RIESZ-MARTIN REPRESENTATION FOR POSITIVE SUPER-POLYHARMONIC FUNCTIONS IN A RIEMANNIAN MANIFOLD

V. ANANDAM AND S. I. OTHMAN

Received 19 December 2005; Revised 28 February 2006; Accepted 4 April 2006

Let *u* be a super-biharmonic function, that is, $\Delta^2 u \ge 0$, on the unit disc *D* in the complex plane, satisfying certain conditions. Then it has been shown that *u* has a representation analogous to the Poisson-Jensen representation for subharmonic functions on *D*. In the same vein, it is shown here that a function *u* on any Green domain Ω in a Riemannian manifold satisfying the conditions $(-\Delta)^i u \ge 0$ for $0 \le i \le m$ has a representation analogous to the Riesz-Martin representation for positive superharmonic functions on Ω .

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let *u* be a locally Lebesgue integrable function defined on the unit disc *D* in the complex plane. *u* is called a super-biharmonic function if $\Delta^2 u \ge 0$ in the sense of distributions. Abkar and Hedenmalm [1] consider a super-biharmonic function *u* on *D*, satisfying two conditions which regulate the growth of *u* near the boundary ∂D . These conditions are used to split *u* into its biharmonic Green potential part and its biharmonic part. Using this decomposition, they show that *u* can be represented by three measures, one on *D* and two on the boundary ∂D . This comes out as a generalization of the Riesz-Poisson integrals to the super-biharmonic functions on *D*. However, an extension of this representation in the case of the unit ball in \mathbb{R}^n , n > 2 (or to the case of $\Delta^m u \ge 0$ with suitable restrictions on *u* in the unit disc itself) seems complicated.

In this paper, we consider a set of two other conditions on a function u satisfying $\Delta^2 u \ge 0$, namely, $u \ge 0$ and $\Delta u \le 0$. These conditions are more appropriate as a generalization of the positive superharmonic functions. For, suppose u is a locally Lebesgue integrable function on a bounded domain Ω in \mathbb{R}^n , $n \ge 2$, such that $u \ge 0$, $\Delta u \le 0$, and $\Delta^2 u \ge 0$. Then u can be represented by three positive measures, one on Ω and two on the Martin boundary of Ω . Interestingly, the method of proof is general enough to be used in the case of $(-\Delta)^i u \ge 0$, $0 \le i \le m$, for any integer $m \ge 2$, and any domain Ω in \mathbb{R}^n , $n \ge 2$); actually, it goes through in the case of a Riemannian manifold also. Accordingly, we prove this result in the context of a Riemannian manifold.

Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 92176, Pages 1–9 DOI 10.1155/IJMMS/2006/92176

2. Preliminaries

Let *R* be an oriented Riemannian manifold of dimension ≥ 2 , with local coordinates $x = (x^1, ..., x^n)$ and a C^{∞} -metric tensor g_{ij} such that $g_{ij}x^ix^j$ is positive definite. Denote the volume element by $dx = \sqrt{\det(g_{ij})}dx^1, ..., dx^n$. Let Δ be the Laplace-Beltrami operator which, acting on a C^2 -function *f*, gives $\Delta f = \operatorname{div} \operatorname{grad} f$. However, we will assume that Δ is taken in the sense of distributions. Thus, a locally dx-integrable function *f* on an open set ω in *R* is said to be superharmonic (resp., harmonic) if $\Delta f \leq 0$ (resp., $\Delta f = 0$) on ω ; a positive superharmonic function *u* on ω is called a potential if and only if the greatest harmonic minorant of *u* on ω is 0, (i.e., if *h* is harmonic on ω and $h \leq u$, then *h* should be negative).

For each open set ω in R, let $H(\omega)$ denote the class of C^2 -functions u on ω such that $\Delta u = 0$. If ω is a domain, $H(\omega)$ has the Harnack property, namely, if h_n is an increasing sequence in $H(\omega)$ and if $h = \sup h_n$, then $h \in H(\omega)$ or $h \equiv \infty$. We can also solve the Dirichlet problem on any parametric ball. This means that the set of harmonic functions $H(\omega)$ satisfies the axioms 1, 2, 3 of Brelot [7, pages 13-14]. Consequently, we can use the results and the terminology of the Brelot axiomatic potential theory in the context of the Riemannian manifold R.

