vertices at different levels. In other words,
no vertices at the same level are connected by an edge, and consequently such graphs are
bipartite.

(III) Every vertex is connected to another by at least one edge.
We label the set of all such graphs Gn.

Remark 3.2. The AF algebras with mn = n+ 1, for all n≥ 0, are built from graphs of this
form.

Definition 3.3. Given a graph Γ∈Gn, we will call the graph γ a reduction of Γ if γ ∈Gn is
a subgraph of Γ obtained by deleting only edges. A graph in Gn will be called minimal if
it has n+ 1 edges. Such subgraphs can therefore be thought of as minimal spanning trees.
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Remark 3.4. Any graph in Gn must have at least n+ 1 edges by Properties 3.1(III). There-
fore, no nontrivial reductions of minimal graphs exist.

Example 3.5. It is easy to see that minimal reductions are not unique. The graph

• •
• • •

(3.2)

is an element of G2, with both

• •
• • •

• •
• • •

(3.3)

being minimal reductions.

It is easy to see that not all Bratteli diagrams will have minimal reductions at each
level. However, for our purposes, we will be interested in those Bratteli diagrams which,
at each level, do have minimal reductions. In particular, if a Bratteli diagram does have a
minimal reduction at each level, then this means that there exists at least one ordering on
this diagram’s edges so that for the resulting ordered diagram, the set Xmin will itself be a
Bratteli diagram. One might call such a graph corresponding to Xmin a minimal Bratteli
diagram since deleting any more edges will create a subgraph which is no longer a Bratteli
diagram. This will be an important object for our main result. We are therefore interested
in answering the following somewhat more general question: for any n≥ 1, how can we
decide which elements of Gn have a minimal reduction (in Gn)?

At this point we will begin to make use of the assumption we have made about the
multiplicity matrices An,n+1. Namely, that each has full rank. Under such circumstances
we can guarantee that a graph Γ∈Gn has a minimal reduction for all n≥ 1.

Theorem 3.6. Let Γ ∈ Gn for any n ≥ 1 and suppose MΓ is the multiplicity matrix which
describes Γ. If rank(MΓ)= n, then Γ has a minimal reduction.

Proof. We will proceed via induction on n. The induction basis is provided by the case
n= 1, where it is easy to see that all graphs Γ∈G1 have minimal reductions.

Next, suppose the result holds for n and let Γ∈Gn+1. We will assume rank(MΓ)= n+ 1
and write MΓ = [ai j], 1 ≤ i ≤ n+ 2, 1 ≤ j ≤ n+ 1. Before proceeding further we remark
that by permuting the rows and columns of MΓ we are merely rearranging the vertices in
the graph. For example, a row permutation amounts to rearranging the vertices at level
2 and a column permutation amounts to rearranging the vertices at level 1. Of course, if
it is possible to obtain a minimal reduction of this permuted form of the original graph,
then, by reversing the permutations, we will also have a minimal reduction of the original
graph. We will therefore work with various matrices obtained from MΓ through row and
column permutations in order to obtain our result.
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We consider two cases.
(a) There exists j0 ∈ {1, . . . ,n+ 1} such that the submatrix [ai j], 1 ≤ i ≤ n+ 2, 1 ≤

j ≤ n+ 1, j 
= j0, has only nonzero rows.
(b) For every j0 ∈ {1, . . . ,n + 1}, the submatrix [ai j], 1 ≤ i ≤ n + 2, 1 ≤ j ≤ n + 1,

j 
= j0, has a zero row.
Consider case (a). Permute the columns of MΓ so that the submatrix that results from

omitting the last column of the permuted matrix has only nonzero rows. For notational
convenience, we will continue to write MΓ and [ai j] for these permuted forms of the
original multiplicity matrix. Now, permute the rows so that the top n+ 1 rows are linearly
independent, which we can do since rank(MΓ) = n + 1. Thus, the submatrix [ai j], 1 ≤
i, j ≤ n+ 1, is nonsingular.

