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A group G has Černikov classes of conjugate subgroups if the quotient group G/
coreG(NG(H)) is a Černikov group for each subgroup H of G. An anti-CC-group G is
a group in which each nonfinitely generated subgroup K has the quotient group G/
coreG(NG(K)) which is a Černikov group. Analogously, a group G has polycyclic-by-finite
classes of conjugate subgroups if the quotient group G/coreG(NG(H)) is a polycyclic -by-
finite group for each subgroup H of G. An anti-PC-group G is a group in which each
nonfinitely generated subgroup K has the quotient group G/coreG(NG(K)) which is a
polycyclic-by-finite group. Anti-CC-groups and anti-PC-groups are the subject of the
present article.
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1. Introduction

The groups in which each subgroup has only finitely many conjugates have been charac-
terized by B. H. Neumann [1, Section 4, page 127] more than fifty years ago. A group G
which has the center Z(G) of finite index in G is called central-by-finite. B. H. Neumann
showed that a group is central-by-finite if and only if each subgroup has only finitely many
conjugates. A subgroup H of a group G is called almost normal in G if H has finitely many
conjugates in G, that is, if H has finite index |G : NG(H)|, where NG(H) is the normalizer
of H in G. Therefore, Neumann’s theorem [1, Section 4, page 127] shows that a central-
by-finite group is characterized to have each subgroup, which is almost normal.

Neumann’s theorem can be formulated in terms of classes of groups as follows. For a
subgroup H of a group G, we write
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NG
(
ClG(H)

)= coreG
(
NG(H)

)=
⋂

x∈G
NG(H)x, (1.1)

where ClG(H) denotes the set of conjugates of H in G. Clearly, coreG(NG(H)) is a normal
subgroup of G and

⋂

x∈G
NG(H)x =

⋂

x∈G
NG
(
Hx
)
. (1.2)

The index |G : NG(H)| = |ClG(H)| is finite if and only if the quotient group G/
coreG(NG(H)) is finite. We will say that G has finite classes of conjugate subgroups if G/
coreG(NG(H)) is a finite group for each subgroup H of G. Thus Neumann’s theorem as-
serts that a group G has G/coreG(NG(H)), which is a finite group for each subgroup H of
G if and only if G is central-by-finite [2, Introduction]. It is clear that H is almost normal
in G if and only if G/coreG(NG(H)) is a finite group.

A first extension of the concept of group with finite classes of conjugate subgroups
can be given as follows. A group G has Černikov finite classes of conjugate subgroups if
G/coreG(NG(H)) is a Černikov group for each subgroup H of G (see [1, 3] for details
about Černikov groups). This formulation has been recently introduced in [2], obtaining
a satisfactory description as testified in [2, Main Theorem]. The initial work of Polovickiı̆
[4] gave a description of a periodic group G with Černikov classes of conjugate subgroups
by showing thatG is central-by-Černikov, that is,G hasG/Z(G) which is a Černikov group.
Since the class of Černikov groups extends the class of finite groups, Neumann’s theorem
can be found as a special situation in [2, Proposition 2.4].

A second extension of the concept of group with finite classes of conjugate subgroups
can be given as follows. A group G has polycyclic-by-finite classes of conjugate subgroups if
G/coreG(NG(H)) is a polycyclic-by-finite group for each subgroup H of G (see [1, 5] for
details about polycyclic-by-finite groups). This formulation has been recently introduced
in [6], obtaining a satisfactory description as testified in [6, Main Theorem]. Initially, [7,
Theorem 5.5] describes a group G which is central-by-(polycyclic-by-finite), that is, G has
G/Z(G) which is a polycyclic-by-finite group. References [7, Theorem 5.5] and [6, Main
Theorem] allow us to see Neumann’s theorem as a special situation.

Let χ be a property of subgroups in groups, and let L be a family of subgroups of a given
group G. It is a long standing line of research in Group Theory to study those groups in
which all subgroups belonging to the family L of subgroups have the property χ. The
beginnings of this line reach back to works of Dedekind [8] and Miller and Moreno [9].

