BIHARMONIC CURVES IN MINKOWSKI 3-SPACE. PART II

JUN-ICHI INOGUCHI

Received 24 Febraury 2006; Revised 9 May 2006; Accepted 21 May 2006

We give a differential geometric characterization for biharmonic curves with null principal normal in Minkowski 3-space.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

This is a supplement to our previous research note [3]. In [3], we gave a characterization of biharmonic curves in Minkowski 3-space. More precisely, we pointed out that every biharmonic curves with *nonnull* principal normal in Minkowski 3-space is a helix, whose curvature κ and torsion τ satisfy $\kappa^2 = \tau^2$. In the classification of biharmonic curves in Minkowski 3-space due to Chen and Ishikawa [1], there exist biharmonic spacelike curves with *null* principal normal. In this supplement, we give a characterization of biharmonic curves with null principal normal.

2. Preliminaries

Let \mathbb{E}_1^3 be the Minkowski 3-space with natural Lorentz metric $\langle \cdot, \cdot \rangle = -dx^2 + dy^2 + dz^2$. Let $\gamma = \gamma(s)$ be a spacelike curve parametrized by the arclength parameter; that is, γ satisfies $\langle \gamma', \gamma' \rangle = 1$. A spacelike curve γ is said to be a *Frenet curve* if its acceleration vector field γ'' satisfies the condition $\langle \gamma'', \gamma'' \rangle \neq 0$. Every spacelike Frenet curve admits an orthonormal frame field along it (see [3]). Since biharmonicity for spacelike Frenet curves is studied in [3], hereafter we restrict our attention to spacelike curves with *null acceleration vector field*. Note that spacelike curves with zero acceleration vector field are lines. There are no timelike curves with null acceleration vector field.

LEMMA 2.1. Let $\gamma(s)$ be a spacelike curve parametrized by arclength such that $\langle \gamma'', \gamma'' \rangle = 0$. Then there exists a matrix-valued function $F(s) = (\mathbf{f}_1(s), \mathbf{f}_2(s), \mathbf{f}_3(s))$, which satisfies the following ordinary differential equation:

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 92349, Pages 1–4 DOI 10.1155/IJMMS/2006/92349

2 Biharmonic curves in Minkowski 3-space. Part II

$$\nabla_{\gamma'} F = F \begin{pmatrix} 0 & 0 & -1 \\ 1 & k & 0 \\ 0 & 0 & -k \end{pmatrix}, \qquad \mathbf{f}_1 = \gamma'.$$
(2.1)

Here ∇ *is the Levi-Civita connection of* \mathbb{E}_1^3 .

Conversely, let $F(s) = (\mathbf{f}_1(s), \mathbf{f}_2(s), \mathbf{f}_3(s))$ be a solution to (2.1). Then there exists a spacelike curve $\gamma(s)$ with arclength parameter *s* such that

$$\gamma' = \mathbf{f}_1, \qquad \langle \gamma'', \gamma'' \rangle = 0.$$
 (2.2)

Proof. By the assumption, $\mathbf{f'}_1 = \gamma''$ is a null vector field. We set $\mathbf{f}_2 = \mathbf{f}'_1$. Since $\mathbf{f}_1 = \gamma'$ is a unit spacelike vector field, there exists a unique null vector field \mathbf{f}_3 along γ such that (cf. [2])

$$\langle \mathbf{f}_2, \mathbf{f}_3 \rangle = 1, \qquad \langle \mathbf{f}_1, \mathbf{f}_3 \rangle = 0.$$
 (2.3)

One can check that $F = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ satisfies (2.1). For instance, expand \mathbf{f}_2 as $\mathbf{f}_2 = a\mathbf{f}_1 + b\mathbf{f}_2 + c\mathbf{f}_3$. Then

$$a = \langle \mathbf{f}_{2}^{\prime}, \mathbf{f}_{1} \rangle = - \langle \mathbf{f}_{2}, \mathbf{f}_{1}^{\prime} \rangle = 0, \qquad c = \langle \mathbf{f}_{2}^{\prime}, \mathbf{f}_{2} \rangle = \langle \mathbf{f}_{2}, \mathbf{f}_{2} \rangle^{\prime} = 0.$$
(2.4)

Hence $\mathbf{f}_2' = b\mathbf{f}_2$. By similar computations, we get

$$\mathbf{f}_{3}' = -\mathbf{f}_{1} - b\mathbf{f}_{3}.$$
 (2.5)

Thus *F* satisfies (2.1) with k = b.

Conversely, let *F* be a solution to (2.1). Then *F* satisfies the following conditions (*cf.* [2, Section 2]):

Integrating $\mathbf{f}_1(s)$ by *s*, we obtain a spacelike curve $\gamma(s)$ with null acceleration, since $\gamma'' = \mathbf{f}_1' = \mathbf{f}_2$.

We call the matrix-valued function *F*, the *null frame* of *y*. We call \mathbf{f}_1 , \mathbf{f}_2 , and \mathbf{f}_3 , the *tangent vector field*, *principal normal vector field*, and *binormal vector field* of *y*, respectively. We call the function *k* the *curvature function* of *y*. Note that both principal normal and binormal are null.