Because [ai j], 1≤ i, j ≤ n+ 1, is nonsingular, the matrix [ai j], 1≤ i≤ n+ 1, 1≤ j ≤ n,
has rankn. Thus, there exists i, which, without loss of generality, we may suppose equals
n+ 1, such that the submatrix [ai j], 1≤ i, j ≤ n, is nonsingular.

At this point we make an assumption that is justified later (Lemma 3.7). Assume
an+1,n+1 
= 0. Permute the last two rows of MΓ to finally arrive at a matrix with the fol-
lowing characteristics:

(i) omitting the (n+ 1)st column leaves all nonzero rows;
(ii) the first n rows of the submatrix [ai j], 1≤ i≤ n+ 1, 1≤ j ≤ n, are linearly inde-

pendent;
(iii) the entry an+2,n+1 is nonzero.

Since (i) and (ii) hold, the submatrix [ai j], 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n, is the multiplicity
matrix for a graph in Gn with rankn. Thus, by the induction hypothesis, there exists a
minimal reduction of this graph (which is just a subgraph of Γ). Since (iii) holds, there
is at least one edge connecting the last vertex at level 1 with the last vertex at level 2. By
deleting all other edges which connect these last two vertices to any others, we obtain a
minimal reduction of Γ.

Next, consider case (b). The assumption implies that at least n+ 1 rows have exactly
one nonzero entry and for different rows, the columns in which these entries appear are
different. We may assume, without loss of generality, that these rows are the first n+ 1
rows. So, the first n+ 1 vertices at level 2 are connected to exactly one vertex at level 1,
and different level 2 vertices are connected to different level 1 vertices. Finally, since the
last row is not zero, the last vertex at level 2 is connected to at least one vertex at level 1.
Thus, a minimal reduction in Gn+1 is possible. �

We now justify an assumption made in the proof of the previous theorem.

Lemma 3.7. Given an invertible matrix B = [bi j]∈Mn(C), there exists k, 1≤ k ≤ n, such
that the submatrix [bi j], 1≤ i, j ≤ n, i 
= k, j 
= n, is nonsingular and bk,n 
= 0.

Proof. First, if there exists 1≤ k ≤ n such that bk,1 = ··· = bk,n−1 = 0, then it must be that
bk,n 
= 0. Furthermore, since the dimension of the set span {[bi,1, . . . ,bi,n−1] : 1≤ i≤ n} is
n− 1, the desired result is achieved. To complete the proof we consider the case where
[bi,1, . . . ,bi,n−1] 
= 0, for every 1≤ i≤ n.

Assume, without loss of generality, that the first i0 rows of the matrix B end in 0 (i.e.,
bi,n = 0, for all 1≤ i≤ i0) and the remaining rows end in a nonzero number (i.e., bi,n 
= 0,
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for all i0 + 1≤ i≤ n). Of course, i0 < n since B is nonsingular. If we assume that there exist
scalars α1, . . . ,αi0 such that

α1
[
b1,1, . . . ,b1,n−1

]
+ ···+αi0

[
bi0,1, . . . ,bi0,n−1

]= 0, (3.4)

then α1[b1,1, . . . ,b1,n−1,b1,n] + ···+αi0 [bi0,1, . . . ,bi0,n−1,bi0,n]= 0 as well since b1,n = ··· =
bi0,n = 0. Because these later vectors are linearly independent, it must be that α1 = ··· =
αi0 = 0, and therefore, the set {[bi,1, . . . ,bi,n−1] : 1≤ i≤ i0} is linearly independent.

We know the set {[bi,1, . . . ,bi,n−1] : 1 ≤ i ≤ n} is linearly dependent, and so there exist
coefficients α1, . . . ,αn, not all zero, such that

n∑

i=1

αi
[
bi,1, . . . ,bi,n−1

]= 0. (3.5)

Furthermore, since {[bi,1, . . . ,bi,n−1] : 1 ≤ i ≤ i0} is a linearly independent set, it must be
that at least one coefficient αi1 , such that i1 > i0, is nonzero. But then, Cn−1 =
span{[bi,1, . . . ,bi,n−1] : 1≤ i≤ n}, which in turn is just span{[bi,1, . . . ,bi,n−1] : 1≤ i≤ n, i 
=
i1}, implying {[bi,1, . . . ,bi,n−1] : 1≤ i≤ n, i 
= i1} is linearly independent. Hence, the sub-
matrix [bi j], 1≤ i≤ n, i 
= i1, 1≤ j ≤ n− 1, is nonsingular and bi1,n 
= 0. �

This proves that for those AF algebras which are of type (ii), a minimal Bratteli dia-
gram corresponding to the set Xmin exists under the assumption that each multiplicity
matrix has full rank. We note that for algebras of type (i), there is an analogous result.

