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1. Introduction

In ring theory, the notion of annihilator is an important tool for studying the structures.
Many characterizations and structure theorems can be derived by using this notion. On
the other hand, certain classes of rings (e.g., Baer rings and Rickart rings) are defined by
considering annihilators ideals. In the present work, we introduce a class of rings which
is close to the class of Rickart rings. We then investigate endomorphism rings having this
property. This will enable us to obtain characterizations of certain classes of rings, namely
the SV-rings and the hereditary rings.

We have divided this work into three sections. In the first we give some preliminary
results and examples. In the second, we characterize SV-rings. The third section is devoted
to hereditary rings.

2. Definitions and preliminary results

All rings are assumed to be associative and unitary. All modules are left unital modules.
For definitions and background, we refer to [1] or [2].

Definitions 2.1. (i) Let R be a ring. The right annihilator of S ⊂ R is the set Annr(S) =
{a∈ R : sa= 0 for all s∈ S}.
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(ii) A ring is called a left AI-ring if every nonzero right annihilator contains a nonzero
idempotent.

Examples 2.2. (i) A ring R is called left Rickart (or left PP-ring), if every left annihilator
of an element s ∈ R is generated by an idempotent. If R is left Rickart, then R is left AI .
For if I = Annr(S) is a nonzero right annihilator, one can pick a nonzero element a in I
and consider Annl(a). Since R is left Rickart, there exists an idempotent e �= 1 in R such
that Annl(a)= Re. Now S⊂ Re, implying that S(1− e)= 0. That is, 0 �= 1− e ∈ I .

(ii) Any prime ring R with nonzero socle is left and right AI since Soc(R) is (left and
right) essential, so if I = Annr(S), then I ∩ Soc(R) �= 0. Thus I contains a minimal right
ideal which is generated by an idempotent. In particular, if E is a normed vector space,
then the algebra of bounded linear operator BL(E) is left and right AI .

Proposition 2.3. If R is a left AI-ring, then R is left nonsingular.

Proof. Suppose that the left singular ideal of R, Sing(R), is nonzero, and let 0 �= x ∈
Sing(R). Then there exists an essential left ideal I of R such that Ix = 0. But R is left
AI , thus there exists a nonzero idempotent e ∈ R such that Ie = 0. This implies that
I ⊂ R(1− e), a contradiction. �

Example 2.4. The converse of the preceding proposition is not true as we see by the fol-
lowing construction. Let K be any field, consider the factor ring R= K[x, y]/(xy), where
K[x, y] is the polynomial ring of two commuting indeterminates x, y, and (xy) is the
ideal of K[x, y] generated by xy. R is nonsingular but Ann x = (y) contains no nonzero
idempotent.

For rings with some finiteness conditions on idempotents, the condition of being an
AI-ring is equivalent to that of being Baer ring.

Theorem 2.5. Let R be a ring having no infinite set of pairwise orthogonal idempotents. The
following assertions are equivalent:

(i) R is left AI ;
(ii) R is right AI ;

(iii) R is Baer;
(iv) R is left and right Rickart.

For the proof, see [3, Theorem 7.55].

3. Characterization of SV-ring by the AI condition

In this section, we will consider modules with AI endomorphism ring. This will lead us
to an external characterization of the class of semi-Artinian V-rings.

Lemma 3.1. Let R be a ring, L, P, Q nonzero R-modules, and Q′ the direct sum or the direct
product of a denumerable family of copies of Q. Let u, v be the endomorphisms of Q′ defined
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by

u
(
x1,x2, . . . ,xn, . . .

)= (0,x1,x2, . . . ,xn, . . .
)
,

v
(
x1,x2, . . . ,xn, . . .

)= (x2,x3, . . . ,xn, . . .
)
.

(3.1)

(i) Let h : P→Q and f : P→Q′ be defined by f (x)= (h(x),0, . . . ,0, . . .).
Consider the endomorphism φ of Q′ ⊕P⊕L defined by

φ =
⎛

⎜
⎝

u f 0
0 0 0
0 0 IL

⎞

⎟
⎠ . (3.2)

Then, if there exists a nonzero projection θ of Q′ ⊕ P ⊕ L such that φθ = 0, then there
exists a nonzero projection p of P such that hp = 0.

