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Decision theory considers how best to make decisions in the light of uncertainty about
data. There are several methodologies that may be used to determine the best decision. In
rough set theory, the classification of objects according to approximation operators can be
fitted into the Bayesian decision-theoretic model, with respect to three regions (positive,
negative, and boundary region). Granulation using equivalence classes is a restriction that
limits the decision makers. In this paper, we introduce a generalization and modification
of decision-theoretic rough set model by using granular computing on general binary
relations. We obtain two new types of approximation that enable us to classify the objects
into five regions instead of three regions. The classification of decision region into five
areas will enlarge the range of choice for decision makers.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Making decisions is a fundamental task in data analysis. Some methods have appeared to
make a decision. Yao and Wong [1] proposed and studied a more general type of prob-
abilistic rough set approximations via Bayesian decision theory. In Section 2, we give a
brief overview of granulation structures on the universe. One is defined by an equivalence
relation due to Pawlak [2] and the other by a general relation proposed by Rady et al. [3].
Approximation structures are discussed for each type of granulation. Section 3 discusses
a decision-theoretic model of rough sets under equivalence relations given by Yao and
Wong [1]. Our main contribution is to introduce a general decision-theoretic model of
rough sets using a general relation. The resulted granulation induces approximation dif-
ferent from that due to Pawlak. This enables us to construct two new approximations,
namely, semilower and semiupper approximations which are useful in the partition of
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boundary region in particular and the universe in general with respect to any subset of
the universe.

2. Granulation of universe and rough set approximations

In rough set theory, indiscernibility is modeled by an equivalence relation. A granulated
view of the universe can be obtained from equivalence classes. By generalizing equivalence
relations to binary relations, one may obtain a different granulation of the universe. For
any kind of relations, a pair of rough set approximation operators, known as lower and
upper approximation operators, can be defined in many ways (Pawlak [2], Rady et al.
[3]).

2.1. Granulation by equivalence relations. Let E ⊆U ×U be an equivalence relation on
finite nonempty universe U . The equivalence class

[x]E = {y ∈U : yEx} (2.1)

consists of all elements equivalent to x, and is also the equivalence class containing x.
In an approximation space apr= (U ,E), Pawlak [2] defined a pair of lower and upper

approximations of a subset A ⊆ U , written as apr (A) and apr(A) or simply A and A as
follows:

A= {x ∈U : [x]E ⊂A
}

,

A= {x ∈U : [x]E∩A �=Φ
}
.

(2.2)

The lower and upper approximations have the following properties.
For every A and B ⊂U and every approximation space apr= (U ,E),

(1) apr(A)⊆A⊆ apr(A),
(2) apr(U)= apr(U)=U ,
(3) apr(φ)= apr(φ)= φ,
(4) apr(A∪B)= apr(A)∪ apr(B),
(5) apr(A∪B)⊇ apr(A)∪ apr(B),
(6) apr(X ∩B)⊆ apr(X)∩ apr(B),
(7) apr(A∩B)= apr(A)∩ apr(B),
(8) apr(−A)=−apr(A),
(9) apr(−A)=−apr(A),

(10) apr(apr(A))= apr(apr(A))= apr(A),
(11) apr(apr(A))= apr(apr(A))= apr(A),
(12) if A⊆ B, then apr(A)⊆ apr(B) and apr(A)⊆ apr(B).
Moreover, for a subset A⊆U , a rough membership function is defined by Pawlak and

Skowron [4]:

μA(x)=
∣
∣[x]E∩A

∣
∣

∣
∣[x]E

∣
∣ , (2.3)
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where | · | denotes the cardinality of a set. The rough membership value μA(x) may be
interpreted as the conditional probability that an arbitrary element belongs to A given
that the element belongs to [x]E.

2.2. Granulation by general relation. Let U be a finite universe set and E any binary
relation defined on U , and S the set of all elements which are in relation with certain x in
U for all x ∈U . In symbols,

S= {{xE},∀x ∈U
}

where {xE} = {y : xEy; x, y ∈U}. (2.4)

Define β as the general knowledge base (GKB) using all possible intersections of the
members of S. The member that will be equal to any union of some members of β must
be omitted. That is, if S contains n sets,

β = {βi = S1∩ S2∩···∩ Sj , j = 1,2, . . . ,n; Si ⊂ S and βi �= ∪Si for some i
}
. (2.5)

The pair aprβ = (U ,E) will be called the general approximation space based on the general
knowledge base β.