Examples of families of subgroups considered so far are the family L
1

of all proper
subgroups, the family L

2
of all finite subgroups, L

3
of all infinite subgroups, L

4
of all

abelian subgroups, L
5

of all nonabelian subgroups, and L
6

of all finitely generated sub-
groups; while subgroups properties considered are for instance to be normal, subnor-
mal, and subnormal of bounded defect, complemented, supplemented, and almost nor-
mal, or to satisfy min, max, min-∞, and max-∞ (see [1, 10] for details). The references
[11–21] show part of the literature which has been devoted to this topic during the last
years.

We can often obtain a fairly good description of the group G if the family L is not too
distant from L

1
. If, on the other hand, L is not a small subfamily of L

1
, the information
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“all subgroups of G belonging to L have property χ” is rather restricted. We take the fam-
ily L

6
as an example: the descriptions of groups, all of which finitely generated subgroups

are subnormal (Baer-groups, see [1, Lemmas 2.34, 2.35]), almost normal (FC-groups,
see [1]), or satisfying max (locally noetherian groups, see [1]), are rather unsatisfactory.
An exception is the class of all groups, all of which finitely generated subgroups are nor-
mal. These are the Dedekind groups and they have been classified. Therefore it may be
interesting to study groups in which a property χ is imposed on a large family of sub-
groups, for instance, on the family L

7
of all nonfinitely generated subgroups. Clearly,

L
7
= L

1
/L

6
. For the property χ, we choose to have Černikov classes of conjugate sub-

groups.
So this article is devoted to groups G, satisfying either of the following properties:

(i) if the subgroup H of G is nonfinitely generated,
then G/coreG(NG(H)) is a Černikov group;

(ii) if the subgroup H of G is nonfinitely generated,
then G/coreG(NG(H)) is a polycyclic-by-finite group.

A group G which satisfies (i) is called anti-CC-group in analogy with the terminology
which has been adopted in [13], where anti-FC-groups have been analyzed. An anti-FC-
group G is a group in which each nonfinitely generated subgroup H is almost normal
in G. A group G which satisfies (ii) is called anti-PC-group. From the previous consid-
erations, it is clear that a group G is an anti-FC-group if and only if each nonfinitely
generated subgroup H of G has G/coreG(NG(H)) which is a finite group. Therefore, the
notions of the anti-CC-group and anti-PC-group extend the notion of the anti-FC-group
so that most of the results in [13] can be found as special situations.

Section 2 is devoted to recall some preliminaries which help us to prove the main
results. Our main results are contained in Sections 3 and 4. More precisely, Section 3
describes locally finite anti-CC-groups and anti-PC-groups. Section 4 describes locally
nilpotent anti-CC-groups and anti-PC-groups.

Our notation is standard and can be found in [1]. The background has been referred
to [1, Section 4.3] for FC-groups, to [4, 22, 23] for CC-groups, and to [7] for PC-groups.
General information on locally finite and locally nilpotent groups can be found in [10,
14, 24].

2. Preliminary results

Let G be a group. An element x of G is called FC-element of G if G/CG(〈x〉G) is a finite
group. The set F(G) of all FC-elements of G is a characteristic subgroup of G, which is
called FC-center of G [1, Section 4.3]. In a similar way, an element x of G is called CC-
element of G if G/CG(〈x〉G) is a Černikov group. The set C(G) of all CC-elements of G is
a characteristic subgroup of G, which is called CC-center of G (see [25, Section 3]). In a
similar way, an element x of G is called PC-element of G if G/CG(〈x〉G) is a polycyclic-by-
finite group. The set P(G) of all PC-elements of G is a characteristic subgroup of G, which
is called PC-center of G (see [7]). Obviously, G is an FC-group if and only if G = F(G).
Similarly, G is a CC-group if and only if G= C(G). Similarly, G is a PC-group if and only
if G= P(G).
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The next result overlaps [25, Lemma 3.2] and it is shown only to the convenience of
the reader.

