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A connection between the separability and the countable chain condition of spaces with
L-property (a topological space X has L-property if for every topological space Y , sepa-
rately continuous function f : X ×Y →R and open set I ⊆R, the set f −1(I) is an Fσ-set)
is studied. We show that every completely regular Baire space with the L-property and
the countable chain condition is separable and constructs a nonseparable completely reg-
ular space with the L-property and the countable chain condition. This gives a negative
answer to a question of M. Burke.
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1. Introduction

A function f : X →R defined on a topological space X is called a first Baire class function
if there exists a sequence ( fn)∞n=1 of continuous functions fn : X → R which converges
pointwise to f on X ; and a first Lebesgue class function if f −1(G) is an Fσ-set for every
open set G ⊆ R. Standard reasons (see [1, page 394]) show that every first Baire class
function is a first Lebesgue class function.

Investigations of Baire and Lebesgue classifications of separately continuous functions
were started by Lebesgue in [2] and were continued in papers of many mathematicians
(see [3]).

We say that a topological space X has the B-property (the L-property) if for every topo-
logical space Y each separately continuous function f : X ×Y → R is a first Baire class
function (a first Lebesgue class function).

It is known [4, 5] that any topological space X has the B-property (the L-property)
if and only if the evaluation function cX : X ×Cp(X)→ R, cX(x, y)= y(x) is a first Baire
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class function (a first Lebesgue class function), where Cp(X) means the space of continu-
ous on X functions with the pointwise convergence topology.

Baire and Lebesgue classifications of separately continuous function were investigated
in [6]. In particular, it was shown in [6] that any completely regular space X with the
B-property and the countable chain condition is separable (topological space X has a
countable chain condition (CCC) if every system of disjoint open-in-X sets is at most
countable). In this connection the following question arose in [6, Problem 4.6].

Question 1. Is every completely regular space X with the L-property and the countable
chain condition a separable space?

In this paper, we show that if a space X is a Baire space, then Question 1 has a positive
answer and construct an example which gives a negative answer to the question in general
case.

2. Density of Baire spaces with the L-property

The minimal cardinal ℵ ≥ ℵ0 for which any system of disjoint open in a topological space
X sets has the cardinality at most ℵ is called a Souslin number of X and is denoted by c(X).
Note that the countable chain condition of X means that c(X)= ℵ0. It is easy to see that
c(X)≤ d(X), where d(X) is the density of X .

The following result implies that for a Baire space X Question 1 has a positive answer.

Theorem 2.1. Let X be a completely regular Baire space with the L-property. Then c(X)=
d(X).

Proof. Since the evaluation function cX is a first Lebesgue class function, the set E =
{(x, y) : y(x) = 0} is a Gδ-set in X ×Y , where Y = Cp(X). Choose a sequence (Wn)∞n=1

of open-in-X ×Y sets Wn such that E =⋂∞n=1Wn. Denote by y0 the null-function on Y .
For every n∈N and an x ∈ X find open neighborhoods U(x,n) and V(x,n) of x and y0

in X and Y , respectively, such that U(x,n)×V(x,n)⊆Wn.
Fix an n ∈N and show that there exists a set An ⊆ X with |An| ≤ c(X) = ℵ such that

the open set Gn =
⋃

x∈An
U(x,n) is dense in X . Consider a system � of all open-in-X

nonempty sets U such that U ⊆ U(x,n) for some x ∈ X and choose a maximal system
�′ ⊆� which consists of disjoint sets. It is clear that |�′| ≤ ℵ. For every U ∈�′ find an
x = x(U)∈ X such that U ⊆U(x,n) and put An = {x(U) : U ∈�′}. Then |An| ≤ |�′| ≤
ℵ. Besides, it follows from the maximality of �′ that Gn is dense in X .

Since X is a Baire space, the set X0 =
⋂∞

n=1Gn is dense in X . For every n ∈ N and
x ∈ X choose a finite set B(x,n)⊆ X such that y ∈ V(x,n) for each y ∈ Y with y|B(x,n) =
y0|B(x,n). Put B =⋃n∈N

⋃
x∈An

B(x,n). Note that |B| ≤ ℵ0 ·ℵ = ℵ.
Show that B is dense in X . Since X is a completely regular space, it is enough to prove

that y0 is a unique continuous on X function which equals to 0 at every point from B.
Let y ∈ Y be a function such that y(b) = 0 for every b ∈ B. Fix a point x ∈ X0 and an
integer n ∈N. Find a ∈ An such that x ∈ U(a,n). Then B(a,n) ⊆ B implies y ∈ V(a,n).
Therefore, (x, y)∈Wn. Thus X0×{y} ⊆

⋂∞
n=1Wn = E, that is, y(x)= 0 for every x ∈ X0.

