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Three types of local homogeneity in L-topological spaces are introduced and studied, and
each is characterized and proved to be a good extension of local homogeneity in ordinary
topological spaces. Many implications concerning them are introduced. The study deals
with the L-topologically generated topological spaces.
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1. Introduction

Throughout this paper, L is a fuzzy lattice, that is, a completely distributive lattice with
an order-reversing involution ′ on it, and with smallest element 0 and largest element 1
(0 �= 1). Let X be a nonempty set. An L-set of X is a function with domain X and values
in L; that is, an element of LX . LX under the pointwise ordering:

for λ,μ∈ LX , λ≤ μ in LX iff λ(x)≤ μ(x) in L∀x ∈ X ,

λ′(x)= (λ(x)
)′ ∀x ∈ X

(1.1)

is also a fuzzy lattice.
Throughout this paper, if {λj : j ∈ J} is a collection of L-sets in X , then (∨λj)(x) =

∨{λj(x) : j ∈ J}, x ∈ X ; and (∧λj)(x)=∧{λj(x) : j ∈ J}, x ∈ X . If r ∈ L, then rX denotes
the fuzzy set given by rX(x) = r for all x ∈ X ; that is, rX denotes the “constant” L-set
of level r, that is, the smallest and the largest elements of LX are denoted, respectively,
by 0X and 1X . If rX is a constant L-set and λ ∈ LX , then rX ∧ λ will be denoted by rλ.
λ∈ LX is called an L-crisp subset on X if there exists an ordinary subset A⊆ X such that
λ= χA : X → {0,1} ⊆ L, that is, if λ is a characteristic function of some ordinary subset of
X . An L-point on X is an L-subset xa ∈ LX defined as follows:

for every y ∈ X , xa(y)=
⎧
⎨

⎩
a if y = x,

0 if y �= x,
(1.2)
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2 Local homogeneity in fuzzy topological spaces

where a �= 0, x ∈ X is called the support of xa and a the value (level) of xa. Let f : X → Y
be a function. We define

f → : LX −→ LY , f ← : LY −→ LX (1.3)

by

f →(λ)(y)=
⎧
⎨

⎩
∨{λ(x) : x ∈ f −1

({y})} if y ∈ range f ,

0 if y /∈ range f ,
(1.4)

and f ←(μ)= μ◦ f .
An L-point in X is said to belong to an L-set λ in X (notation: xa ∈ λ) if and only if

a≤ λ(x).
An L-topological space is a pair (LX ,), where X is a nonempty set, L is a fuzzy lat-

tice and  called an L-topology on it is a subfamily of LX satisfying the following three
axioms.

(1) 0X ,1X ∈.
(2) If λ,μ∈, then λ∧μ∈.
(3) If {λj : j ∈ J} ⊆ , then ∨{λj : j ∈ J} ∈ .

The elements of  are called open L-sets. An L-set μ is called closed if μ′ ∈ .
Let (X ,τ) be an ordinary topological space, L a complete lattice and a∈ L. We define

↓ a= {b ∈ L : b ≤ a} and we denote the cotopology on L generated by the subbase {↓ a :
a∈ L} by Ω(L). The correspondent topology of Ω(L) is denoted by Ω(L). A mapping f :
X → L is called lower semicontinuous if and only if f : (X ,τ)→ (L,Ω(L)) is continuous.
The class of all lower semicontinuous mappings from X to L is an L-topology on X . This
L-topology is denoted by ωL(τ).

If (LX ,) is an L-topological space and a ∈ L, then the set {λ−1(↓ a) : λ ∈ } is a co-
topology on X . The correspondent topology of {λ−1(↓ a) : λ∈} is denoted by a.

Let (LX ,1) and (LY ,2) be two L-topological spaces. A mapping f : (LX ,1)→(LY ,2)
will be called L-continuous if and only if for every λ∈2, f ←(λ)∈1. A bijective map h :
(LX ,1)→ (LY ,2) will be called L-homeomorphism if and only if h and h−1 are both L-
continuous. Throughout this paper, we will denote the group of all L-homeomorphisms
from the L-topological space (LX ,) onto itself by LHOM(LX ,).

Definition 1.1 [10]. Associated with a given L-topological space (LX ,) and arbitrary
nonempty ordinary subset M of X , define the induced L-topology on M or the relative
L-topology on M by

M =
{
λ|M : λ∈}. (1.5)

The corresponding pair (LM ,M) is called an open (a closed) subspace if and only if
the L-crisp subset χM is open (closed) in (LX ,).

Definition 1.2 [11]. For a property P in ordinary topological spaces, a property P∗ of L-
topological spaces is called a good extension of P, if for every ordinary topological space
(X ,τ), (X ,τ) has P if and only if (LX ,ωL(τ)) has P∗.
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Throughout this paper the group of all homeomorphisms from the topological space
(X ,τ) onto itself will be denoted by HOM(X ,τ).

Definition 1.3 [12]. A topological space (X ,τ) is called homogeneous if for any two points
x, y ∈ X there exists h∈HOM(X ,τ) such that h(x)= y.

Definition 1.4 [5]. Let (X ,τ) be a topological space and let τ̃ be the equivalence relation on
X defined by xτ̃ y if there exists h∈HOM(X ,τ) such that h(x)= y. Then the equivalence
class Cτ

x = {y ∈ X : xτ̃ y} is called the homogeneous component of (X ,τ) determined
by x.