Lemma 2.1. Let G be a group and let n be a positive integer.
(i) G is an FC-group if and only if

F(G)= 〈H = 〈h1, . . . ,hn
〉

: G/coreG
(
NG(H)

)
is a finite group

〉
. (2.1)

(ii) G is a CC-group if and only if

C(G)= 〈H = 〈h1, . . . ,hn
〉

: G/coreG
(
NG(H)

)
is a Černikov group

〉
. (2.2)

(iii) G is a PC-group if and only if

P(G)= 〈H = 〈h1, . . . ,hn
〉

: G/coreG
(
NG(H)

)
is a polycyclic-by-finite-group

〉
. (2.3)

Proof. Assume thatG is an FC-group, x is an FC-element ofG andK = 〈H = 〈h1, . . . ,hn〉 :
G/coreG(NG(H)) is finite〉. If a∈ CG(〈x〉G), then [by ,a]= 1 for each b ∈ 〈x〉 and y ∈ G,
in particular,

a∈
⋂

g∈G
NG
(〈x〉g)= coreG

(
NG
(〈x〉)). (2.4)

Therefore, CG(〈x〉G) is contained in coreG(NG(〈x〉)) so that G/coreG(NG(〈x〉)) is a finite
group and x belongs to K . Then F(G) ≤ K , but F(G) = G so that G = K . Conversely,
assume that F(G)= K . Then each finitely generated subgroup of G is almost normal in G
and this implies that G is an FC-group. Then (i) has been proved.

A similar argument shows (ii) and (iii). �

Reference [15] describes those groups in which each nonfinitely generated subgroup is
subnormal. Such groups are called db-groups and they represent the dual class of the Baer
groups (see [26], [1, Section 2.3]). Unfortunately, we cannot say that an anti-CC-group
(resp., an anti-PC-group) is a db-group so that many results of [15] cannot be directly
applied. However, it is possible to compare [13, Theorems 2.2, 2.11, 2.13, 3.6, 3.11, 3.16,
3.17, 4.6, 4.8, 4.11, 4.12, 4.15, 4.16] with [15, Theorems 1, 2, 3, 4, 5], noting that analogous
situations happen for anti-CC-groups (resp., for anti-PC-groups). In particular, some
methods which have been used in the present paper mime the methods which have been
used in [13, 15].

We end this section, recalling two results which are fundamental in our investigations.
The first result describes the structure of a group with Černikov classes of conjugate sub-
groups (see [2, Main Theorem], [4]).

Theorem 2.2 [2]. Let G be a group with Černikov classes of conjugate subgroups. Then the
following assertions hold:

(i) G has an abelian normal subgroup A such that G/A is a Černikov group;
(ii) if T is the torsion subgroup of A, then G/CG(T) is a finite group;

(iii) [G,G] is a Černikov group;
(iv) if G is periodic, then G is a central-by-Černikov group.
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A group G which has an abelian normal subgroup A such that G/A is a Černikov
group and is said to be abelian-by-Černikov. This situation happens in statement (i) of
the preceding theorem.

The second result describes the structure of a group with polycyclic-by-finite classes of
conjugate subgroups [6, Main Theorem].

Theorem 2.3 [6]. A group G has polycyclic-by-finite classes of a conjugate subgroups if and
only if it is central-by-(polycyclic-by-finite).

3. Locally finite case

The first two statements follow from the definitions and from Lemma 2.1, so the proofs
have been omitted.

Lemma 3.1. (i) Subgroups and quotient groups of anti-CC-groups are anti-CC-groups.
(ii) Subgroups and quotient groups of anti-PC-groups are anti-PC-groups.

Lemma 3.2. (i) If G is an anti-CC-group and C(G) = G, then G has Černikov classes of
conjugate subgroups.

(ii) If G is an anti-PC-group and P(G) = G, then G has polycyclic-by-finite classes of
conjugate subgroups.

Lemma 3.3. Assume that x is an element of the anti-CC-group G. If A=Dri∈IAi is a sub-
group of G consisting of 〈x〉-invariant nontrivial direct factors Ai, i∈ I , with infinite index
set I , then x belongs to C(G).