The results obtained here will be used in the subsequent section to prove a result about
the K0 groups of a large class of AF algebras. Despite that motive for their inclusion, they
are interesting in their own right. After all, being able to reduce a Bratteli diagram in the
way described here means that an order exists so that the corresponding ordered Bratteli
diagram has a sub-Bratteli diagram which is minimal spanning tree. Specifically, deleting
any more edges will result in a subgraph which is no longer itself a Bratteli diagram. Of
course, all Bratteli diagrams are reducible to sub-Bratteli diagrams (possibly in a trivial
way). However, the reductions here to the level of Xmin are as far as one can go. Deleting
any more edges, without deleting any vertices, will result in a subgraph which is no longer
a Bratteli diagram.

4. Dimension groups and minimal Bratteli diagrams

As is well known, if X is a 0-dimensional (basis consisting of clopen sets) compact metric
space, then there exists a sequence {En}∞n=0 of successively finer partitions of X which gen-
erate the topology and consist of clopen sets. Therefore, {C(En)}∞n=0, where C(En) consists
of those functions constant on elements of the partition En, is an increasing sequence of
finite-dimensional C∗-algebras (isomorphic to C|En|). Since C(X) =⋃n≥0C(En), it fol-
lows that C(X) is AF.

For any n≥ 0, the dimension group K0(C(En)) of C(En) is easily seen to be isomorphic
to (C(En,Z),C(En,Z+), χX ), where C(En,Z) are the continuous functions from X to Z
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constant on the elements of En. As such, one can conclude that

K0
(
C(X)

)= lim→ K0
(
C
(
En
))∼= (C(X ,Z),C

(
X ,Z+),χX

)
. (4.1)

One aspect of this well-known example which we want to draw attention to is that
Xmin = X . Therefore, in a natural way, the dimension group of C(X) can be realized as
a group of continuous functions on Xmin. In the context of AF groupoids, [16] presents
additional examples for which this also holds true, and [19] uses dimension groups of this
form to show that Xmin is an AF algebra isomorphism invariant under certain hypotheses.
We intend in this section to generalize the results of [16, 19] in order to demonstrate that
the dimension groups of those AF algebras in a certain class can be realized in this same
way, as groups of continuous functions on Xmin.

Here, as in the previous section, we begin with a Bratteli diagram such that the se-
quence {mn}∞n=0 is strictly monotonically increasing and each multiplicity matrix An,n+1

has full rank. As mentioned earlier, we may also assume, without loss of generality, that
mn = n+ 1, for all n ≥ 0. It follows by Theorem 3.6 that there exists an ordering on the
diagram such that Xmin is itself a Bratteli diagram. We will therefore proceed by assuming
that, in fact, ours is an ordered Bratteli diagram with such an order.

For each n ≥ 1, let vn ∈ V(n) be a vertex in the Bratteli diagram, and so, by exten-
sion, also a vertex in the graph corresponding to Xmin. Define C(vn) = {(x1,x2, . . .) ∈
Xmin : r(xn) = vn = s(xn+1)}. Note that these sets are simply the clopen basis elements
of X restricted to Xmin, and therefore act as basis elements for the topology Xmin inherits
from X . It now follows from Theorem 3.6 that for each n≥ 1, there exist unique vertices
rn,r′n ∈ V(n), and an ∈ V(n− 1) such that C(rn)∪C(r′n) ⊂ C(an) and that there exists a
bijection

σn :
{
s∈V(n) : s 
= rn,r′n

}−→ {b ∈V(n− 1) : b 
= an
}

(4.2)

such that C(s)⊂ C(σn(s)).
To achieve our result, we will now define, for all n ≥ 1, a linear map Rn : Cn+1 →

C(Xmin,C) by Rn(α1, . . . ,αn+1) =∑n
l=0αl+1χC(rl )

, where r0 = 1. Note that we are now as-
suming that a specific choice for Xmin has been made. Thus, the sequences {rn}∞n=1 and
{r′n}∞n=1 are fixed. The following technical result about the maps Rn will be useful to us in
what follows.