Hence y = y0 because X0 is dense in X .
Thus d(X)≤ |B| ≤ c(X). Therefore, c(X)= d(X). �
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Corollary 2.2. Every completely regular Baire space with the L-property and the countable
chain condition is a separable space.

3. Nonseparable spaces with the L-property and CCC

The following notion was introduced in [4], where some properties of spaces with the
B-property were studied.

A topological space X with a topology τ is called quarter-stratifiable if there exists a
function g :N×X → τ such that

(i) X =⋃x∈X g(n,x) for every n∈N;
(ii) if x ∈ g(n,xn) for each n∈N, then xn→ x.

The following result follows from [7, Proposition 2.1].

Proposition 3.1. Every quarter-stratifiable space X has the L-property.

A topological space X is called σ-discrete if there exists an increasing sequence (Xn)∞n=1

of closed discrete subspaces Xn of X such that X =⋃∞n=1Xn.

Proposition 3.2. Every σ-discrete space is a quarter-stratifiable space.

Proof. Let (Xn)∞n=1 be an increasing sequence of closed discrete subspaces Xn of X such
that X =⋃∞n=1Xn. For every n∈N and x ∈ Xn denote by U(x,n) an open-in-X neighbor-
hood of x such that U(x,n)∩Xn = {x}. We define a function g : N×X → τ, where τ is
the topology of X , by g(x,n)=U(x,n) if x ∈ Xn and g(x,n)= X \Xn if x �∈ Xn. It is easy
to see that g satisfies (i) and (ii). �

Show now that Question 1 has a negative answer.

Theorem 3.3. There exists a completely regular nonseparable space with the L-property and
with the countable chain condition.

Proof. Let Γ0 be a set with |Γ0| ≥ ℵ1, let (an)∞n=1 be a sequence of distinct points an �∈ Γ0,
Γn = Γ0∪{ak : 1≤ k ≤ n}, and let �n be a system of all subsets A⊆ Γn−1 such that |A| =
n. Denote by Xn a set of all function x ∈ {0,1}Γ such that x = χA∪{an} for some A ∈�n,
where χB means the characteristic function of B, and put X =⋃∞n=1Xn.

Show that X is a σ-discrete space. For every n ∈ N put Yn =
⋃n

k=1Xk. Fix an integer
n∈N and for each 1≤ k ≤ n put Gk = {x ∈ X : x(ak)= 1, x(ai)= 0, k < i≤ n}. It is easy
to see that Gk ∩Yn = Xk. Since all spaces Xk are discrete, Yn is discrete in X too. Besides,
Yn is closed in X . Thus, X has the L-property by Propositions 3.1 and 3.2.

Note that X is dense in Y = {0,1}Γ. Indeed, let A⊆ Γ be a finite set and y : A→ {0,1}.
Choosing n ≥ |A| with A ⊆ Γn find x ∈ Xn+1 such that x|A = y. Then c(X) = ℵ0 since
c(Y)= ℵ0 and X is dense in Y .

It remains to note that X is nonseparable because for every separable subspace Z of X
there exists a countable set B ⊆ Γ such that z(γ)= 0 for every γ ∈ Γ \B. �

This example shows that there exists a quarter-stratifiable space which has not the B-
property. Thus, Proposition 3.1 cannot be generalized for spaces with the B-property.
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A family (Ai : i ∈ I) of sets Ai is called pointwise finite if
⋂

i∈J Ai =Ø for each infinite
set J ⊆ I . A cardinal

p(X)= sup
{|�| : � is a pointwise finite family of nonempty open-in-X sets

}
(3.1)

is called a point-finite cellularity of a topological space X . Clearly c(X) ≤ p(X). Besides,
it is known that p(X) = c(X) for each Baire space X . Therefore, the following question
arises naturally from Theorem 2.1 and the fact that p(X)= |Γ| > ℵ0 for the space X from
Theorem 3.3.

Question 2. Is every completely regular space X with the L-property and p(X) = ℵ0 a
separable space?
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