Proof. Consider 〈x1〉 = 〈x〉 ∩ A. Then supp x1 = I1 is a finite subset of I , and 〈x〉 ∩
Dri∈MAi = 1, where M = I \ I1 is infinite. We choose two infinite subsets M1 and M2

of M such that M1 ∪ M2 = M and M1 ∩ M2 = ∅. Obviously, H1 = 〈x〉Dri∈M1Ai

and H2 = 〈x〉Dri∈M2Ai cannot be finitely generated, therefore, G/coreG(NG(〈H1〉)) and
G/coreG(NG(〈H2〉)) are Černikov groups. Put K1 = coreG(NG(〈H1〉)) and K2 =
coreG(NG(〈H2〉)). We note that

K1∩K2 ≤ coreG
(
NG
(〈
H1
〉∩ 〈H2

〉))
,

coreG
(
NG
(〈
H1
〉∩ 〈H2

〉))= coreG
(
NG
(〈x〉)).

(3.1)

But

G/coreG
(
NG
(〈
H1
〉∩ 〈H2

〉))=G/coreG
(
NG
(〈x〉)) (3.2)

is isomorphic to

G/K1∩K2

coreG
(
NG
(〈
H1
〉∩ 〈H2

〉))
/K1∩K2

, (3.3)

thanks to the well-known results of isomorphism between groups. G/K1 ∩ K2 is a
Černikov group because it is the subdirect product of the Černikov groups G/K1 and
G/K2. Then G/coreG(NG(〈x〉)) is a Černikov group, and so x belongs to C(G). �
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Lemma 3.4. Assume that x is an element of the anti-PC-group G. If A= Dri∈IAi is a sub-
group of G consisting of 〈x〉-invariant nontrivial direct factors Ai, i∈ I , with infinite index
set I , then x belongs to P(G).

Proof. We follow the argument of the previous proof, using polycyclic-by-finite groups
instead of Černikov groups. �

Corollary 3.5. Let G be an anti-CC-group and A=Dri∈IAi a subgroup of G consisting of
infinitely many nontrivial direct factors. Then A is contained in C(G).

Corollary 3.6. Let G be an anti-PC-group and A=Dri∈IAi a subgroup of G consisting of
infinitely many nontrivial direct factors. Then A is contained in P(G).

Lemma 3.7. Assume that g is an element of the anti-CC-group G and A = Dri∈IAi is a
subgroup of G, with I as in Lemma 3.3. If g ∈ NG(A) and gn ∈ CG(A) for some positive
integer n, then g belongs to C(G).

Proof. We define two subsets of I , namely, M1 = {i : Z(Ai) 	=1} and M2 = {i : γn(Ai) 	=1
for every n∈ N}. Obviously, M1∪M2 = I , so at least one of the two subsets is infinite.

Case 1 (M2 is infinite). IfD1, . . . ,Dn are normal subgroups of a group F, then [. . .[[D1,D2],
D3], . . . ,Dn] is a normal subgroup of F, which is contained in

⋂n
i=1Di, furthermore, [Di,

DjDk]= [Di,Dj][Di,Dk].
Now A=Dri∈Ix−rAxr for every positive integer r, where x is an element of G and we

obtain that

T =Dr(i1,...,in)∈InAi1 ∩ x−1Ai2x∩ x−2Ai3x
2∩ ··· ∩ x−n+1Ainx

n−1 (3.4)

is a direct product of infinitely many nontrivial factors since γn(Ai)≤ T . By construction,
x normalizes T and permutes the given direct factors of T . By combining the conjugates
under x to one new factor, we have reduced the situation to that of Lemma 3.3, and find
that x belongs to C(G).