Rady et al. [3] extend the classical definition of the lower and upper approximations
of any subset A of U to take these general forms

Aβ =∪
{
B : B ∈ βx, B ⊂ A

}
,

Aβ =∪
{
B : B ∈ βx, B∩A �= φ

}
,

(2.6)

where βx = {b ∈ β : x ∈ B}.
These general approximations satisfy all the properties introduced in Section 2.1 ex-

cept for properties (8, 9, 10, and 11). This is the main deviation that will help to construct
our new approach.

For granulation by any binary relation, Lashin et al. [5] defined a rough membership
function as follows:

μA(x)=
∣
∣A∩ (∩βx

)∣∣
∣
∣∩βx

∣
∣ . (2.7)

2.2.1. Granulation by general relation in multivalued information system. For a general-
ized approximation space, Abd El-Monsef [6] defined a multivalued information system.
This system is an ordinary information system whose elements are sets. Each object has
number of attributes with attribute subsets related to it. The attributes are the same for
all objects but the attribute set-valued may differ.

A multivalued information system (IS) is an ordered pair (U ,Ψ), where U is a non-
empty finite set of objects (the universe), and Ψ is a nonempty finite set of elements
called attributes. Every attribute q ∈ Ψ has a multivalued function Γq, which maps into
the power set of Vq, where Vq is the set of allowed values for the attributes. That is,
Γq : U ×Ψ→�(Vq).

The multivalued information system may also be written as

MIS= 〈U ,Ψ,Vq,Γq
〉
q∈Ω. (2.8)
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Table 2.1

Spoken languages (T1) Computer programs (T2) Skills (T3)

x1 {a2,a3} {b1,b3,b4} {c1,c2}
x2 {a2} {b1,b4} {c2}
x3 {a1,a2} {b1,b2,b4} {c2}
x4 {a1} {b1,b3} {c1}
x5 {a1,a2,a3} {b2} {c1}
x6 {a2} {b1,b3,b4} {c1,c2}
x7 {a1,a3} {b1,b3} {c1}
x8 {a1,a3} {b1,b3} {c1,c2}
x9 {a1} {b2,b3} {c2}
x10 {a1,a2} {b1,b2} {c2}

With a set P ⊆Ψ we may associate an indiscernibility relation on U , denoted by β(P)
and defined by

(x, y)∈ β(P) if and only if Γq(x)⊆ Γq(y)∀Q∈ P. (2.9)

Clearly, this indiscernibility relation does not perform a partition on U .

Example 2.1. In Table 2.1, we have ten persons (objects) with attributes reflecting each sit-
uation of life. Consider that we have three condition attributes, namely, spoken languages,
computer programs, and skills. Each one was asked about his adaptation by choosing
between {English, German, French} in the first attribute; {Word, Excel, Access, Power
Point} in the second attribute; {Typing, Translation} in the third attribute. Let ai be the
ith value in the first attribute, let bj be the jth value in the second attribute, and let ck be
the kth value in the third attribute.

The indiscernibility relation for C = {T1,T2,T3} will be

β(C)= {(x1,x1
)
,
(
x2,x1

)
,
(
x2,x2

)
,
(
x2,x3

)
,
(
x2,x6

)
,

(
x2,x2

)
,
(
x3,x3

)
,
(
x4,x4

)
,
(
x4,x7

)
,
(
x4,x8

)
,

(
x4,x9

)
,
(
x5,x5

)
,
(
x6,x6

)
,
(
x7,x7

)
,
(
x7,x8

)
,

(
x8,x8

)
,
(
x9,x9

)
,
(
x10,x3

)
,
(
x10,x10

)}
.

(2.10)

It is easy to see that β(C) does not perform a partition on U in general. This can be seen
via

U

β(C)
= {{x1

}
,
{
x1,x2,x3,x6

}
,
{
x3
}

,
{
x4,x7,x8,x9

}
,
{
x5
}

,

{
x6
}

,
{
x7,x8

}
,
{
x8
}

,
{
x9
}

,
{
x10,x3

}}
.

(2.11)

Obviously, the U/β(C) is the set S defined in the general approach in Section 2.2.
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3. Bayesian decision-theoretic framework for rough sets

In this section, the basic notion of the Bayesian decision procedure is briefly reviewed
(Duda and Hart [7]). We present a review of results that are relevant to decision-theoretic
modeling of rough sets induced by an equivalence relation. A generalization and mod-
ification of decision-theoretic modeling induced by general relation is applied on the
universe.

