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This corrects the major theorem on product consequence operators.
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In [1], Definition 5.2, and Theorem 5.3 and its proof are stated incorrectly. The following
is the correct definition, theorem, and proof.

Definition 5.2. Suppose one has a nonempty finite set �= {C1, . . . ,Cm} of general conse-
quence operators, each defined on a nonempty language Li, 1≤ i≤m. Define the opera-
tor ΠCm as follows: for any X ⊂ L1×···×Lm, using the projection pri, 1≤ i≤m, define
ΠCm(X)= C1(pr1(X))×···×Cm(prm(X)).

Theorem 5.3. The operator ΠCm defined on the subsets of L1×···×Lm is a general con-
sequence operator and if, at least, one member of � is axiomless, then ΠCm is axiomless. If
each member of � is finitary and axiomless, then ΠCm is finitary.

Proof. (a) Let X ⊂ L1 × ··· × Lm. Then for each i, 1 ≤ i ≤m, pri(X) ⊂ Ci(pri(X)) ⊂ Li.
But, X ⊂ pr1(X)× ··· × prm(X) ⊂ C1(pr1(X))× ··· ×Cm(prm(X)) = ΠCm(X) ⊂ L1 ×
···×Lm. Suppose that X �= ∅. Then∅ �=ΠCm(X)= C1(pr1(X))×···×Cm(prm(X))⊂
L1 × ··· × Lm. Hence, ∅ �= pri(ΠCm(X)) = Ci(pri(X)), 1 ≤ i ≤ m, implies that Ci(pri
(ΠCm(X)))= Ci(Ci(pri(X)))= Ci(pri(X)), 1≤ i≤m. Hence, ΠCm(ΠCm(X))=ΠCm(X).
Let X =∅ and assume that no member of � is axiomless. Then each pri(X) =∅. But,
each Ci(pri(X)) �= ∅ implies that ΠCm(X) �= ∅. By the previous method, it follows,
in this case, that ΠCm(ΠCm(X)) = ΠCm(X). Now suppose that there is some j such
that Cj is axiomless. Hence, Cj(prj(X))=∅ implies that ΠCm(X)= C1(pr1(X))×···×
Cm(prm(X)) = ∅, which implies that Cj(prj(ΠCm(X))) = ∅. Consequently, C1(pr1

(ΠCm(X)))× ··· ×Cm(prm(ΠCm(X))) =∅. Thus, ΠCm(ΠCm(X)) =∅ and axiom (1)
holds. Also in the case where at least one member of � is axiomless, then ΠCm is axiom-
less.

(b) Let X ⊂ Y ⊂ L1 × ··· × Lm. For each i, 1 ≤ 1 ≤ m, pri(X) ⊂ pri(Y), whether
pri(X) is the empty set or not. Hence, Ci(pri(X)) ⊂ Ci(pri(Y)). Therefore, ΠCm(X) =
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C1(pr1(X))×···×Cm(prm(X))⊂ C1(pr1(Y))×···×Cm(prm(Y))=ΠCm(Y)) and ax-
iom (2) holds. Thus, ΠCm is, at least, a general consequence operator.

(c) Assume that each member of � is finitary and axiomless and let x ∈ ΠCm(X)
where, since ΠCm is axiomless, X is nonempty. Then for each i, pri(x) ∈ Ci(pri(X)).
Since each Ci is finitary and axiomless, then there is some nonempty finite Fi ⊂ pri(X)
such that pri(x)∈ Ci(Fi)⊂ Ci(pri(X)). Hence, nonempty and finite F = F1×···×Fm ⊂
pr1(X)× ··· × prm(X). Then for each i, pri(F) = Fi implies that finite F = F1 × ··· ×
Fm = pr1(F)× ···× prm(F) ⊂ pr1(X)× ···× prm(X). From axiom (2), x ∈ΠCm(F) =
C1(pr1(F))× ··· ×Cm(prm(F)) ⊂ ΠCm(pr1(X)× ··· × prm(X)) = C1(pr1(X))× ··· ×
Cm(prm(X))=ΠCm(X). This completes the proof. �
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