Case 2 (M1 is infinite). Then the abelian group Z(A) is normalized by x and centralized
by xn. Clearly, Z(A) is of infinite rank. Denote by W the torsion subgroup of Z(A). Again
W is normalized by x. If the set of primes π occurring as orders of elements of W is
infinite, we may define two subsets π1, π2 of π, both infinite such that π1 ∪ π2 = π and
π1 ∩ π2 =∅. If W1 and W2 are the corresponding π j-Sylow subgroups of W ( j = 1,2),
then 〈x〉W1, 〈x〉W2, and 〈x〉W1∩〈x〉W2 = 〈x〉 belong to C(G).

If M1 is infinite and the torsion subgroup W is of a infinite rank but π is finite, there is
a characteristic elementary abelian p-subgroup V of W which is of infinite rank. Again,
V is the direct product of two infinite 〈x〉-invariant subgroups V1 and V2 such that V1∩
〈x〉V2 = 1. Again, 〈x〉V1, 〈x〉V2, and 〈x〉V1∩〈x〉V2 = 〈x〉 belong to C(G). If the torsion
subgroup W is of finite rank, we can construct a torsion-free 〈x〉-invariant subgroup L
of infinite rank in Z(A). Again, 〈x〉-invariant subgroups of infinite rank L1, L2 can be
chosen with L1∩〈x〉L2 = 1, and L2L1 = L.

Now 〈x〉L1, 〈x〉L2, and 〈x〉L1 ∩ 〈x〉L2 = 〈x〉 belong to C(G). This completes Case 2,
and the result follows. �
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Lemma 3.8. Assume that g is an element of the anti-PC-group G and A = Dri∈IAi is a
subgroup of G, with I as in Lemma 3.4. If g ∈ NG(A) and gn ∈ CG(A) for some positive
integer n, then g belongs to P(G).

Proof. We follow the argument of the previous proof, using polycyclic-by-finite groups
instead of Černikov groups and Lemma 3.4 instead of Lemma 3.3. �

Corollary 3.9. If the anti-CC-group G has an abelian torsion subgroup that does not
satisfy the minimal condition on its subgroups, then all elements of finite order belong to
C(G).

Proof. Denote the torsion subgroup of C(G) by T . We deduce from Corollary 3.5 that
T does not satisfy min-ab. Choose an element x of finite order in G. A result of Zaı̆tsev
[21] implies that T possesses an abelian 〈x〉-invariant subgroup A that does not satisfy
min-ab. From Lemma 3.7, x belongs to C(G). �

Corollary 3.10. If the anti-PC-group G has an abelian torsion subgroup that does not
satisfy the minimal condition on its subgroups, then all elements of finite order belong to
P(G).

Proof. We follow the argument of the previous proof, using polycyclic-by-finite groups
instead of Černikov groups, Corollary 3.6 instead of Corollary 3.5, and Lemma 3.8 in-
stead of Lemma 3.7. �

Theorem 3.11. If G is a locally finite anti-CC-group, then either G has Černikov classes of
conjugate subgroups or G is a Černikov group.

Proof. If G does not satisfy min-ab, then G= C(G) by Corollary 3.9. From Lemma 3.2, G
has Černikov classes of conjugate subgroups. If G satisfies min-ab, then a famous result
of Shunkov [1, page 98] implies that G is a Černikov group. �

Theorem 3.12. If G is a locally finite anti-PC-group, then either G has finite classes of
conjugate subgroups or G is a Černikov group.

Proof. If G does not satisfy min-ab, then G= P(G) by Corollary 3.10. From Lemma 3.2,
G has polycyclic-by-finite classes of conjugate subgroups. Then Theorem 2.3 implies that
G/Z(G) is a polycyclic-by-finite group. Since G is periodic, G/Z(G) is a finite group. If G
satisfies min-ab, then a famous result of Shunkov [1, page 98] implies that G is a Černikov
group. �

Corollary 3.13. If G is a locally finite anti-CC-group, then either G is central-by-Černikov
or G is a Černikov group.