3.1. Bayesian decision procedure. Let Ω = {ω1, . . . ,ωs} be a finite set of s states of na-
ture, and let � = {a1, . . . ,am} be a finite set of m possible actions. Let P(ωj/X) be the
conditional probability of an object x being in state ωj given the object is described by X .

Let λ(ai/ωj) denote the loss for taking action ai when the state is ωj . For an object
with description X , suppose that an action ai is taken. Since P(ωj/X) is the conditional
probability that the true state isωj givenX , the expected loss associated with taking action
ai is given by

R
(
ai
X

)
=

s∑

j=1

λ
(
ai
ωj

)
P
(
ωj

X

)
(3.1)

and also called the conditional risk. Given description X , a decision rule is a function
τ(X) that specifies which action to take. That is, for every X , τ(X) assumes one of the
actions, a1, . . . ,am. The overall risk R is the expected loss associated with a given decision
rule. Since R(τ(X)/X) is the conditional risk associated with the action τ(X), the overall
risk is defined by

R=
∑

X

R
(
τ(X)
X

)
P(X), (3.2)

where the summation is over the set of all possible description of objects, that is, entire
knowledge representation space. If τ(X) is chosen so that R(τ(X)/X) is as small as pos-
sible for every X , the overall risk R is minimized. Thus, the Bayesian decision procedure
can be formally stated as follows. For every X , compute the conditional risk R(ai/X) for
i= 1, . . . ,m and then selected the action for which the conditional risk is minimum.

3.2. Decision-theoretic approach of rough sets (under equivalence relations). Let
apr = (U ,E) be an approximation space where E is equivalence relation on U . With re-
spect to a subset A ⊆ U , one can divide the universe U into three disjoint regions, the
positive region POS(A), the negative region NEG(A), and the boundary region BND(A)
(see Figure 3.1);

POS(A)= apr(A),

NEG(A)=U −A,

BND(A)= apr(A)− apr(A).

(3.3)

In an approximation space apr = (U ,E), the equivalence class containing x, [x]E, is
considered to be description of x. The classification of objects according to approximation
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NEG(A)

BND(A)

POS(A)
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A
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Figure 3.1

operators can be easily fitted into Bayesian decision-theoretic framework (Yao and Wong
[1]). The set of states is given by Ω = {A,−A} indicating that an element is in A and
not in A, respectively. With respect to the three regions, the set of actions is given by
�= {a1,a2,a3}, where a1, a2, and a3 represent the three actions in classifying an object,
deciding POS(A), deciding NEG(A), and deciding BND(A), respectively.

Let λ(ai/A) denote the loss incurred for taking action ai when an object in fact belongs
to A, and λ(ai/−A) denote the loss incurred for taking the same action when the object
does not belong to A, the rough membership values μA(x)= P(A/[x]E) and μAC (x)= 1−
P(A/[x]E) are in fact the probabilities that an object in equivalence class [x]E belongs to A
and −A, respectively. The expected loss R(ai/[x]E) associated with taking the individual
actions can be expressed as

R
(

a1

[x]E

)
= λ11P

(
A

[x]E

)
+ λ12P

( −A
[x]E

)
,

R
(

a2

[x]E

)
= λ21P

(
A

[x]E

)
+ λ22P

( −A
[x]E

)
,

R
(

a1

[x]E

)
= λ31P

(
A

[x]E

)
+ λ32P

( −A
[x]E

)
,

(3.4)

where λi1 = λ(ai/A), λi2 = λ(ai/−A) and i= 1,2,3.
The Bayesian decision procedure leads to the following minimum-risk decision rules:

(P) if R(a1/[x]E)≤ R(a2/[x]E) and R(a1/[x]E) < R(a3/[x]E), decide POS(A);
(N) if R(a2/[x]E)≤ R(a1/[x]E) and R(a2/[x]E) < R(a3/[x]E), decide NEG(A);
(B) if R(a3/[x]E)≤ R(a1/[x]E) and R(a3/[x]E)≤ R(a2/[x]E), decide BND(A).

Based on P(A/[x]E) +P(−A/[x]E)= 1, the decision rules can be simplified by using only
probabilities P(A/[x]E).