Lemma 4.1. For all n≥ 1, if (α1, . . . ,αn+1)T ∈ Cn+1, then there exists (β1, . . . ,βn+1)T ∈ Cn+1

such that if v(1,n),v(2,n), . . . ,v(n+ 1,n) are the vertices in V(n), then

Rn
(
β1, . . . ,βn+1

)=
n+1∑

l=1

αlχC(v(l,n)) . (4.3)

Furthermore, the map Rn injects.

Proof. For n= 1, set f = α1χC(v(1,1)) +α2χC(v(2,1)) . Let β1 = α1 and β2 = α2−α1. Then,

R1
(
β1,β2

)= β1χC(v(1,0)) +β2χC(v(2,1)) = α1χC(v(1,0)) +
(
α2−α1

)
χC(v(2,1)) . (4.4)
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We note that C(v(1,1))∪C(v(2,1))= C(v(1,0)), and so,

R1
(
β1,β2

)= α1χC(v(1,1)) +α1χC(v(2,1)) +
(
α2−α1

)
χC(v(2,1)) = f . (4.5)

This provides the basis for a proof by induction, and in fact illustrates the strategy that
the inductive step must employ. As the details are not difficult, the remainder of the proof
is left to the reader. �

Now since, by assumption, An,n+1 has full rank, for all n ≥ 0, it is possible by adding
appropriate columns [a1,n+2, . . . ,an+2,n+2]T of nonnegative integers to create a sequence
{An,n+1}∞n=0 of nonsingular matrices where

An,n+1 =

⎡

⎢
⎢
⎣

a1,n+2

An,n+1
...

an+2,n+2

⎤

⎥
⎥
⎦∈Mn+2. (4.6)

Remark 4.2. At this point, any choice for [a1,n+2, . . . ,an+2,n+2]T which makes An,n+1 non-
singular is appropriate. In fact, there is no a priori reason that the ai,n+2 cannot be ele-
ments of C. However, as we will see in a moment, in certain instances a somewhat more
restrictive choice will be desirable.

To compute the dimension group of an AF algebra A, K0(A), where A is the direct
limit A= lim−→An of the finite-dimensional subalgebras An, we utilize the fact that K0(A)=
lim−→K0(An). However, to be more explicit about the nature of lim−→K0(An), we first define,
for all n≥ 1,

An =
[
A−1

0,1⊕ In−1
]···[A−1

n−2,n−1⊕ I1
]
A−1
n−1,n. (4.7)

Then, let Φn : Zn+1 → C(Xmin,Q) be given by Φn = Rn ◦An, for all n≥ 1.
Letting n≥ 1 be given, it is clear that

A−1
n =An−1,n

[
An−2,n−1⊕ I1

]···[A1,2⊕ In−2
][
A0,1⊕ In−1

]
(4.8)

and, by the multiplicativity of the determinant, that

∣
∣A−1

n

∣
∣= ∣∣An−1,n

∣
∣ ·∣∣An−2,n−1

∣
∣ · ··· ·∣∣A1,2

∣
∣ ·∣∣A0,1

∣
∣. (4.9)

As, for example, in [14, pages 20-21], we can then write

An = 1
∣
∣A−1

n

∣
∣ adj

(
A−1
n

)
, (4.10)

where adj(A−1
n ) is the adjugate or classical adjoint of the matrix A−1

n . In defining each
matrix An,n+1, if we choose columns of integers, then each matrix A−1

n will be a product
of matrices with integer entries, and therefore itself must have integer entries. But, by the
definition of adj(A−1

n ), it will then follow that adj(A−1
n ) has integer entries as well.
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We will now define the set Gn by