A domain Ω in *R* is called a Green domain if the Green function G(x, y) is well defined on Ω . On a Green domain Ω in *R*, we can construct the Martin compactification $\overline{\Omega}$ of Ω as in [8, pages 111–115]. Some of the important points to remember here are the following: fix a point y_0 in a Green domain Ω . If G(x, y) is the Green function on Ω , write $k_y(x) = k(x, y) = G(x, y)/G(x, y_0)$ with the convention $k(y_0, y_0) = 1$. Then there exists only one (metrizable) compactification $\overline{\Omega}$ up to homeomorphism such that

- (i) Ω is dense open in the compact space $\overline{\Omega}$;
- (ii) $k_y(x), y \in \Omega$, extends as a continuous function of x on $\overline{\Omega}$;
- (iii) the family of these extended continuous functions on $\overline{\Omega}$ separates the points $x \in \Delta = \overline{\Omega} \setminus \Omega$.

 $\overline{\Omega}$ is called the Martin compactification of Ω and $\Delta = \overline{\Omega} \setminus \Omega$ is called the Martin boundary. A positive harmonic function u > 0 is called *minimal* if and only if for any harmonic function v, $0 \le v \le u$, we should have $v = \alpha u$ for a constant α , $0 \le \alpha \le 1$. It can be proved that every minimal harmonic function u(y) on Ω is of the form $u(y_0)k(x, y)$ for some $x \in \Delta$, and the points $x \in \Delta$ corresponding to these minimal harmonic functions are called the minimal points of Δ , and the set of minimal points of Δ is denoted by Δ_1 , called the *minimal boundary*.

With these remarks, we can state the Martin representation theorem: for any harmonic function $u \ge 0$ on Ω , there exists a unique Radon measure $\mu \ge 0$ on Δ with support in the minimal boundary $\Delta_1 \subset \Delta$ such that $u(y) = \int_{\Delta_1} k(x, y) d\mu(x)$.

In the particular case of $R = \mathbb{R}^n$, $n \ge 2$, and $\Omega = B(0, 1)$ the unit ball, taking the fixed point y_0 as the centre 0, we have the following: the Martin boundary $\Delta = \overline{\Omega} \setminus \Omega$ is homeomorphic to the unit sphere *S* and k(x, y) is the Poisson kernel; also $\Delta_1 = \Delta = S$. Then the Martin representation gives the familiar result (see, e.g., Axler et al. [4, page 105]): if *u* is positive and harmonic on *B*, then there exists a unique positive Borel measure on *S* such that $u(x) = \int_S p(x, y) d\mu(y)$, where $p(x, y), x \in B, y \in S$, is the Poisson kernel.

3. Riesz-Martin representation for positive super-biharmonic functions

Let Ω be a Green domain in a Riemannian manifold *R*, with the Green function G(x, y) which is a symmetric function and for fixed *y*, $G_y(x) = G(x, y)$ is a potential on Ω ; we have also $\Delta G_y(x) = -\delta_y(x)$, after a normalization.

Definition 3.1. A Green domain Ω in *R* called a biharmonic Green domain if for a pair of points *x* and *y* in Ω , $G^2(x, y) = \int_{\Omega} G(x, z)G(z, y)dz$ is finite. Then $G^2(x, y)$ is called the biharmonic Green function of Ω .

The above definition is given in Sario [10] when $\Omega = R$, a hyperbolic manifold. On an arbitrary hyperbolic Riemannian manifold *R*, the biharmonic Green function may or may not exist. It is shown in [2, Theorem 3.2] that the biharmonic Green function $G^2(x, y)$ can be defined on a hyperbolic Riemannian manifold *R* if and only if there exist two positive potentials *p* and *q* on *R* such that $\Delta q = -p$.