Consider a special kind of loss with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12. That is, the loss
for classifying an object x belonging to A into the positive region is less than or equal to
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the loss of classifying x into the boundary region, and both of these losses are strictly less
than the loss of classifying x into the negative region. For this type of loss functions, the
minimum-risk decision rules (P)–(B) can be written as

(P′) if P(A/[x]E)≥ γ and P(A/[x]E)≥ α, decide POS(A);
(N′) if P(A/[x]E) < β and P(A/[x]E)≤ γ, decide NEG(A);
(B′) if β < P(A/[x]E)≤ α, decide BND(A),

where

α= λ12− λ32(
λ31− λ32

)− (λ11− λ12
) ,

γ = λ12− λ22(
λ21− λ22

)− (λ11− λ12
) ,

β = λ32− λ22(
λ21− λ22

)− (λ31− λ32
) .

(3.5)

From the assumptions λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that α ∈ [0,1], γ ∈
(0,1) and β ∈ [0,1). Note that the parameters λi j should satisfy the condition α≥ β. This
ensures that the results are consisted with rough set approximations. That is, the bound-
ary region may be nonempty.

3.3. Generalized decision-theoretic approach of rough sets (under general relation).
In fact, the original granulation of rough set theory based on partition is a special type of
topological spaces. Lower and upper approximations in this model are exactly the closure
and interior in topology. In general spaces, semiclosure and semiinterior (Crossley and
Hildbrand [8]) are two types of approximation based on semiopen and semiclosed sets
which are well defined (Levine [9]).

This fact with the concepts of semiclosure and semi-interior directed our intentions to
introduce two new approximations. For any general binary relation, the general approxi-
mations do not satisfy the properties (10, 11) in Section 2.1. Therefore, we can define two
new approximations, namely, semilower and semiupper approximation.

Definition 3.1. Let apr = (U ,E), where E is any binary relation defined on U . Then we
can define two new approximations, namely, semilower and semiupper approximations
as follows:

semiL(A)= A∩ (Aβ
)

β
,

semiU(A)= A∪ (Aβ

)
β
.

(3.6)

The lower and upper approximations have the following properties.
For every A and B ⊂ U and every approximation space apr = (U ,E), where Aβ ⊆

semiL(A)⊆A⊆ semiU(A)⊆ Aβ ⊆U .
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This definition enables us to divide the universe U into five disjoint regions as follows
(see Figure 3.2):

POS(A), SemiL(A)−Aβ, SemiBND(A), Aβ− SemiU(A), NEG(A),
(3.7)

where,

SemiBND(A)= SemiU(A)− SemiL(A). (3.8)

In this case, the set of states remains Ω= {A,−A} but the set of actions becomes �=
{a1,a2,a3,a4,a5}, where a1, a2, a3, a4, and a5 represent the five actions in classifying an
object deciding POS(A), deciding SemiL(A)−Aβ, deciding SemiBND(A), deciding Aβ−
SemiU(A), and deciding NEG(A), respectively.

In an approximation space apr= (U ,E), where E is a binary relation, an element x is
viewed as βx (a subset of GKB containing x). Since β does not perform a partition on U
in general, then we consider that ∩βx be a description x. The rough membership values
μA(x)= P(A/∩βx) and μAC (x)= 1−P(A/∩βx) are in fact the probabilities that an object
in ∩βx belongs to A and −A, respectively. The expected loss R(ai/∩ βx) associated with
taking the individual actions can be expressed as

R
(
a1

βx

)
= λ11P

(
A

∩βx
)

+ λ12P
( −A
∩βx

)
,

R
(
a2

βx

)
= λ21P

(
A

∩βx
)

+ λ22P
( −A
∩βx

)
,

R
(
a3

βx

)
= λ31P

(
A

∩βx
)

+ λ32P
( −A
∩βx

)
,

R
(
a4

βx

)
= λ41P

(
A

∩βx
)

+ λ42P
( −A
∩βx

)
,

R
(
a5

βx

)
= λ51P

(
A

∩βx
)

+ λ52P
( −A
∩βx

)
.