Gn =
{

a
∣
∣A−1

n

∣
∣ : a∈ Z

}
. (4.11)

Then, Gn is embedded in Gn+1 by inclusion, and we write

G= lim→ Gn =
⋃

n≥1

Gn ⊂Q. (4.12)

It is then clear that for (α1, . . . ,αn+1)T ∈ Zn+1, An(α1, . . . ,αn+1)T is an element of Gn+1.
Giving G the discrete topology, we therefore see that Φn will be a map from Zn+1 to
C(Xmin,G), which since C(Xmin,G) ⊂ C(Xmin,Q), explains why Φn maps to rational-
valued functions.

To show that K0(A) is (at least) a subgroup of C(Xmin,Q), we would like to show that
the diagram

K0
(
An
)∼= Zn+1

φn∗

Φn

K0
(
An+1

)∼= Zn+2

Φn+1

C
(
Xmin,Q

)

(4.13)

commutes, where φn∗ is the homomorphism corresponding to the multiplicity matrix
An,n+1.

Let (α1, . . . ,αn+1)T ∈ Zn+1. Then, Φn+1 ◦φn∗(α1, . . . ,αn+1)T can be written as

(
Rn+1 ◦

[
A−1

0,1⊕ In
]···[A−1

n−1,n⊕ I1
]
A−1
n,n+1

)
◦An,n+1

(
α1, . . . ,αn+1,0

)T
. (4.14)

If we define (βn−1
1 , . . . ,βn−1

n+1 )T=A−1
n−1,n(α1, . . . ,αn+1)T and, in general, for 2≤ i < n, (βn−i1 , . . . ,

βn−in−i+2)T = A−1
n−i,n−i+1(βn−i+1

1 , . . . ,βn−i+1
n−i+2)T , we see that

Φn+1 ◦φn∗
(
α1, . . . ,αn+1

)T

= Rn+1 ◦
[
A−1

0,1⊕ In
]···[A−1

n−2,n−1⊕ I2
](
βn−1

1 , . . . ,βn−1
n+1 ,0

)T

= Rn+1
(
β0

1,β0
2,β1

3, . . . ,βn−2
n ,βn−1

n+1 ,0
)= β0

1χC(v(1,0)) +
n∑

l=1

βl−1
l+1χC(v(rl )) .

(4.15)

However, the following calculation yields:

Φn
(
α1, . . . ,αn+1

)T = Rn
(
β0

1,β0
2,β1

3, . . . ,βn−2
n ,βn−1

n+1

)= β0
1χC(v(1,0)) +

n∑

l=1

βl−1
l+1χC(v(rl )) . (4.16)

Thus, Φn = Φn+1 ◦ φn∗, and we conclude that the diagram commutes. By the universal
property of the direct limit, it follows that there exists a homomorphism Ψ : K0(A) →
C(Xmin,Q). Since each of the maps Φn is injective, it follows that, in fact, Ψ is an injection.
We summarize all of this in the following theorem.
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Theorem 4.3. Let (V(n),E(n),r,s) be a Bratteli diagram such that V(n) = n + 1 for all
n≥ 0. If each of the multiplicity matrices describing this diagram has full rank, then the di-
mension group of the corresponding AF algebra is a subgroup of C(Xmin,Q), where Xmin is a
compact 0-dimensional Hausdorff space corresponding to a subgraph of the Bratteli diagram.

This result, when applied to a commutative AF algebra C(X), will give K0(C(X)) as
(C(X ,Z),C(X ,Z+),χX ) since in this case X = Xmin for any choice of ordering on the cor-
responding Bratteli diagram. We point the reader to [19] for an application of this result
which shows that, in fact, Xmin is an isomorphism invariant for a certain class of AF alge-
bras.

Remark 4.4. Considering C(Xmin,Q) as an ordered group with positive cone C(Xmin,Q+),
this homomorphism is not necessarily order preserving. That is, in general, K+

0 (A) 
∼=
K0(A)∩C(Xmin,Q+). We will say more about this in a moment. It is true, however, that
the order unit of K0(A) in C(Xmin,Q) is χXmin

.