Consequently, any relatively compact domain Ω in a Riemannian manifold *R* is a biharmonic Green domain, whether *R* is hyperbolic or parabolic. Note that if Ω is a biharmonic Green domain in *R*, then $u(x) = G^2(x, y)$ is a potential on Ω , for fixed *y*; and $\Delta u(x) = \Delta_x G_y^2(x) = -G_y(x)$ so that $\Delta^2 u(x) = \delta_y(x)$.

Given a Radon measure $\mu \ge 0$ on Ω , if we set $p(x) = \int_{\Omega} G(x, y) d\mu(y)$, then we know that $p \equiv \infty$ or p(x) is a potential such that $\Delta p = -\mu$. Let now $q(x) = \int_{\Omega} G^2(x, y) d\mu(y)$ be finite at some point $x_0 \in \Omega$. Then,

$$\infty > \int_{\Omega} \left(\int_{\Omega} G(x_0, z) G(z, y) dz \right) d\mu(y) = \int_{\Omega} G(x_0, z) \left[\int_{\Omega} G(z, y) d\mu(y) \right] dz.$$
(3.1)

Hence $p(z) = \int_{\Omega} G(z, y) d\mu(y) \neq \infty$, so that p(z) is a potential on Ω , and $q(x) = \int_{\Omega} G(x, z) p(z) dz$, which shows that q(x) is a potential on Ω and $\Delta q(x) = -p(x) = -\int_{\Omega} G(x, y) d\mu(y)$.

Let $\overline{\Omega}$ be the Martin compactification of Ω , $\Delta = \overline{\Omega} \setminus \Omega$ the Martin boundary, and Δ_1 the minimal boundary $\subset \Delta$. Let k(x, y) be the Martin kernel, $(x, y) \in \overline{\Omega} \times \Omega$.

Notation 3.2. (1) Let π_2 denote the set of positive Radon measures μ on Ω such that $q(x) = \int_{\Omega} G^2(x, y) d\mu(y)$ is a potential on Ω .

(2) Let \wedge_0 denote the set of positive Radon measures v on Δ , with supp $v \subset \Delta_1$.

(3) Let \wedge_1 denote the positive Radon measures $v \in \wedge_0$ such that $u(x) = \int_{\Omega} G(x, y) [\int_{\Delta_1} k(X, y) dv(X)] dy$ is a potential on Ω . In that case, $\Delta u(x) = -\int_{\Delta_1} k(X, x) dv(X)$ which is harmonic, so that u(x) is also a biharmonic function on Ω . (Remark that \wedge_1 can be empty as in the case of $\Omega = \mathbb{R}^n$.) If $v \in \wedge_1$, we will write $k_1(X, x) = \int_{\Omega} G(x, y) k(X, y) dy$ for $X \in \Delta_1$, and $x \in \Omega$, so that $u(x) = \int_{\Omega} G(x, y) [\int_{\Delta_1} k(X, y) dv(X)] dy$ can be more elegantly represented as $u(x) = \int_{\Lambda_1} k_1(X, x) dv(X)$.

LEMMA 3.3. Let $\mu \ge 0$ be a Radon measure on an open set ω in a Riemannian manifold R, hyperbolic or parabolic. Then there exists a superharmonic function s on ω with μ as the associated measure in a local Riesz representation.

Proof. The statement means that for every point $x_0 \in \omega$, there is a neighborhood δ , $x_0 \in \delta \subset \overline{\delta} \subset \omega$, with the Green function $G^{\delta}(x, y)$ such that $s(x) = \int_{\delta} G^{\delta}(x, y) d\mu(y) + (a \text{ harmonic function } h(x)) \text{ in } \delta$.

For the construction of s in \mathbb{R}^n , we refer to Brelot [6]. A similar method, with the use of an approximation property given in Bagby and Blanchet [5, Theorem 3.10], proves the result in a Riemannian manifold. (For a more general discussion of this result, see [3, Section 2].)

By Definition 3.1, a Green domain Ω in a Riemannian manifold R (whether hyperbolic or parabolic) is a biharmonic Green domain if and only if $G^2(x, y) \neq \infty$ on Ω . Note that $u(x) = G_y^2(x) > 0$, $\Delta u(x) = G_y(x) < 0$, and $\Delta^2 u(x) = \delta_y(x) \ge 0$ on Ω . Hence on a biharmonic Green domain Ω , functions v of the type v > 0, $\Delta v \le 0$, and $\Delta^2 v \ge 0$ exist. The following theorem gives an integral representation for such functions.