Example 2.2. Let us consider γ with k = 0. Since $\mathbf{f}'_2 = 0$, we have

$$\mathbf{f}_1 = s\mathbf{n} + \mathbf{u},\tag{2.7}$$

where the constant vectors **n** and **u** satisfy the relation

$$\langle \mathbf{n}, \mathbf{n} \rangle = \langle \mathbf{n}, \mathbf{u} \rangle = 0, \qquad \langle \mathbf{u}, \mathbf{u} \rangle = 1.$$
 (2.8)

Thus we obtain

$$\gamma(s) = \frac{s^2}{2}\mathbf{n} + s\mathbf{u} + \mathbf{v},\tag{2.9}$$

where \mathbf{v} is a constant vector. Hence γ is congruent to

$$(bs^2, bs^2, s), \quad b \neq 0.$$
 (2.10)

Next, assume that k is a nonzero constant, then y is given by

$$\gamma(s) = \frac{1}{k^2} e^{ks} \mathbf{n} + s\mathbf{u} + \mathbf{v}.$$
 (2.11)

Here the constant vectors \mathbf{n} and \mathbf{u} satisfy (2.8). Hence γ is congruent to

$$\left(\frac{a}{k^2}e^{ks}, \frac{a}{k^2}e^{ks}, s\right), \quad a \neq 0.$$
(2.12)

Example 2.3. Let us determine spacelike curves with 1/k = s + c, where *c* is a constant. Then *y* is given by

$$\gamma(s) = \left(\frac{s^3}{3} + \frac{cs^2}{2}\right)\mathbf{n} + s\mathbf{u} + \mathbf{v},$$
(2.13)

where the constant vectors **n** and **u** satisfy (2.8). Thus y is congruent to the curve

$$(as^3 + bs^2, as^3 + bs^2, s), \quad a \neq 0.$$
 (2.14)

3. Biharmonic curves

We start this section with recalling the notion of biharmonicity.

Let γ be a spacelike curve in \mathbb{E}_1^3 parametrized by arclength defined on an open interval *I*. We denote by $\gamma^* T \mathbb{E}_1^3$ the vector bundle over *I* obtained by pulling back the tangent bundle $T \mathbb{E}_1^3$:

$$\gamma^* T \mathbb{E}^3_1 = \bigcup_{s \in I} T_{\gamma(s)} \mathbb{E}^3_1.$$
 (3.1)

The *Laplace operator* Δ acting on the space $\Gamma(\gamma^* T \mathbb{E}^3_1)$ of all smooth vector fields along γ is given by

$$\Delta = -\nabla_{\gamma'} \nabla_{\gamma'}. \tag{3.2}$$

A spacelike curve γ is said to be *biharmonic* if $\Delta \mathbb{H} = 0$, where \mathbb{H} is the mean curvature vector field of γ .

Chen and Ishikawa obtained the following result.

THEOREM 3.1 [1]. Let $\gamma(s)$ be a spacelike curve parametrized by arclength with null acceleration vector field. Then γ is biharmonic if and only if γ is congruent to

$$(as^3 + bs^2, as^3 + bs^2, s), \quad a^2 + b^2 \neq 0.$$
 (3.3)

4 Biharmonic curves in Minkowski 3-space. Part II

Now we give a geometric characterization of biharmonic spacelike curve with null principal normal. Let $\gamma(s)$ be a spacelike curve parametrized by arclength with null acceleration vector field. Then the mean curvature vector field \mathbb{H} is given by

$$\mathbb{H} = \nabla_{\gamma'} \gamma' = \mathbf{f}_2. \tag{3.4}$$

Thus we obtain

$$\Delta \mathbb{H} = -(k' + k^2)\mathbf{f}_2. \tag{3.5}$$

Hence *y* is biharmonic if and only if $k' + k^2 = 0$. Hence the curvature function *k* is given by k = 0 or 1/k(s) = s + c, where *c* is a constant.

PROPOSITION 3.2. A spacelike curve $\gamma(s)$ parametrized by arclength parameter s with null principal normal vector field is biharmonic if and only if its curvature function is given by k = 0 or 1/k = s + c for some constant c. Hence such curves are congruent to the curve (3.3). The former case (k = 0) corresponds to the case a = 0 (2.10) and the latter case (1/k = s + c) to $a \neq 0$ (2.14), respectively.

References

- [1] B.-Y. Chen and S. Ishikawa, *Biharmonic surfaces in pseudo-Euclidean spaces*, Memoirs of the Faculty of Science. Kyushu University. Series A. Mathematics **45** (1991), no. 2, 323–347.
- [2] L. K. Graves, Codimension one isometric immersions between Lorentz spaces, Transactions of the American Mathematical Society 252 (1979), 367–392.
- [3] J. Inoguchi, *Biharmonic curves in Minkowski 3-space*, International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 21, 1365–1368.

Jun-Ichi Inoguchi: Department of Mathematics Education, Faculty of Education, Utsunomiya University, Utsunomiya, 321-8505, Japan *E-mail address*: inoguchi@cc.ustunomiya-u.ac.jp