Definition 1.5 [8]. A topological space (X ,τ) is SLH (strongly locally homogeneous) if
τ has a base β such that for any nonempty U ∈ β and for any x, y ∈ U , there exists h ∈
HOM(X ,τ) such that h(x)= y and h(t)= t for all t /∈U .

Definition 1.6 [6]. A topological space (X ,τ) is called LH (locally homogeneous) at x in
X provided that there exists an open set U in X containing x such that for any y ∈ U
there is h∈HOM(X ,τ) such that h(x)= y. A topological space (X ,τ) is called LH if it is
LH at each x ∈ X .

From now on I will denote the complete distributive lattice [0,1] with the usual order
and order-reversing involution ′, r′ = 1− r for every r ∈ I .

Definition 1.7. An L-topological space (LX ,) is called L-homogeneous if for any two
points x, y ∈ X , there exists h∈ LHOM(LX ,) such that h(x)= y.

Definition 1.7 generalized [7, Definition 2.1] for n= 1 in which the authors called I-
homogeneous I-topological, a homogeneous fuzzy topological space.

Definition 1.8. Let (LX ,) be an L-topological space and let ̃ be the equivalence relation
on X defined by x̃y if there exists h∈ LHOM(LX ,) such that h(x)= y. Then the equiv-
alence class L−Cx = {y ∈ X : x̃y} is called the L-homogeneous component of (LX ,)
determined by x.

Definition 1.9 [11]. Let (LX ,) be an L-topological space. A family β of open L-sets is
called a base for  if each nonzero member of  can be written as a join of members of β.

Throughout this paper, if λ is a fuzzy set in X , then the support of λ is denoted by S(λ)
and defined by S(λ)= λ−1(L−{0}).

Definition 1.10. Let (LX ,) be an L-topological space and let β be a base for . Then β
is a representable base for  if for any nonzero λ∈ β and for any x, y ∈ S(λ), there exists
h∈ FHOM(LX ,) such that h(x)= y and h(t)= t for all t /∈ S(λ).

Definition 1.11. An L-topological space (LX ,) is said to be L-SLH (L-strongly locally
homogeneous) if  has a representable base.

Definitions 1.8, 1.9, and 1.11 generalize [3, Definitions 2.1, 3.1, and 3.2], respectively.
In fact, the fuzzy lattice I is replaced by arbitrary fuzzy lattice L.

Since Zadeh [13] introduced the fundamental concept of fuzzy set (I-set) and Chang
[4] defined I-topological spaces, several mathematicians extended the main notions of
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general topology to fuzzy set theory, such as the separation and countability axioms, com-
pactness, connectedness, paracompactness, metric space, and so forth. Recently some
homogeneity types were extended to include I-topological spaces. In [1], the author
extended homogeneity, n-homogeneity, weakly n-homogeneity, countable dense homo-
geneity, dense homogeneity, and strong local homogeneity as known ordinary topologi-
cal concepts to include I-topological spaces. Results concerning homogeneity, n-homoge-
neity and weakly n-homogeneity appeared in [7], in which the authors introduced some
open questions; then, in [2], Al Ghour had solved two of them. The results in [1] con-
cerning I-homogeneous components and I-strong local homogeneity appeared in [3]. In
[9], the author defined L-sets as a generalization of I-sets and then used L-sets to define
L-topological spaces as a generalization of I-topological spaces. After that, many ordinary
topological concepts extended in L-topological spaces. As a generalization of both homo-
geneity and strong local homogeneity in ordinary topological spaces, local homogeneity
was recently introduced in [6]. In the present paper, three types of local homogeneity
in L-topological spaces will be introduced and studied, each of which will be character-
ized and proved to be a good extension of local homogeneity in ordinary topological
spaces. Many implications concerning them will be studied. The study will deal with the
L-topologically generated topological spaces. Many counter examples relevant to the re-
lations obtained in this paper will be given.

Throughout this paper, for any nonempty set X , τdisc will denote the discrete topology
on X .

The following five propositions will generalize [3, Theorems 2.4, 2.8, 3.10, 2.6, 3.6]
respectively, to include L-topological spaces instead of I-topological spaces. These propo-
sitions will be used in the sequel.

Proposition 1.12. If (LX ,) is an L-topological space and L−Cx is an L-homogeneous
component of (LX ,), then for any h∈ LHOM(LX ,), h(L−Cx )= L−Cx .

Proof. The proof is similar to that used in [3, Theorem 2.4]. �

The following lemma will be used in the sequel.

Lemma 1.13. Let (X ,τ1) and (Y ,τ2) be two topological spaces and let L be a fuzzy lattice.
Then f : (X ,τ1)→ (Y ,τ2) is continuous if and only if f : (LX ,ωL(τ1))→ (LY ,ωL(τ2)) is L-
continuous.

Proof. Follows from [10, Corollary 7.2.5, page 370]. �

Proposition 1.14. Let (X ,τ) be a topological space and let L be a fuzzy lattice. Then Cτ
x =

L−CωL(τ)
x for all x ∈ X .

Proof. Lemma 1.13. �

Proposition 1.15. If (LX ,) is an L-SLH L-topological space, then every L-homogeneous
component L−Cx of (LX ,) is clopen in (X ,0).