THEOREM 3.4. Let Ω be a biharmonic Green domain in a Riemannian manifold R (whether R is hyperbolic or parabolic) and let v be a locally dx-integrable function on Ω . Then the following are equivalent.

- (a) $v \ge 0$, $\Delta v \le 0$, and $\Delta^2 v \ge 0$ on Ω .
- (b) $v(x) = \int_{\Omega} G^2(x, y) d\mu(y) + \int_{\Delta_1} k_1(X, x) dv_1(X) + \int_{\Delta_1} k(X, x) dv_0(X)$ a.e. on Ω , where $(\mu, \nu_1, \nu_0) \in \pi_2 \times \wedge_1 \times \wedge_0$ is uniquely determined.

Proof. $(b) \Rightarrow (a)$. Let

$$u(x) = \int_{\Omega} G^2(x, y) d\mu(y) + \int_{\Delta_1} k_1(X, x) d\nu_1(X) + \int_{\Delta_1} k(X, x) d\nu_0(X),$$
(3.2)

where $\mu \ge 0$ is a Radon measure on Ω , and ν_0 , ν_1 are positive Radon measures on Δ_1 . Then u(x) = v(x) a.e. on Ω by the assumption. Hence $u \ne \infty$.

(i) Let $u_1(x) = \int_{\Omega} G^2(x, y) d\mu(y)$. Then $u_1 \ge 0$ is a potential on Ω , such that $\Delta u_1(x) = -\int G(x, y) d\mu(y)$ and $\Delta^2 u_1 = \mu$.

(ii) Let

$$u_{2}(x) = \int_{\Delta_{1}} k_{1}(X, x) dv_{1}(X) = \int_{\Omega} G(x, y) \left[\int_{\Delta_{1}} k(X, y) dv_{1}(X) \right] dy.$$
(3.3)

Then $u_2 \ge 0$ is a potential on Ω , such that $\Delta u_2(x) = -\int_{\Delta_1} k(X, x) dv_1(X) = -h_1(x)$, where $h_1(x)$ is a positive harmonic function on Ω , so that $\Delta u_2 \le 0$ and $\Delta^2 u_2 \equiv 0$.

(iii) Let $u_3(x) = \int_{\Delta_1} k(X, x) dv_0(X)$.

Then $u_3 \ge 0$ is harmonic on Ω , so that $\Delta u_3 \equiv 0$ and $\Delta^2 u_3 \equiv 0$.

Consequently, $u = u_1 + u_2 + u_3 \ge 0$ on Ω such that $\Delta u \le 0$ and $\Delta^2 u \ge 0$ on Ω . Since u = v a.e., the statement (a) is proved.

(a) \Rightarrow (b). Since $\Delta^2 \nu \ge 0$, $\Delta^2 \nu = \mu$, where μ is a positive Radon measure on Ω . Since $\Delta(\Delta \nu) = \mu$, $\Delta \nu$ is a subharmonic function on Ω . Since $\Delta \nu \le 0$ by hypothesis, $-\Delta \nu$ is a positive superharmonic function on Ω . Hence by the Riesz representation theorem,

$$-\Delta \nu(x) = \int_{\Omega} G(x, y) d\mu(y) + h(x), \qquad (3.4)$$

where h(x) is a positive harmonic function on Ω .