The following theorem provides conditions under which more information about the
structure of K0(A) is available. It should also be noted that this theorem will apply to the
GICAR algebra whose Bratteli diagram appears in Example 2.1.

Theorem 4.5. If, in constructing the matrices An,n+1, integer-valued columns can be chosen
so that |An,n+1| = 1, for all n ≥ 0, then K0(A) ∼= C(Xmin,Z) and the order unit is χXmin

. In
general, however, K+

0 (A) 
∼= C(Xmin,Z+).

Proof. In this case each matrix An is invertible and has integer entries. Thus, K0(A) is a
subgroup of C(Xmin,Z). If we let f ∈ C(Xmin,Z), then by continuity and the compact-
ness of Xmin, there exists n ≥ 1 and (α1, . . . ,αn+1)T ∈ Zn+1 such that f = ∑n+1

l=1 αlχB(l,n) .
By Lemma 4.1, there exists (β1, . . . ,βn+1)T ∈ Zn+1 such that f = Rn(β1, . . . ,βn+1). Thus,
A−1
n (β1, . . . ,βn+1)T ∈ Zn+1 ∼= K0(An), and we can obtain f as Φn(A−1

n (β1, . . . ,βn+1)T). �

This theorem implies that whenever two AF algebras satisfy the hypotheses of Theorem
4.5 and each has an ordered Bratteli diagram which yields the same Xmin, then the only
aspect of their dimension groups which distinguishes them is the positive cone. This, of
course, makes it clear why, in general, K+

0 (A) is not C(Xmin,Z+). At the beginning of this
section we commented on how if X is a 0-dimensional compact metric space, then the AF
algebra C(X) has dimension group (C(X ,Z),C(X ,Z+),χX ). Therefore, given A satisfying
the hypotheses of Theorem 4.5, for any Xmin associated with A,

K0
(
C
(
Xmin

))∼= (C(Xmin,Z
)
,C
(
Xmin,Z+),χXmin

)
. (4.17)

So, by Elliott’s theorem [10] and Theorem 4.5, unlessC(Xmin)∼=A, it must be thatK+
0 (A)⊂

C(Xmin,Z) is distinct from C(Xmin,Z+).
One also sees that the flexibility that may exist in choosing an ordering (and there-

fore Xmin) is of no help here. In particular, recall that Xmin is specified by the ordering
on the diagram. However, as the arguments above apply to any choice for this order-
ing, much flexibility exists in our choice for Xmin. Despite this flexibility, any Xmin will
result in K+

0 (A) being, in general, different from C(Xmin,Z+). Despite this, [16] shows
that useful characterizations of K+

0 (A) as a subset of C(Xmin,Z) do exist in specific cases.
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Furthermore, circumstances under which the topological structure of Xmin is useful in
distinguishing between AF algebras are discussed in [19].

Remark 4.6. To this point, we have only been concerned with those AF algebras A =
lim−→(An,φn) such that mn = n+ 1, for all n≥ 0. The case where mn = L∈ Z+, for all n≥ 0
and L fixed, is simpler and more transparent, and in fact culminates in analogous results.
Furthermore, it is in part treated by [3–6], where numerical invariants are considered.

It should be noted that the converse of Theorem 4.3 does not hold. In particular, con-
sider the Bratteli diagram where V(n)= n+ 1, for all n≥ 0, and which has an edge con-
necting every vertex at a given level to every vertex at both the previous and subsequent
levels. Such a diagram corresponds to a UHF algebra (see, e.g., [7]), and so its dimension
group will be isomorphic to a subgroup of C(Xmin,Q) which consists of functions of the
form αχXmin

. However, the corresponding multiplicity matrices will each have rank1.
This leads one to ask if there is some way to characterize those AF algebras which have

dimension groups of the form C(X ,Q). Another issue to address, which would take its
lead from [3–6], might be potential relationships between the isomorphism class of an
algebra and the characteristics of the full-rank multiplicity matrices, possibly in terms of
determinants of submatrices.
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