Proof. It is sufficient to prove L−Cx ∈0 for every x ∈ X . Let x ∈ X and let y ∈ L−Cx ,
then there exists f ∈ LHOM(LX ,) such that f (y)= x. Choose a representable base β for
. Choose λ∈ β such that the L-point has support y and level 1, y1 ∈ λ. Then y ∈ S(λ).
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Let t ∈ S(λ), then there exists g ∈ LHOM(LX ,) such that g(t) = y and g(b) = b for all
b /∈ S(λ). Therefore, f ◦ g ∈ LHOM(LX ,) with ( f ◦ g)(t) = x and hence t ∈ L−Cx . So
S(λ)∈0 and S(λ)⊆ L−Cx . Thus L−Cx ∈0. �

The following lemma will be used in proving the next proposition.

Lemma 1.16. Let (LX ,) and (LY ,S) be two L-topological spaces, and let f : (LX ,)→
(LY ,S) be an L-continuous mapping. Then f : (LX ,a)→ (LY ,Sa) is continuous for all a∈
L−{1}.
Proof. Let a ∈ L−{1} and let λ ∈ S, then f −1(λ−1(↓ a)) = (λ ◦ f )−1(↓ a) = ( f ←(λ))−1(↓
a). Since f : (LX ,)→ (LY ,S) is L-continuous, then f ←(λ)∈  and so ( f ←(λ))−1(↓ a) is
closed. �

According to Lemma 1.16, the following result follows easily.

Proposition 1.17. Let (LX ,) be an L-topological space and let a∈ L−{1}. Then Cax =⋃
y∈Cax L−Cy .

The following lemma will be used in the sequel.

Lemma 1.18. Let X be a nonempty set and let {λα : α ∈ Λ} be a family of L-subsets of X .
Then

⋃
α∈Λ S(λα)= S(

∨
α∈Λ λα).

Proof. Let x ∈ ⋃α∈Λ S(λα). Then there exists α◦ ∈ Λ such that x ∈ S(λα◦). Therefore,
(
∨

α∈Λ λα)(x)= sup{λα(x) : α∈ Λ} ≥ λα◦(x) > 0 and hence x ∈ S(
∨

α∈Λ λα). On the other
hand, if x ∈ S(

∨
α∈Λ λα), then sup{λα(x) : α∈Λ} > 0 and so there exists α◦ ∈Λ such that

λα◦(x) > 0. Therefore, x ∈ S(λα◦) and hence x ∈⋃α∈Λ S(λα). �

The following lemma will be used in proving the next proposition.

Lemma 1.19. Let (X ,τ) be a topological space and let L be a fuzzy lattice. Then
(1) if β is a base for τ, then β∗ = {λ∈ ωL(τ) : S(λ)∈ β} is a base for ωL(τ);
(2) if � is a base for ωL(τ), then �∗ = {S(λ) : λ∈�} is a base for τ.

Proof. (1) Let λ ∈ ωL(τ) with λ �= 0X . Then S(λ) ∈ τ with S(λ) �= ∅ and so there exists
{Bα : α ∈ Λ} ⊆ β such that S(λ) =⋃{Bα : α ∈ Λ}. For each α ∈ Λ, λ∧ χBα ∈ ωL(τ) with
S(λ∧ χBα)= Bα ∈ β and so λ∧ χBα ∈ β∗. Since λ=∨{λ∧ χBα : α∈ Λ}, the proof is com-
plete.

(2) Let U ∈ τ with U �= ∅. Then χU ∈ ωL(τ) with χU �= 0X and so there exists {λα :
α∈Λ} ⊆� such that χU =

∨{λα : α∈Λ}. Therefore, by Lemma 1.18 it follows that U =
S(χU)=⋃{S(λα) : α∈Λ}. �

Proposition 1.20. The L-SLH property in L-topological spaces is a “good extension” of SLH
property in ordinary topological spaces.

Proof. Let (X ,τ) be a topological space and let L be a fuzzy lattice. Suppose (X ,τ) is SLH.
Then τ has a representable base β. So by Lemma 1.19(1), β∗ = {λ∈ ωL(τ) : S(λ)∈ β} is a
base for ωL(τ). Let λ∈ β∗ with λ �= 0X and let x, y ∈ S(λ). Then S(λ)∈ β with S(λ) �=∅.
Therefore, there exists h ∈ HOM(X ,τ) such that h(x) = y. Lemma 1.13 completes the
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proof that (LX ,ωL(τ)) is L-SLH. The proof of the other direction is similar to the above
one. �

The following proposition will generalize [7, Theorem 2.9] for the case n= 1.

Proposition 1.21. The homogeneity property in L-topological spaces is a “good extension”
of homogeneity property in ordinary topological spaces.

Proof. Lemma 1.13. �

Finally, we selected four results from [6], those results will be used in the sequel.

Proposition 1.22 [6]. A topological space (X ,τ) is LH at x if and only if Cτ
x is open.

Proposition 1.23 [6]. In ordinary spaces local homogeneity at some point does not imply
local homogeneity.

Proposition 1.24 [6]. Every SLH topological space is LH but not conversely.

Proposition 1.25 [6]. Every homogeneous topological space is LH but not conversely.