Let us choose (using the lemma above) two superharmonic functions q(x) and H(x) on Ω such that

$$\Delta q(x) = -\int_{\Omega} G(x, y) d\mu(y),$$

$$\Delta H(x) = -h(x).$$
(3.5)

Then from (3.4),

$$v(x) = q(x) + H(x) + (a \text{ harmonic function } h_1) \text{ on } \Omega.$$
 (3.6)

Since $v \ge 0$ on Ω , $q(x) \ge -H(x) - h_1(x)$; that is, q(x) has a subharmonic minorant on Ω . Hence q(x) has the greatest harmonic minorant $h_2(x)$ on Ω , and by the Riesz representation theorem,

$$q(x) = \int_{\Omega} G(x, y) (-\Delta q(y)) dy + h_2(x) \quad \text{on } \Omega$$

=
$$\int_{\Omega} G(x, z) \left[\int_{\Omega} G(z, y) d\mu(y) \right] dz + h_2(x) \qquad (3.7)$$

=
$$\int_{\Omega} G^2(x, y) d\mu(y) + h_2(x).$$

Similarly, dealing with the superharmonic function H(x) and its greatest harmonic minorant $h_3(x)$ on Ω , we can write

$$H(x) = \int_{\Omega} G(x, y) (-\Delta H(y)) dy + h_3(x) \quad \text{on } \Omega$$

=
$$\int_{\Omega} G(x, y) h(y) dy + h_3(x) \qquad (3.8)$$

=
$$\int_{\Omega} G(x, y) \left(\int_{\Delta_1} k(X, y) dv_1(X) \right) dy + h_3(x),$$

by using the Martin representation for the positive harmonic function h on Ω . Note that $v_1 \in \wedge_1$ and is uniquely determined. Consequently,

$$H(x) = \int_{\Delta_1} k_1(X, x) dv_1(X) + h_3(x).$$
(3.9)

Now, using (3.6), (3.7), and (3.9), we write

$$v(x) = \int_{\Omega} G^2(x, y) d\mu(y) + \int_{\Delta_1} k_1(X, x) d\nu_1(X) + h_0(x), \qquad (3.10)$$

where $h_0 = h_1 + h_2 + h_3$ is harmonic on Ω .

Now by hypothesis $v \ge 0$, so that

$$-h_0(x) \le \int_{\Omega} G^2(x, y) d\mu(y) + \int_{\Delta_1} k_1(X, x) d\nu_1(X) \quad \text{on } \Omega.$$
(3.11)

Now the two terms on the right side are potentials on Ω and hence their sum also is a potential on Ω . This means that the harmonic function $-h_0$ is majorized by a potential on Ω , so that $-h_0 \leq 0$. Thus h_0 is a positive harmonic function Ω . Use the Martin representation to conclude that there exists a unique measure v_0 on the Martin boundary with support in Δ_1 , such that

$$h_0(x) = \int_{\Delta_1} k(X, x) d\nu_0(X).$$
(3.12)

Thus, from (3.10) and (3.12), we finally arrive at the representation for v(x) on Ω :

$$v(x) = \int_{\Omega} G^2(x, y) d\mu(y) + \int_{\Delta_1} k_1(X, x) d\nu_1(X) + \int_{\Delta_1} k(X, x) d\nu_0(X),$$
(3.13)

where $(\mu, \nu_1, \nu_0) \in \pi_2 \times \wedge_1 \times \wedge_0$ is uniquely determined.

4. Representation for positive super-polyharmonic functions

By induction, we can extend Theorem 3.4 to obtain the Riesz-Martin representation for positive super-polyharmonic functions.

Let Ω be a Green domain in a Riemannian manifold *R*, with G(x, y) as the Green function of Ω . For an integer $m \ge 2$, we will denote

$$G^{m}(x,y) = \int G(x,z_{m-1})G(z_{m-1},z_{m-2})\cdots G(z_{1},y)dz_{1}\cdots dz_{m-1}$$
(4.1)

and say that a positive Radon measure μ on Ω is in π_m if $u(x) = \int_{\Omega} G^m(x, y) d\mu(y) \neq \infty$ on Ω , in which case u(x) is a potential on Ω and $(-\Delta)^m u = \mu$; also $(-\Delta)^j u \ge 0$ for $0 \le j \le m$. When such a function u(x) exists on Ω , we say that Ω is an *m*-harmonic Green domain in *R*, whether *R* is hyperbolic or parabolic.