Proof. From Theorem 3.11, either G has Černikov classes of conjugate subgroups or G is
a Černikov group. In the first case, we may apply (iv) of Theorem 2.2 so that the result
follows. �

Corollary 3.14. If G is a locally finite anti-PC-group, then either G is central-by-finite or
G is a Černikov group.
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Proof. From Theorem 3.12, either G has finite classes of conjugate subgroups or G is a
Černikov group. In the first case, we recall that this is a different formulation of the Neu-
mann’s theorem, as mentioned in the introduction of the present paper. Then the result
follows. �

It seems opportune to note that Theorems 3.11 and 3.12 include [13, Theorem 2.2] as
a special case, and agree with [15, Theorem 1].

Now the classification of the locally finite anti-CC-group is easy to see.

Theorem 3.15. The infinite locally finite group G which is not a Černikov group is an anti-
CC-group if and only if G is central-by-Černikov.

Proof. If G is not a Černikov group, then the result follows from Corollary 3.13. �

In a similar way, the classification of the locally finite anti-PC-group is easy to see.

Theorem 3.16. The infinite locally finite group G which is not a Černikov group is an anti-
PC-group if and only if G is central-by-finite.

Proof. If G is not a Černikov group, then the result follows from Corollary 3.14. �

4. Locally nilpotent case

A group G is called soluble-by- f inite if it has a normal soluble subgroup S whose index
|G : S| is finite. We recall that a group G has finite abelian section rank if it has no infinite
elementary abelian p sections for every prime p (see [1, volume II, Section 10]). Fol-
lowing [1, 13], a soluble-by-finite group G is an �1-group if it has finite abelian section
rank and the set of prime divisors of orders of elements of G is finite. Literature on �1-
groups can be found, for instance, in [1, volume II]. Finally, we recall the notion of rank
of a group, following the well-known terminology of Prüfer (see [1]). If A is an abelian
group, the torsion-free rank of A is the rank of the factor group A/T(A), where T(A) de-
notes the set of all elements of finite order in A. The torsion-free rank of A is denoted by
r0(A). The total rank of A is the sum r0(A) +

∑
prp(A), where rp(A) is the rank of the p

components of A for each prime number p.

Theorem 4.1. Let G be an anti-CC-group having an ascending series whose factors are
either locally nilpotent or locally finite. Then G has Černikov classes of conjugate subgroups
or is a soluble-by-finite �1-group.

Proof. G possesses an ascending normal series whose factors are either locally nilpotent
or locally finite [1, Theorem 2.31]. Let K be the largest radical normal subgroup of G. It
follows from Corollary 3.13 that the largest locally finite normal subgroup T/K of G/K is
either central-by-Černikov or a Černikov group. On the other hand, the factor group G/K
has no nontrivial locally nilpotent normal subgroups, and hence T/K is a Černikov group.
If H/T is a locally nilpotent normal subgroup of G/T , then the centralizer CH/K (T/K) is a
locally nilpotent normal subgroup of G/K so that CH/K (T/K)= 1 and H/K is a Černikov
group. It follows that T = G so that G has a normal radical subgroup K such that T/K is
a Černikov group (in this situation, G is said to be a radical-by-Černikov group). Assume
that G has Černikov classes of conjugate subgroups. Then every abelian subgroup of G
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has finite total rank by Corollary 3.5. A result of Charin (see [1, Theorem 6.36]) implies
that K is a soluble �1-group. We conclude that G has a normal soluble �1-subgroup K
such that G/K is a Černikov group. Therefore, G is an extension of a soluble �1-group
by an abelian group with min by a finite group. An abelian group with min is clearly an
�1-group and the class of �1-groups is closed with respect to extensions of two of its
members (see [1, 15]). Therefore, G is a soluble-by-finite �1-group. �

Theorem 4.2. Let G be an anti-PC-group having an ascending series whose factors are
either locally nilpotent or locally finite. Then G has finite classes of conjugate subgroups or is
a soluble-by-finite �1-group.

Proof. We repeat the argument of the previous proof so that it is shown only for the
convenience of the reader.