2. Locally homogeneous L-topological spaces

Let us begin by the following definition.

Definition 2.1. An L-topological space (LX ,) is called L-LH (L-locally homogeneous)
at x in X provided that there exists an open L-set λ in X such that x ∈ S(λ) and for any
y ∈ S(λ) there is h∈ LHOM(LX ,) such that h(x)= y. An L-topological space (LX ,) is
called L-LH if it is L-LH at each x ∈ X .

The following lemma will be used in the proof of the next main result.

Lemma 2.2. Let h : X → Y be a bijective function and let λ be an L-subset of X . Then h(S(λ))
= S(h→(λ)).

Proof. Let y ∈ h(S(λ)). Then there exists x ∈ S(λ) such that h(x)= y . Now (h→(λ))(y)=
λ(h−1(y))=λ(x)>0. Therefore, y∈S(h→(λ)). Conversely, if y∈S(h→(λ)), then (h→(λ))(y)
> 0 and so λ(h−1(y)) > 0. Let x = h−1(y). Then x ∈ S(λ) and h(x) = y. Therefore, y ∈
h(S(λ)). �

Theorem 2.3. Let (LX ,) be an L-topological space and let x ∈ X . Then the following are
equivalent.

(1) (LX ,) is L-LH at x.
(2) There exists an open L-set λ in X such that x ∈ S(λ)⊆ L−Cx .
(3) (LX ,) is L-LH at each point y ∈ L−Cx .
(4) There exists an open L-set λ in X such that S(λ)= L−Cx .
(5) There exists rx ∈ L−{0} such that

∨{λ∈ : S(λ)⊆ L−Cx } = rxχL−Cx .
(6) There exists rx ∈ L−{0} such that rxχL−Cx ∈.
(7) L−Cx ∈0.
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Proof. (1)⇒(2). By (1) there exists an open L-set λ in X such that x ∈ S(λ) and for any
y ∈ S(λ) there is h∈ LHOM(LX ,) such that h(x)= y. Therefore, x ∈ S(λ)⊆ L−Cx .

(2)⇒(3). Let y ∈ L−Cx . Then there exists h ∈ LHOM(LX ,) such that h(x) = y. By
(2), there exists an open L-set λ in X such that x ∈ S(λ) ⊆ L−Cx and so y ∈ h(S(λ)) ⊆
h(L−Cx ). Thus, by Proposition 1.12 and Lemma 2.2, it follows that y ∈ S(h→(λ))⊆ L−
Cx = L−Cy . This completes the proof of this implication.

(3)⇒(4). By (3), for each y ∈ L−Cx , there exists λy ∈  such that y ∈ S(λy) ⊆ L−
Cy = L−Cx . Therefore, L−Cx =

⋃
y∈L−Cx S(λy). Let λ=∨y∈L−Cx λy . Then λ∈ and by

Lemma 1.18, it follows that S(λ)= L−Cx .
(4)⇒(5). Let μ =∨{λ ∈  : S(λ) ⊆ L−Cx }. Then μ ∈  and by (4) and Lemma 1.18,

it follows that S(μ) = L−Cx . Let rx = μ(x). Then rx > 0. We are going to show that μ =
rxχCx . Since S(μ)= L−Cx , μ|X−L−Cx = 0X−L−Cx . On the other hand, let y ∈ L−Cx . Then
there exists h ∈ LHOM(LX ,) such that h(x) = y. Since S(μ) = L−Cx , then h(S(μ)) =
h(L−Cx ) and h−1(S(μ)) = h−1(L−Cx ). So by Proposition 1.12 and Lemma 2.2, it fol-
lows that S(h→(μ)) = S(h←(μ)) = L− Cx . Therefore, by the definition of μ, it follows
that h→(μ) ≤ μ and h←(μ) ≤ μ. Hence (h→(μ))(y) ≤ μ(y) and (h←(μ))(x) ≤ μ(x). Thus
μ(x) ≤ μ(y) and μ(y) ≤ μ(x) and so μ(y) = μ(x) = rx. This completes the proof that
μ= rxχL−Cx .

(5)⇒(6) and (6)⇒(7) are obvious.
(7)⇒(1). If L−Cx ∈ 0, then there exists λ∈  such that λ−1(L−{0})= L−Cx and

so S(λ)= L−Cx . Therefore, x ∈ S(λ) and for each y ∈ S(λ), there exists h∈ LHOM(LX ,
) such that h(x)= y. Hence, (LX ,) is L-LH at x. �

Corollary 2.4. Let (LX ,) be an L-topological space. Then the following are equivalent.
(1) (LX ,) is L-LH.
(2) For each x ∈ X , there exists an open L-set λ in X such that x ∈ S(λ)⊆ L−Cx .
(3) For each x ∈ X , there exists an open L-set λ in X such that S(λ)= L−Cx .
(4) For each x ∈ X , there exists rx ∈ L− {0} such that

∨{λ ∈  : S(λ) ⊆ L− Cx } =
rxχL−Cx .

(5) For each x ∈ X , there exists rx ∈ L−{0} such that rxχL−Cx ∈.
(6) The L-homogeneous components of (LX ,) are clopen in (X ,0).

The following result shows that L-local homogeneity at some point in L-topological
spaces is a “good extension” of the local homogeneity at some point in ordinary topolog-
ical spaces.

Theorem 2.5. Let (X ,τ) be a topological space, x ∈ X , and L a fuzzy lattice. Then (X ,τ) is
LH at x if and only if (LX ,ωL(τ)) is L-LH at x.

Proof. Suppose that (X ,τ) is L-LH at x. Then by Proposition 1.22, it follows that Cτ
x ∈ τ.

Let λ = χCτ
x
. Then λ ∈ ωL(τ) and S(λ) = Cτ

x . Therefore, by Proposition 1.14, it follows

that S(λ) = L−CωL(τ)
x . Hence by part (4) of Theorem 2.3, it follows that (LX ,ωL(τ)) is

L-LH at x. Conversely, if (LX ,ωL(τ)) is L-LH at x, then by part (4) of Theorem 2.3 and
Proposition 1.14, it follows that there exists λ ∈ ωL(τ) such that S(λ) = Cτ

x . Now by the
definition of ωL(τ) we must have λ−1(↓ 0) = S(λ) ∈ τ. Therefore, by Proposition 1.22, it
follows that (X ,τ) is LH at x. �
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Corollary 2.6. The L-LH property in L-topological spaces is a “good extension” of the LH
property in ordinary topological spaces.

The following result follows directly from Proposition 1.23 and Theorem 2.5.

Corollary 2.7. In L-topological spaces, L-local homogeneity at some point does not imply
L-local homogeneity.

The following two results show that L-local homogeneity in L-topological spaces gen-
eralizes both L-homogeneity and L-strong local homogeneity.

Theorem 2.8. Every L-SLH L-topological space is a L-LH.

Proof. Follows by Proposition 1.15 and part (6) of Corollary 2.4. �

Theorem 2.9. Every L-homogeneous L-topological space is an L-LH.

Proof. If (LX ,) is an L-homogeneous L-topological space, then for each x ∈ X , S(1X)=
X = L−Cx . Therefore, by part (3) of Corollary 2.4, it follows that (LX ,) is L-LH. �

Theorem 2.10. If (LX ,) is an L-LH L-topological space and (X ,0) is connected, then
(LX ,) is L-homogeneous.

Proof. Choose x ∈ X . Since (LX ,) is an L-LH L-topological space, then by part (6) of
Corollary 2.4, it follows that L−Cx is a clopen in the connected topological space (X ,0).
This means that L−Cx = X , hence (LX ,) is an L-homogeneous. �

Corollary 2.11. If (LX ,) is an L-SLH L-topological space and (X ,0) is connected, then
(LX ,) is L-homogeneous.

Corollary 2.12 [3]. If (IX ,) is an I-SLH I-topological space and (IX ,) is connected,
then (IX ,) is I-homogeneous.

3. Magnitude and L-local homogeneity in L-topological spaces

From Theorem 2.3, in a natural way we define the following.

Definition 3.1. Let (LX ,) be an L-LH L-topological space at x and let

∨{
λ∈ : S

(
λ
)⊆ L−Cx

}= rxχCx . (3.1)

Then rx is called the magnitude of (LX ,) at x.

Proposition 3.2. Let (LX ,) be an L-LH L-topological space at x and let rx be the magni-
tude of (LX ,) at x. Then the magnitude of (LX ,) at each y ∈ L−Cx equals to rx.

Proof. Let y ∈ L− Cx . Denote the magnitude of (LX ,) at y by ry . Since y ∈ L−Cx ,
L−Cx = L−Cy and so

∨{
λ∈ : S(λ)⊆ L−Cx

}=
∨{

λ∈ : S(λ)⊆ L−Cy
}
. (3.2)

Therefore, rxχL−Cx = ryχL−Cy = ryχL−Cx and hence rx = ry . �
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Definition 3.3. Let (LX ,) be an L-LH L-topological space. The magnitude L-set of (LX ,)
is an L-set in X denoted by L−mX and defined by

L−mX(x)= rx, where rx is the magnitude of
(
LX ,) at x. (3.3)

Proposition 3.4. Let (LX ,) be an L-LH L-topological space. Then its magnitude L-set
L−mX is an open L-set in (LX ,).

Proof. For each x ∈ X , (L−mX(x))χL−Cx ∈ and thus, L−mX =
∨

x∈X(L−mX(x))χL−Cx
∈. �

Theorem 3.5. Let (LX ,) be an L-LH L-topological space at x and let rx be the magnitude
of (LX ,) at x. If a∈ L with a < rx, then (X ,a) is LH at x.

Proof. Let a ∈ L with a < rx. Since rxχL−Cx ∈ , (rxχL−Cx )−1(↓ a) = L−Cx ∈ a. But by

Proposition 1.17, we have L− Cx ⊆ Cax . Therefore, (X ,a) is L-locally homogeneous
at x. �

Theorem 3.6. If (LX ,) is an L-LH L-topological space, then (X ,0) is LH.

Proof. Let x ∈ X and let L−mX(x)= rx, then rxχL−Cx ∈, and (rxχCx )−1(↓ 0)= L−Cx ∈
0. But by Proposition 1.17, we have L− Cx ⊆ C0

x . Therefore, (X ,0) is LH at x and
hence (X ,0) is an LH topological space. �

Example 3.7. Take X =N (the set of natural numbers), L= I , and  the L-topology on X
generated by

β =
{

1, pn : pn is an L-point with support n and level
1
n

, n∈N
}

(3.4)

as a base. It is not difficult to see that 0 = τdisc and for each n∈N, L−Cn = {n}. There-
fore, by part (6) of Corollary 2.4, it follows that (LX ,) is an L-LH L-topological space.
Now for each n ∈ N, it is clear that L−mX(n) = 1/n. If n ∈ N− {1} and 1/n ≤ a < 1,
then Can = {n,n+ 1,n+ 2, . . .} /∈ a and so by Proposition 1.22, it follows that (X ,a) is
not LH at n. This shows that in Theorem 3.5, the condition “a ∈ L with a < rx” cannot
be dropped. On the other hand, if 0 < a < 1, then there exists n◦ ∈ N− {1} such that
1/n◦ < a and so (X ,a) is not LH at n◦. This shows that the result in Theorem 3.6 cannot
be replaced by “(X ,a)” if a∈ L−{0,1}.
Theorem 3.8. There exists an L-topological space (LX ,) such that for each a ∈ L−{1},
(X ,a) is both homogeneous and SLH, but (LX ,) is not L-LH.

Proof. Let X be an infinite set or a nonempty finite set with even cardinality, L = I .
Choose A⊆ X such that CardA= Card(X −A) and let

= {0X ,0.3χA∪ χX−A, χA∪ 0.3χX−A, 0.5χA∪ 0.3χX−A, 0.5χA∪ χX−A, 0.3X , 1X
}

(3.5)
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Then  is an L-topology on X . Let a ∈ L− {1}, then a = {∅,X ,A,Ac} if a ≥ 0.3 and
a = {∅,X} if a < 0.3. It is not difficult to see that (X ,a) is both homogeneous and
SLH. Pick x1 ∈ A and x2 ∈ AC, then L−Cx1

= A and L−Cx2
= Ac. Therefore, by part (6)

of Corollary 2.4, it follows that (LX ,) is not L-LH. �

Theorem 3.8 also shows that the converse of Theorem 3.6 is not true in general.
Example 3.7 shows that in L-LH L-topological spaces the magnitude L-set may not be

a constant L-set. This leads us to the following two definitions.

Definition 3.9. An L-topological space (LX ,) is called L-CLH (L-constant locally homo-
geneous) if it is L-LH and its magnitude L-set is a constant L-set.

Definition 3.10. An L-topological space (LX ,) is called L-ACLH (L-absolutely constant
locally homogeneous) if it is L-LH and its magnitude L-set L−mX = 1X .

Remark 3.11. Every L-CLH L-topological space is L-LH but the converse may not be true
as Example 3.7 shows.

Remark 3.12. Every L-ACLH L-topological space is L-CLH but the converse may not be
true.

Example 3.13. Let X = {x1,x2,x3}, let L= I , and λ, μ are L-sets defined as follows:

λ
(
x1
)= 0.5, λ

(
x2
)= 0, λ

(
x3
)= 0,

μ
(
x1
)= 0, μ

(
x2
)= 0.5, μ

(
x3
)= 0.5.

(3.6)

Let  = {0X ,λ,μ,0.5X ,1X}. It is not difficult to see that L−Cx1
= {x1}, L−Cx2

= {x2,
x3}, and 0 = {∅,{x1},{x2,x3}}. Thus, by part (6) of Corollary 2.4, it follows that (LX ,)
is an L-LH L-topological space. On the other hand, it is clear that L−mX = 0.5X . There-
fore, the L-topological space (LX ,) is L-CLH but not L-ACLH.

Example 3.13 also shows that the converse of Theorem 3.5 is not true in general.

Theorem 3.14. Let (X ,τ) be a topological space and let L be a fuzzy lattice. Then the fol-
lowing are equivalent:

(1) (LX ,ωL(τ)) is L-ACLH,
(2) (LX ,ωL(τ)) is L-CLH,
(3) (X ,τ) LH.

Proof. (1)⇒(2). Obvious.
(2)⇒(3). Corollary 2.6.
(3)⇒(1). If (X ,τ) is LH topological space, then by Corollary 2.6, it follows that (LX ,

ωL(τ)) is an L-LH L-topological space. On the other hand, if x ∈ X , then by Proposition
1.22, it follows that Cτ

x is open in (X ,τ). Therefore, by Proposition 1.14, it follows that

L−CωL(τ)
x is open in (X ,τ) and hence χ

L−CωL(τ)
x
∈ ωL(τ). Since S(χ

L−CωL(τ)
x

) = L−CωL(τ)
x ⊆

L−CωL(τ)
x , then L−mω(τ)

X (x)= 1. �

Corollary 3.15. The L-CLH property in L-topological spaces is a “good extension” of LH
property in ordinary topological spaces.
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Corollary 3.16. The L-ACLH property in L-topological spaces is a “good extension” of LH
property in ordinary topological spaces.

The following two results characterize, respectively, L-CLH and L-ACLH L-topological
spaces.

Theorem 3.17. Let (LX ,) be an L-topological space. Then the following are equivalent.
(1) (LX ,) is L-CLH.
(2) There exists c ∈ L−{0} such that for each x ∈ X , cχL−Cx ∈  and aχL−Cx /∈  for

every a∈ L with a > c.