Let Ω be the Martin compactification of Ω and let k(x, y) be the Martin kernel. For any i, $1 \le i \le m - 1$, let \wedge_i denote the set of positive Radon measures v_i on $\Delta = \overline{\Omega} \setminus \Omega$ with support in the minimal boundary Δ_1 , such that

$$v_i(x) = \int G(x, z_i) G(z_i, z_{i-1}) \cdots G(z_2, z_1) \left[\int_{\Delta_1} k(X, z_1) d\nu(X) \right] dz_1 \cdots dz_i \neq \infty.$$
(4.2)

In that case, $v_i(x)$ is a potential on Ω , $(-\Delta)^i v_i \equiv 0$; also $(-\Delta)^j v_i \ge 0$ for $0 \le j \le i$. Let us write for $X \in \Delta_1$ and $x \in \Omega$,

$$k_i(X, y) = \int G(x, z_i) \cdots G(z_2, z_1) k(X, z_1) dz_1 \cdots dz_i.$$
(4.3)

Then, if $v \in \wedge_i$, $v_i(x) = \int_{\Delta_i} k_i(X, x) dv(X)$ is well defined on Ω with the above properties.

As before, let \wedge_0 denote the set of positive Radon measures v on Δ , with support in Δ_1 .

Then, the proof of Theorem 3.4 can be extended by using the method of induction to arrive at the following result.

THEOREM 4.1. Let Ω be an m-harmonic Green domain in a Riemannian manifold R and let v be a locally dx-integrable function on Ω . Let $m \ge 1$ be an integer. Then the following

are equivalent.

- (a) $(-\Delta)^i v \ge 0$ on Ω for $0 \le i \le m$.
- (b) There exist unique measures $\mu \in \pi_m$ and $v_i \in \wedge_i$ for $0 \le i \le m 1$ such that

$$\nu(x) = \int_{\Omega} G^{m}(x, y) d\mu(y) + \sum_{i=0}^{m-1} \int_{\Delta_{1}} k_{i}(X, x) d\nu_{i}(X) \quad a.e. \text{ on } \Omega.$$
(4.4)

5. Integral representations in a Riemann surface

We are not in a position to say that the above integral representation theorems in a Riemannian manifold R are automatically valid in a Riemann surface S. For, we have used the Laplace-Beltrami operator Δ on R to define polyharmonic-superharmonic functions on R and also to obtain some of their properties. But the Laplacian is not invariant under a parametric change in an abstract Riemann surface S. Hence there is a problem. We indicate in this section how to get over this difficulty.

Let *S* be a Riemann surface. Let $\mu \ge 0$ be a Radon measure defined on an open set ω in *S*. Then, using an approximation theorem of Pfluger [9, page 192], we can show that there exists a superhamonic function *s* on ω with associated measure μ in a local Riesz representation as explained in Lemma 3.3 (see [3, Theorem 2.3]). Let us symbolically denote this relation between *s* and μ by $Ls = -\mu$ on ω .

Let now $d\sigma$ denote the surface measure on *S*. Then, given any locally $d\sigma$ -integrable function *f* on an open set ω , let λ be the signed measure on ω defined by $d\lambda = f d\sigma$. Construct as above two superharmonic functions s_1 and s_2 on ω , such that $Ls_1 = -\lambda^+$ and $Ls_2 = -\lambda^-$. Let us denote this relation between the δ -superharmonic function $s = s_1 - s_2$ and the locally $d\sigma$ -integrable function *f* by Ls = -f.

We will say that $s = (s_m, s_{m-1}, ..., s_1)$ is a polyharmonic-superharmonic function of order *m* in an open set ω , if s_1 is superharmonic on ω and $Ls_i = -s_{i-1}$ for $2 \le i \le m$. We will say that $s \ge 0$ if each $s_i \ge 0$. If there exists a polyharmonic-superharmonic function $s = (s_m, s_{m-1}, ..., s_1) \ge 0$, $s_i \ne 0$ for any *i*, on a domain Ω in *S*, we say that Ω is an *m*harmonic Green domain in *S*.

Let now Ω be a Green domain in a Riemann surface *S*. As before, let $\overline{\Omega}$ be the Martin compactfication of Ω , let $\Delta = \overline{\Omega} \setminus \Omega$ be the Martin boundary, and let Δ_1 be the minimal boundary. Then, with the notations as in Section 4, we can prove the following.

THEOREM 5.1. Let Ω be an m-harmonic Green domain in a Riemann surface S. Let $m \ge 1$ be an integer. Then, the following are equivalent.

- (a) $s = (s_m, s_{m-1}, ..., s_1) \ge 0$ is a polyharmonic-superharmonic function of order m in Ω .
- (b) For any j, $1 \le j \le m$, there exist unique measures $\mu \in \pi_j$ and $\nu_i \in \wedge_i$ for $0 \le i \le j-1$ such that

$$s_j(x) = \int_{\Omega} G^j(x, y) d\mu(y) + \sum_{i=0}^{j-1} \int_{\Delta_1} k_i(X, x) d\nu_i(X) \quad a.e. \text{ on } \Omega.$$
(5.1)

(c) The above property (b) is satisfied for j = m.

Proof. (a) \Rightarrow (b). Fix j, $1 \le j \le m$. Then $(s_j, s_{j-1}, \dots, s_1)$ is a j-superharmonic function on Ω , since $(-L)s_{i+1} = s_i$ for $1 \le i \le j - 1$ and s_1 is superharmonic. Moreover, since $(-L)s_{i+1} \ge 0$, each s_i is a positive superharmonic function. Write $s_1 = p_1 + h_1$ as the unique sum of a potential p_1 and a positive harmonic function h_1 . Let $(-L)p_1^* = p_1$ and $(-L)h_1^* = h_1$. Then p_1^* and h_1^* are superharmonic on Ω and

$$(-L)s_2 = p_1 + h_1 = (-L)p_1^* + (-L)h_1^*.$$
(5.2)

That is, $s_2 = p_1^* + h_1^* + (a \text{ harmonic function}) \text{ on } \Omega$. Since $s_2 \ge 0$, p_1^* has a subharmonic minorant on Ω and hence $p_1^* = (a \text{ potential } p_2) + (\text{the greatest harmonic minorant of } p_1^*$, which may not necessarily be positive).

Then $s_2 = p_2 + u_2$, where u_2 is superharmonic on Ω . Since $s_2 \ge 0$, $p_2 \ge -u_2$. Since p_2 is a potential and $-u_2$ is subharmonic, $-u_2 \le 0$. Hence $s_2 = p_2 + u_2$, where p_2 is a potential on Ω such that $(-L)p_2 = p_1$ and $u_2 \ge 0$ is superharmonic such that $(-L)u_2 = h_1$.

Thus proceeding, we can write

$$(s_j, \dots, s_2, s_1) = (p_j, \dots, p_2, p_1) + (u_j, \dots, u_2, h_1),$$
(5.3)

where $(-L)p_{i+1} = p_i$ for $1 \le i \le j - 1$, and $p_1, ..., p_j$ are all potentials; $(-L)u_{i+1} = u_i$ for $2 \le i \le j - 1$ and $(-L)u_2 = h_1$.

Now take $(u_j, ..., u_2, h_1)$ and proceed as before. Note now h_1 is positive harmonic, so that we can write

$$(u_j, \dots, u_2, h_1) = (q_j, \dots, q_2, h_1) + (f_j, \dots, f_3, h_2, 0),$$
(5.4)

where $(-L)q_{i+1} = q_i$ for $2 \le i \le j - 1$, $(-L)q_2 = h_1$, and each q_i is a potential; $(-L)f_{i+1} = f_i \ge 0$ for $3 \le i \le j - 1$, $(-L)f_3 = h_2$, and $(-L)h_2 = 0$, so that h_2 is positive harmonic. Then take $(f_i, \dots, f_3, h_2, 0)$ and follow the same procedure, so that

$$(f_j, \dots, f_3, h_2, 0) = (r_j, \dots, r_3, h_2, 0) + (g_j, \dots, g_4, h_3, 0, 0),$$
 (5.5)

where $(-L)r_{i+1} = r_i$ for $3 \le i \le j - 1$, $(-L)r_3 = h_2$ and each r_i is a potential; $(-L)g_{i+1} = g_i \ge 0$ for $4 \le i \le j - 1$, $(-L)g_4 = h_3$ and $(-L)h_3 = 0$, so that h_3 is harmonic ≥ 0 .