(ii) Let h′ : P→Q and f ′ :Q′ → P be defined by f ′(x1,x2, . . . ,xn, . . .)= h′(x1).
Consider the endomorphism φ′ of Q′ ⊕P⊕L defined by

φ′ =
⎛

⎜
⎝

v 0 0
f ′ 0 0
0 0 IL

⎞

⎟
⎠ . (3.3)

Then, if there exists a nonzero projection θ′ of Q′ ⊕P⊕ L such that θ′φ′ = 0, then there
exists a nonzero projection p′ of P such that p′h′ = 0.

Proof. We will only prove (i), since (ii) is dual of (i).
Let

θ =
⎛

⎜
⎝

a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞

⎟
⎠ (3.4)

be a nonzero projection of Q′ ⊕ P ⊕ L such that φθ = 0. Then ci = 0 for i = 1,2,3. On
the other hand, uai + f bi = 0 for i = 1,2,3. Composing on the left by v, using the fact
that vu = IQ′ and v f = 0, we obtain ai = 0 for i = 1,2,3. The equality θ2 = θ implies
b2

2 = b2. Now b2 �= 0, since otherwise θ2 = θ = 0, a contradiction. So p = b2 is a nonzero
idempotent of EndR(P) such that f p = 0 and then hp = 0.

Recall that a ring R is said to be a (left) V-ring if every simple R-module is injective.
Or equivalently, the Jacobson radical of every R-module is zero. A ring is said to be (left)
semi-Artinian if every nonzero module has a nonzero socle.

A ring which is together a V-ring and semi-Artinian is called a semi-artinian V-ring,
(SV-ring). Many authors have studied the class of SV-rings, see for example [4, 5], or
[6, 7], for SV-modules. �

Theorem 3.2. Let R be a ring. Then the following propositions are equivalent.
(i) For every R-module M, the endomorphism ring EndR(M) is left AI .

(ii) For every R-module M and every nonzero submodule N of M, there exists an idem-
potent endomorphism p of M such that p(M)⊂N .
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(iii) Every nonzero R-module contains a nonzero injective submodule.
(iv) R is a semi-artinian V-ring.

Proof. The equivalence (iii)⇔(iv) is by [6, Theorem 13].
(ii)⇒(iii). Take the injective hull of E(M) of M. If N is a submodule of M, then there

exists a projection p of E(M) such that p(E(M))⊂N . But p(E(M)) is a direct summand
of E(M), and it is therefore injective.

(iv)⇒(i). Let R be semi-Artinian V-ring, M a nonzero R-module, and S ⊂ EndR(M)
such that Annr(S) �= 0. So, there exists a nonzero u ∈ Ann(S) such that Su = 0, that is,
u(M)⊂⋂s∈SKers. Since R is semi-Artinian, there exists a simple submodule N ⊂ u(M).
On the other hand, R is a V-ring, thus N is injective and hence a summand of M. Now
take an idempotent endomorphism p such that p(M)=N , then Sp = 0.

(i)⇒(ii). Let M be an R-module and N a proper submodule of M. In Lemma 3.1, take
L=N , P =M, Q = (M/N), and h= π, where π is the canonical surjection M→Q. Let

ψ =

⎛

⎜
⎜
⎝

0 0 0

0 0 ı

0 0 0

⎞

⎟
⎟
⎠ , (3.5)

where ı : N →M, is the canonical injection. Then ψ �= 0 and φψ = 0. Since, EndR(Q′ ⊕
P⊕L) is left AI-ring, there exists a nonzero idempotent θ ∈ EndR(Q′ ⊕P⊕L), such that
φθ = 0. We conclude from Lemma 3.1 that there exists a nonzero projection p of M such
that πp = 0. That is, p(M)⊂N . �

Remark 3.3. Dually, one can prove that for a ring R, EndR(M) is right AI for every R-
module M, if and only if R is semisimple.

In [8], Brodski and Grigorjan have given a characterization of left SV-ring which is
analogous to Theorem 3.2, by using injective modules. This result can be deduced from
our lemma as we will see presently.

Theorem 3.4 [8, Theorem 2]. Let R be a ring, then the following propositions are equiva-
lent.

(i) For every injective left R-moduleM and every nonleft invertible u∈ EndR(M), there
exists a nonzero idempotent p such that up = 0.

(ii) R is an SV-ring.

Proof. (ii)⇒(i) is clear. For the converse, take in Lemma 3.1 that L = P =M an injec-
tive module, N a submodule of M,Q = E(M/N) the injective hull of M/N , