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It was first proved by Birkhoff and Frink, and the result now belongs to the folklore,
that any algebraic lattice is up to isomorphism the lattice of subuniverses of a universal
algebra. A study of subsystems of a transition system yields a new algebraic concept, that
of a strongly algebraic lattice. We give here a representation theorem to the manner of
Birkhoff and Frink of such lattices.
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A transition system is a pair (S,
S

), where

(i) S is a set of states,

(ii)
S
⊆ S× S is the transition relation.

We write s
S
s′ for (s,s′)∈

S
.

Nondeterministic transition systems, those (S,
S

) for which the set of successors

of any element s ∈ S is an arbitrary set, are easily seen to be coalgebras of the covariant
powerset functor � : Sets→ Sets from the category of sets to itself.

Observe that any unary algebra (S,�) gives rise to a unique transition system (S,
S

),

but the converse in the general case is false.

A subsystem of a transition system (S,
S

) is a subset X of S which has the following

stability property: s
S
s′ and s∈ X imply s′ ∈ X. The empty set and the universe S are

subsystems of (S,
S

), they are said to be trivial. It is straightforward to check that the

set Subs(S) of subsystems of (S,
S

) is stable for arbitrary unions and intersections.

Given a subset X of S, we denote by 〈X〉 the subsystem of (S,
S

) generated by X . It

is the intersection of all subsystems of (S,
S

) containing X . The notation ∗
S

will be

used to denote the reflexive and transitive closures of the binary relation
S

on S. The
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subsystem 〈X〉 is then characterized as follows:

〈X〉 = {x′ ∈ X : ∃x ∈ X , x
∗

S
x′
}
. (1)

Hence for s∈ S, writing 〈s〉 the subsystem 〈{s}〉, we get

〈s〉 = {s′ ∈ S : s
∗

S
s′
}
. (2)

The mapping 〈−〉 : �(S)→�(S) defined from the set of subsets of S to itself is a closure
operator on S. The previous characterization of 〈X〉 permits to see that

〈X〉 = {x′ ∈ S : ∃x ∈ X , x′ ∈ 〈x〉}=
⋃

x∈X
〈x〉. (3)

We say that the closure operator 〈−〉 is completely additive. One can notice that
(i) subsystems 〈s〉 of (S,

S
), s ∈ S, satisfy the following finiteness condition: for

all families (Xi, i∈ I) of subsystems of (S,
S

) if 〈s〉 ⊆⋃i∈I Xi, then there exists

an index i0 ∈ I such that 〈s〉 ⊆ Xi0 ,

(ii) 〈s′〉 ⊆ 〈s〉 if and only if s
∗
S
s′.

These observations prompt us to initiate the following definitions.

Definition 1. Let (E,≤) be an ordered set which admits arbitrary suprema. An element a
in E is called s-compact (s for strongly compact), if for all covering a≤∨i∈I ai of a there
exists an index i for which a≤ ai.

Consider a sup-complete lattice (E,≤) (i.e., an ordered set admitting arbitrary supre-
ma). As a poset, (E,≤) can be viewed as a cocomplete category. Let a be in E, it is equiv-
alent to say that a is s-compact or in categorical terms, every morphism f : a→ colimIai
factors uniquely into a morphism f : a→ ai (for some i∈ I). This means that the covari-
ant hom-functor [a,−] preserves all (small) colimits. Such an object a is called absolutely
presentable (see [2]).

Definition 2. A sup-complete lattice (L,≤) is called s-algebraic (or strongly algebraic), if
each element a of L can be written as supremum of s-compact elements less than a.

Any s-algebraic lattice is obviously algebraic, but the converse is not true. In fact given
a group (G,∗), the lattice (Sg(G),⊆) of subgroups of G is algebraic (see [1]). Further
algebraic elements in (Sg(G)) are finitely generated subgroups of G. It is easy to verify
that (Sg(Z,+),⊆) the lattice of subgroups of the additive group (Z,+) is not s-algebraic.

Consider the sup-complete lattice (L,≤) as a cocomplete category; it will be called s-
algebraic if every element in L is a colimit of absolutely presentable objects in L. Hence
an s-algebraic lattice viewed as a category is locally absolutely presentable with the set of
s-compact elements as set of absolutely presentable objects.

The basic example is that of a complete lattice of subsystems of a transition system;
this seems also to be a generic s-algebraic lattice as shown by the following representation
theorem.
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Theorem 3. Let (L,≤) be an s-algebraic lattice. There exist a transition system (S,
S

)

and an isomorphism from L onto the lattice Subs(S) of subsystems of (S,
S

).

Proof. We denote by S the set of s-compact elements of L. Define on S a binary relation

S
as follows: for all a,b ∈ S, a

S
b if and only if b ≤ a. Let ↓ x be the set of elements

x′ ∈ L such that x′ ≤ x. For all x in L, the set S∩ ↓ x of s-compact elements less than x is
a subsystem of S. In fact if a

S
b and a∈ S∩ ↓ x, then we have b ≤ a, hence b ∈ S∩ ↓ x.

On deduces the mapping

ψ : L−→ Subs(S), x −→ S∩ ↓ x. (4)

Let us check that ψ is order preserving and reflecting. To this end, let us consider x
and x′ in L. If x ≤ x′, then ↓ x ⊆↓ x′ and therefore S∩ ↓ x ⊆ S∩ ↓ x′, that is, ψ(x)⊆ ψ(x′).
Conversely if ψ(x) ⊆ ψ(x′), since each element of L can be written as a supremum of
s-compact elements less than itself, we have x =∨ψ(x)≤∨ψ(x′)= x′.

Finally let us show that ψ is a one-to-one mapping by exhibiting its inverse. For that
set the mapping

φ : Subs(S)−→ L, X −→
∨
X. (5)

For all x ∈ L, we have φψ(x)=∨{a | a is s-compact and a≤ x} = x. Further, for all sub-
system X of (S,

S
),

ψφ(X)= ψ(∨X)= S
⋂
↓
∨
X. (6)

It is clear that X ⊆ S⋂ ↓∨X. Let a∈ L such that a≤∨X and a∈ S. By s-compacity of a,
there exists x ∈ X such that a ≤ x, that is, x

S
a by definition. Since X is a subsystem

of (S,
S

) and x ∈ X , we obtain a∈ X. One deduces the inclusion S∩ ↓∨X ⊆ X which

induces the equality S∩ ↓∨X = X , hence ψφ(X)= X.
The fact that ψ preserves arbitrary suprema follows from the fact that each order iso-

morphism between complete lattices is automatically an isomorphism of complete lattice.
The theorem is proved. �

Since the s-algebraic lattice (L,≤) as a poset is a locally absolutely presentable category,
it is isomorphic to the free cocompletion [S0,Set] of the set S of s-compact elements,
under all (small) colimits. This free cocompletion is, of course, isomorphic to the lattice
of down-closed subsets of Swhich are precisely the subsystems of S. Therefore Theorem 3
gives a theoretical lattice version of the categorical well-known result stating that: every
locally absolutely presentable category is isomorphic to the presheaf category.
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