Thus proceeding, we finally arrive at the decomposition

$$(s_j,\ldots,s_1) = (p_j,\ldots,p_1) + (q_j,\ldots,q_2,h_1) + (r_j,\ldots,r_3,h_2,0) + \cdots + (h_j,0,\ldots,0).$$
(5.6)

Let $(-L)p_1 = \mu$; let v_i $(1 \le i \le j)$ be the positive Radon measure on Δ with support in Δ_1 , associated with the positive harmonic function h_i in the Martin representation.

Then $s_i = p_i + q_i + r_i + \cdots + h_i$ has the integral representation

$$s_j(x) = \int_{\Omega} G^j(x, y) d\mu(y) + \sum_{i=0}^{j-1} \int_{\Delta_1} k_i(X, x) d\nu_i(X) \quad \text{a.e. on } \Omega.$$
(5.7)

(b) \Rightarrow (c). *j* = *m* is a particular case of (b).

 $(c) \Rightarrow (a)$. By the assumption,

$$s_m(x) = \int_{\Omega} G^m(x, y) d\mu(y) + \sum_{i=0}^{m-1} \int_{\Delta_1} k_i(X, y) d\nu_i(X) \quad \text{a.e.}$$
(5.8)

Hence we can express s_m in the form $s_m(x) = p_m(x) + \sum_{j=0}^{m-1} q_j(x)$. We can calculate to find that $(-L)^i p_m$ is a potential for $1 \le i \le m-1$ and $(-L)^m p_m = \mu$, a positive Radon measure; and $(-L)^i q_j$ is a potential for $1 \le i \le j-1$ and $(-L)^j q_j = 0$.

Write now $(-L)s_m = s_{m-1}$, $(-L)s_{m-1} = s_{m-2}$,..., $(-L)s_2 = s_1$. We can see that each s_i $(1 \le i \le m)$ is a positive superharmonic function and $(-L)s_{i+1} = s_i$ for $1 \le i \le m-1$.

Hence $s = (s_m, s_{m-1}, ..., s_1) \ge 0$ is a polyharmonic-superharmonic function of order *m*.

References

- [1] A. Abkar and H. Hedenmalm, *A Riesz representation formula for super-biharmonic functions*, Annales Academiæ Scientiarium Fennicæ Mathematica **26** (2001), no. 2, 305–324.
- [2] V. Anandam, Biharmonic Green functions in a Riemannian manifold, Arab Journal of Mathematical Sciences 4 (1998), no. 1, 39–45.
- [3] _____, Biharmonic classification of harmonic spaces, Revue Roumaine de Mathématiques Pures et Appliquées 45 (2000), no. 3, 383–395.
- [4] S. Axler, P. Bourdon, and W. Ramey, *Harmonic Function Theory*, Graduate Texts in Mathematics, vol. 137, Springer, New York, 1992.
- [5] T. Bagby and P. Blanchet, Uniform harmonic approximation on Riemannian manifolds, Journal d'Analyse Mathématique 62 (1994), 47–76.
- [6] M. Brelot, Fonctions sousharmoniques associées à une mesure, Studii şi Cercetari Matematice, Iaşi, Academiei Române, Section Jasy, Roumania 2 (1951), 114–118.
- [7] _____, Axiomatique des fonctions harmoniques, Les Presses de l'Université de Montréal, Montréal, 1966.
- [8] _____, On Topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics, vol. 175, Springer, Berlin, 1971.
- [9] A. Pfluger, Theorie der Riemannschen Flächen, Springer, Berlin, 1957.
- [10] L. Sario, A criterion for the existence of biharmonic Green's functions, Journal of the Australian Mathematical Society, Series A 21 (1976), no. 2, 155–165.

V. Anandam: Department of Mathematics, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia *E-mail address*: vanandam@ksu.edu.sa

S. I. Othman: Department of Mathematics, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia *E-mail address*: sadoon@ksu.edu.sa