(3.9)

The Bayesian decision procedure leads to the following minimum-risk decision rules.
(1) If R(a1/ ∩ βx) ≤ R(a2/ ∩ βx), R(a1/ ∩ βx) ≤ R(a3/ ∩ βx), R(a1/ ∩ βx) ≤ R(a4/

∩βx), R(a1/∩βx)≤ R(a5/∩βx), decide POS(A).
(2) If R(a2/ ∩ βx) ≤ R(a1/ ∩ βx), R(a2/ ∩ βx) ≤ R(a3/ ∩ βx), R(a2/ ∩ βx) ≤ R(a4/

∩βx), R(a2/∩βx)≤ R(a5/∩βx), decide SemiL(A)−Aβ.
(3) If R(a3/ ∩ βx) ≤ R(a1/ ∩ βx), R(a3/ ∩ βx) ≤ R(a2/ ∩ βx), R(a3/ ∩ βx) ≤ R(a4/

∩βx), R(a3/∩βx)≤ R(a5/∩βx), decide SemiBND(A).
(4) If R(a4/ ∩ βx) ≤ R(a1/ ∩ βx), R(a4/ ∩ βx) ≤ R(a2/ ∩ βx), R(a4/ ∩ βx) ≤ R(a3/

∩βx), R(a4/∩βx)≤ R(a5/∩βxβx), decide Aβ− SemiU(A).
(5) If R(a5/ ∩ βx) ≤ R(a1/ ∩ βx), R(a5/ ∩ βx) ≤ R(a2/ ∩ βx), R(a5/ ∩ βx) ≤ R(a3/

∩βx), R(a5/∩βx)≤ R(a4/∩βx), decide NEG(A).
Since P(A/∩ βx) +P(−A/∩ βx)= 1, the above decision rules can be simplified such that
only the probabilities P(A/∩βx) are involved.
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NEG(A)

Aβ � SemiU(A)

SemiBND(A)

SemiL(A)�Aβ

POS(A)

U

Aβ

SemiU(A)

A

SemiL(A)

Aβ

Figure 3.2

Consider a special kind of loss function with

λ11 ≤ λ21 ≤ λ31 ≤ λ41 < λ51, λ52 ≤ λ42 ≤ λ32 ≤ λ22 < λ12. (3.10)

For this type of loss functions, the minimum-risk decision rules (1)–(5) can be written as
follows.

(1′) If P(A/∩βx)≥ b, P(A/∩βx)≥ c, P(A/∩βx)≥ d, P(A/∩βx)≥ e, decide POS(A).
(2′) If P(A/ ∩ βx) ≤ b, P(A/ ∩ βx) ≥ f , P(A/ ∩ βx) ≥ g, P(A/ ∩ βx) ≥ l, decide

SemiL(A)−Aβ.
(3′) If P(A/ ∩ βx) ≤ c, P(A/ ∩ βx) ≤ f , P(A/ ∩ βx) ≥ m, P(A/ ∩ βx) ≥ n, decide

SemiBND(A).
(4′) If P(A/∩ βx) ≤ d, P(A/∩ βx) ≤ g, P(A/∩ βx) ≤m, P(A/∩ βx) ≥ q, decide Aβ −

SemiU(A).
(5′) If P(A/∩βx)≤ e, P(A/∩βx)≤ l, P(A/∩βx)≤ n, P(A/∩βx)≤ q, decide NEG(A)

where

b = λ12− λ22(
λ21− λ22

)− (λ11− λ12
) ,

c = λ12− λ32(
λ31− λ32

)− (λ11− λ12
) ,

d = λ12− λ42(
λ41− λ42

)− (λ11− λ12
) ,

e = λ12− λ52(
λ51− λ52

)− (λ11− λ12
) ,
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f = λ22− λ32(
λ31− λ32

)− (λ21− λ22
) ,

g = λ22− λ42(
λ41− λ42

)− (λ21− λ22
) ,

l = λ22− λ52(
λ51− λ52

)− (λ21− λ22
) ,

m= λ32− λ42(
λ41− λ42

)− (λ31− λ32
) ,

n= λ32− λ52(
λ51− λ52

)− (λ31− λ32
) ,

q = λ42− λ52(
λ51− λ52

)− (λ41− λ42
) .

(3.11)

A loss function should be chosen in such a way to satisfy the conditions:

b ≥ f , b ≥ g, b≥ l

c ≥m, c ≥ n, f ≥m, f ≥ n

q ≤ d, q ≤ g, q ≤m.

(3.12)

These conditions imply that (SemiL(A)−Aβ)∪ SemiBND(A)∪ (Aβ− SemiU(A)) is not
empty, that is, the boundary region is not empty.