G possesses an ascending normal series whose factors are either locally nilpotent or
locally finite [1, Theorem 2.31]. Let K be the largest radical normal subgroup of G. It
follows from Corollary 3.14 that the largest locally finite normal subgroup T/K of G/K
is either central-by-finite or a Černikov group. From then, we repeat exactly the corre-
sponding part in the proof of Theorem 4.1, using Corollary 3.6 instead of Corollary 3.5.
It follows that G is a soluble-by-finite �1-group. �

Corollary 4.3. Let G be an anti-CC-group having an ascending series whose factors are
either locally nilpotent or locally finite. Then G is abelian-by-Černikov or a soluble-by-finite
�1-group.

Proof. This follows from Theorems 4.1 and 2.2. �

Corollary 4.4. Let G be an anti-PC-group having an ascending series whose factors are
either locally nilpotent or locally finite. Then G is central-by-finite or a soluble-by-finite �1-
group.

Proof. This follows from Theorem 4.2 and the formulation of Neumann’s theorem as in
the introduction. �

It is well known that a locally nilpotent group G has its torsion subgroup T which is
locally finite and the quotient group G/T which is torsion-free (see [1]). Then it is enough
to investigate the structure of a torsion-free locally nilpotent anti-CC-group (resp., anti-
PC-group) in order to have a satisfactory description of a locally nilpotent anti-CC-group
(resp., anti-PC-group).

Proposition 4.5. Let G be a torsion-free locally nilpotent anti-CC-group. If G is neither
finitely generated nor abelian, then it is nilpotent of class 2.

Proof. Assume from Theorem 4.1 that G has Černikov classes of conjugate subgroups.
[G,G] should be a Černikov group from Theorem 2.2 and this cannot be. Then we may
assume that G is a soluble-by-finite �1-group, since G is nonfinitely generated, also its
center Z(G) is nonfinitely generated from [27, Lemma 2.6]. Let X/Z(G) be a subgroup
of G/Z(G). Then X is nonfinitely generated, and hence G/coreG(NG(X)) is a Černikov
group. But every subgroup of G/Z(G) has such property so that G/Z(G) has Černikov
classes of conjugate subgroups. Now G/Z(G) satisfies Theorem 2.2 so that its derived
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subgroup [G/Z(G),G/Z(G)] is a Černikov group. We note that T(G/Z(G))=T(G)Z(G)/
Z(G) and T(G) = 1, then T(G/Z(G)) = 1 and G/Z(G) is a torsion-free group. Now [G/
Z(G), G/Z(G)]= 1 so that G/Z(G) is abelian, and G is nilpotent of class 2. �

Proposition 4.6. Let G be a torsion-free locally nilpotent anti-PC-group. If G is neither
finitely generated nor abelian, then it is nilpotent of class 2.

Proof. We may repeat the argument of the preceding proof, consider the corresponding
statements for anti-PC-groups. �

Theorem 4.7. Assume that G is a locally nilpotent anti-CC-group with torsion subgroup T .
Then

(i) T is either central-by-Černikov or a Černikov group;
(ii) G/T is torsion-free nilpotent of class 2, whenever it is neither finitely generated nor

abelian.

Proof. (i) follows from Corollary 3.13. (ii) follows from Proposition 4.5. �

Theorem 4.8. Assume that G is a locally nilpotent anti-PC-group with torsion subgroup T .
Then

(i) T is either central-by-finite or a Černikov group;
(ii) G/T is torsion-free nilpotent of class 2, whenever it is neither finitely generated nor

abelian.

Proof. (i) follows from Corollary 3.14. (ii) follows from Proposition 4.6. �

5. Examples

Example 5.1. Each anti-FC-group is an anti-CC-group as testified by definitions. Exam-
ples of anti-FC-groups can be found in [13, page 44, lines 1–13] or [13, Example 3.12].
Of course, each anti-FC-group is an anti-PC-group.

Example 5.2. The Example which has been described in [2, Section 4] is a nonperiodic
group with Černikov classes of conjugate subgroups. This example is an anti-CC-group.
Each central-by-(polycyclic-by-finite) group is an anti-PC-group thanks to Theorem 2.3.
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