Proof. (1)⇒(2). By (1), it follows that there exists c ∈ L− {0} such that L−mX = cX .
Then by part (4) of Corollary 2.4, it follows that cχL−Cx ∈ for each x ∈ X and for every
a∈ L with a > c, aχL−Cx /∈.

(2)⇒(1). By (2), and part (5) of Corollary 2.4, it follows that (LX ,) is L-LH. Thus
by part (4) of Corollary 2.4 and (2), it follows that

∨{λ∈  : S(λ)⊆ L−Cx } = cχL−Cx at
each x ∈ X . Hence L−mX = cX . �

Theorem 3.18. Let (LX ,) be an L-topological space. Then the following are equivalent.
(1) (LX ,) is an L-ACLH.
(2) For each x ∈ X , χL−Cx ∈.
(3) The L-homogeneous components L−Cx of (LX ,) are clopen subspaces of (LX ,).

Proof. (1)⇒(2). By (1), it follows that L−mX = 1X . Then by part (4) of Corollary 2.4, it
follows that χL−Cx ∈ for each x ∈ X .

(2)⇒(3). Let x ∈ X . Then by (2), L−Cx is an open subspace of (LX ,). On the other
hand, it is not difficult to see that (χL−Cx )′ =∨{χL−Cy : y /∈ L−Cx }. Therefore, (χL−Cx )′ ∈
 and hence L−Cx is a closed subspace of (LX ,).

(3)⇒(1). By (3), and part (5) of Corollary 2.4, it follows that (LX ,) is L-LH. Thus by
part (4) of Corollary 2.4 and (3), it follows that

∨{λ∈ : S(λ)⊆ L−Cx } = χL−Cx at each
x ∈ X . Hence L−mX = 1X . �

Theorem 3.19. Every L-SLH L-topological space is L-ACLH.

Proof. Let (LX ,) be an L-SLH L-topological space. Then by Theorem 2.8, it follows that
(LX ,) is L-LH. If (LX ,) is not L-ACLH, then there exists y ∈ X such that L−mX(y)=
r < 1. Since (LX ,) is L-SLH, then there exists a representable base β for . Since

∨
β = 1,

then (
∨
β)(y)= 1 and so there exists λ∈  such that λ(y) > r. Therefore, y ∈ S(λ) and if

z ∈ S(λ), then there exists h ∈ LHOM(LX ,) such that h(y) = z and h(t) = t for all t ∈
X − S(λ). Thus, S(λ) ⊆ L−Cy and hence λ(y) ≤ L−mX(y) which is absurd. Therefore,
(LX ,) is L-ACLH. �

The following result is a consequence of Theorems 3.18 and 3.19.

Corollary 3.20. If (LX ,) is L-SLH L-topological space, then every L-homogeneous com-
ponent L−Cx of (LX ,) is a clopen subspace of (LX ,).

Corollary 3.21 [3]. If (IX ,) is I-SLH I-topological space, then every I-homogeneous
component I −Cx of (IX ,) is a clopen subspace of (IX ,).
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Remark 3.22. The converse of Theorem 3.19 is not true in general. This follows from
Theorem 3.14 and Propositions 1.20 and 1.24.

Theorem 3.23. Let (LX ,) be an L-topological space. Then the following are equivalent.
(1) (LX ,) is an L-SLH L-topological space.
(2) (LX ,) is an L-ACLH L-topological space and for each x ∈ X the L-topological sub-

space (L−Cx ,L−Cx ) is L-SLH.
(3) The L-homogeneous components of (LX ,) are clopen and L-SLH subspaces of

(LX ,).

Proof. (1)⇒(2). Since (LX ,) is L-SLH, then by Theorem 3.19, it follows that (LX ,) is
L-ACLH. Let x ∈ X . Thus by Theorem 3.18, it follows that χL−Cx ∈ . Let β be a repre-
sentable base for  and let βx = {λ|L−Cx : λ∈ β}. It is not difficult to see that βx is a base
for L−Cx . To see that βx is representable, let y,z ∈ S(λ|L−Cx ) = S(λ)∩ L−Cx . Since β is
a representable base for , then there exists h ∈ LHOM(LX ,) such that h(y) = z and
h(t)= t for all t ∈ X − S(λ). Now by Proposition 1.12, it follows that h(L−Cx )= L−Cx .
Moreover, it is clear that h(t)= t for all t ∈ L−Cx − S(λ|L−Cx ). To complete the proof of
this direction, it is sufficient to show that the restriction h|L−Cx : (L−Cx ,L−Cx )→ (L−
Cx ,L−Cx ) of h on L−Cx is an L-homeomorphism. In fact, for each λ∈, h←(λ|L−Cx )=
(h←(λ))|L−Cx .. This shows that h|L−Cx : (L−Cx ,L−Cx )→ (L−Cx ,L−Cx ) is an L-contin-
uous function. Similarly, we can show that (h|L−Cx )−1 : (L−Cx ,L−Cx )→ (L−Cx ,L−Cx )
is L-continuous. Finally, it is clear that h|L−Cx : (L−Cx ,L−Cx )→ (L−Cx ,L−Cx ) is a bi-
jection.