Example 3.2. In Example 2.1, we choose any subset A from U , say

A= {x1,x3,x4,x6
}
. (3.13)

Now, we can decide the region for each object by using the generalized decision-
theoretic approach that proposed in Section 3.3. This approach can be applied on a mul-
tivalued information system and gives us the ability to divide the universe U into five re-
gions which help in increasing the decision efficiency. The result given by general rough
sets model can be viewed as a special case of our generalized approach.

In our example, the set of states is given by Ω= {A,−A} indicating that an element is
in A and not in A, respectively. With respect to five regions, the set of actions is given by
�= {a1,a2,a3,a4,a5}.

To apply our proposed technique, consider the following loss function:

λ11 = λ52 = 0, λ21 = λ42 = 0.25, λ31 = λ32 = 0.5,

λ41 = λ22 = 1, λ51 = λ12 = 2.
(3.14)

There is no cost for a correct classification, 2 units of cost for an incorrect classification,
0.25 unit cost for an object belonging to A is classified in SemiL(A)−Aβ and for an
object does not belong to A classified into Aβ − SemiU(A), 0.5 unit cost for classifying
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Table 3.1

P(A/∩βx) Decision

x1 1 POS(A)

x2 0.75 SemiL(A)−Aβ

x3 1 POS(A)

x4 0.25 Aβ − SemiU(A)

x5 0 NEG(A)

x6 1 POS(A)

x7 0 NEG(A)

x8 0 NEG(A)

x9 0 NEG(A)

x10 0.5 SemiBND(A)

an object into boundary region, and 1 unit cost for classifying an object belong to A into
Aβ − SemiU(A) and for an object does not belong to A into SemiL(A)−Aβ (note that a
loss function supplied by user or expert). According to these losses, we have

b = 0.8, g = 0.5,

c = 0.75, l = 0.36,

d = 0.64, m= 0.33,

e = 0.5, n= 0.25,

f = 0.67, q = 0.2.

(3.15)

By using the decision rules (1′)–(5′), we get the results shown in Table 3.1.
Thus, we have

POS(A)= {x1,x3,x6
}

,

SemiL(A)−Aβ =
{
x2
}

,

SemiBND(A)= {x10
}

,

Aβ− SemiU(A)= {x4
}

,

NEG(A)= {x5,x7,x8,x9
}
.

(3.16)

Now we apply the decision theoretic technique proposed by Yao and Wong [1] to clas-
sify the decision region into three areas. The set of actions is given by � = {a1,a2,a3},
where a1, a2, and a3 represent the three actions in classifying an object, deciding POS(A),
deciding NEG(A), and deciding BND(A), respectively. To make this, consider that there
is 0.25 unit cost for a correct classification, 3 units of cost for an incorrect classification,
and 0.5 unit cost for classifying an object into boundary region, that is,

λ11 = λ22 = 0, λ31 = λ32 = 0.5, λ21 = λ12 = 3. (3.17)
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Table 3.2

P(A/∩βx) Decision

x1 1 POS(A)

x2 0.75 BND(A)

x3 1 POS(A)

x4 0.25 BND(A)

x5 0 NEG(A)

x6 1 POS(A)

x7 0 NEG(A)

x8 0 NEG(A)

x9 0 NEG(A)

x10 0.5 BND(A)

These losses give us that

α= 0.9, γ = 0.5, β = 0.1. (3.18)

By using the decision rule (P′)–(C′) and replacing P(A/[x]E) by P(A/βx), we get the
results shown in Table 3.2.

This means that

POS(A)= {x1,x3,x6
}

,

BND(A)= {x2,x4,x10
}

,

NEG(A)= {x5,x7,x8,x9
}
.

(3.19)

From the comparison between the two approaches, we note that the our approach
(classification of decision region into five areas) gives us the ability to divid BND(A) =
{x2,x4,x10} into SemiL(A) − Aβ = {x2}, which is closer to the positive region, Aβ −
SemiU(A)= {x4}, which is closer to the negative region, and SemiBND(A)= {x10}.

4. Conclusion

The decision theoretic rough set theory is a probabilistic generalization of standard rough
set theory and extends the application domain of rough sets. The decision model can be
interpreted in terms of more familiar and interpretable concept known as loss or cost.
One can easily interpret or mesure loss or cost according to real application.

We have proposed in this paper a generalized decision-theoretic approach, which is
applied under granulated view of the universe by any general binary relation. This ap-
proach enables us to classify the decision region into five areas. This classification will
enlarge the choice for decision maker and help in increasing the decision efficiency.
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