(2)⇒(3). Follows from Theorem 3.18.
(3)⇒(1). For each x ∈ X , choose a representable base βx for (L−Cx ,L−Cx ). For every

x ∈ X and λ ∈ βx, choose λ∗ ∈  such that λ = λ∗|L−Cx . For every x ∈ X let β∗x = {λ∗ ∧
χL−Cx : λ∈ βx}. Let β∗ = ∪{β∗x : x ∈ X}. �

Claim 3.24. β∗ is a representable base for .

Proof of claim. Since each component is a clopen subspace of (LX ,), it follows that β∗ ⊆
. Let μ∈ with μ �= 0X . Then for each x ∈ X , μ|L−Cx ∈L−Cx and so there exists B̃x ⊆ βx
such that μ|L−Cx =

∨
B̃x. For each x ∈ X , it is easy to see that μ∧ χL−Cx =

∨{λ∗ ∧ χL−Cx :
λ∈ B̃x}. Therefore, since μ= μ∧ 1X = μ

∧
(
∨{χL−Cx : x ∈ X})=∨{μ∧ χL−Cx : x ∈ X}, it

follows that μ is a join of members of β∗. Hence β∗ is a base for . To show that β∗ is
representable, let λ∗ ∧ χL−Cx ∈ β∗ where x ∈ X and λ∈ βx and let y,z ∈ S(λ∗ ∧ χL−Cx )=
S(λ)∩ L−Cx . Since βx is a representable base for L−Cx , there exists f ∈ LHOM(L−
Cx ,L−Cx ) such that f (y)= z and f (t)= t for all t ∈ L−Cx − S(λ). Define h : (LX ,)→
(LX ,) by

h(t)=
⎧
⎨

⎩

f (t) if t ∈ L−Cx ,

t if t ∈ X −L−Cx .
(3.7)

Let μ∗ ∧ χL−Cy ∈ β∗ where y ∈ X and μ∈ βy . We have two cases on y. �
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Case 1. L−Cx = L−Cy , in this case μ ∈ βx and so f ←(μ) ∈ L−Cx . Thus there exists
δ ∈ such that δ|L−Cx = f ←(μ) and hence h←(μ∗ ∧ χL−Cy )= δ∧ χL−Cx ∈.

Case 2. L−Cx ∩L−Cy =∅, in this case h←(μ)= μ.

Therefore, h is an L-continuous function. Similarly we can show that h−1 is L-contin-
uous. Since h is obviously bijective, it follows that h∈ LHOM(LX ,). Now it is clear that
h(y)= z and h(t)= t for all t ∈ X − S(λ∗ ∧ χL−Cx ). Therefore, β∗ is a representable base
for  as we claimed.

The above claim shows that (LX ,) is an L-SLH L-topological space as required.

Theorem 3.25. Every L-homogeneous L-topological space is L-ACLH.

Proof. Let (LX ,) be an L-homogeneous L-topological space. Then for each x ∈ X , L−
Cx = X and so it follows that (L−Cx ,L−Cx ) is a clopen subspace of (LX ,). Therefore,
by Theorem 3.18, it follows that (LX ,) is L-ACLH. �

Remark 3.26. The converse of Theorem 3.25 is not true in general. This follows from
Theorem 3.14 and Propositions 1.21 and 1.25.

Remark 3.27. Theorems 3.19, 3.25 and Remarks 3.11, 3.12 reveal that the following dia-
gram of implications is true for L-topological spaces:

L−homogeneity=⇒

L− SLH=⇒L−ACLH=⇒ L−CLH=⇒ L−LH.

(3.8)

In Theorem 3.6, if the condition L-LH is replaced by the condition L-CLH, then the
conclusion will be better as the following result shows.

Theorem 3.28. Let (LX ,) be an L-CLH L-topological space with magnitude L-set L−
mX = cX . If a∈ L with a < c, then (X ,a) is LH.

Proof. Let a ∈ L with a < c and let x ∈ X . Then cχL−Cx ∈  and (cχL−Cx )−1(↓ a) = L−
Cx ∈ a. Therefore, by Proposition 1.17, it follows that x ∈ L− Cx ⊆ Cax and hence
(X ,a) is LH at x. Since x is arbitrary, the proof is complete. �

Corollary 3.29. If (LX ,) is an L-ACLH L-topological space, then for each a ∈ L−{0},
(X ,a) is LH.

Remark 3.30. Example 3.13 shows that the converse of Theorem 3.28 is not true in gen-
eral.

Remark 3.31. Theorem 3.8 shows that the converse of Corollary 3.29 is not true in gen-
eral.

The following example shows that the condition “a ∈ L with a < c” is necessary in
order for Theorem 3.28 to hold.
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Example 3.32. Let X = {x1,x2} L= I , and λ, μ, and υ are L-sets defined as follows:

λ
(
x1
)= 0.5, λ

(
x2
)= 0,

μ
(
x1
)= 0, μ

(
x2
)= 0.5,

υ
(
x1
)= 0.5, ν

(
x2
)= 1.

(3.9)

Let  = {0X ,λ,μ,υ,0.5X ,1X}. It is not difficult to see that L−Cx1
= {x1}, L−Cx2

=
{x2}, 0 = τdisc, and L−mX = 0.5X . Thus, by part (6) of Corollary 2.4, it follows that
(LX ,) is an L-LH L-topological space. On the other hand, for each a≥ 0.5, a = {∅,X ,
{x2}} and so (LX ,a) is not LH topological space.
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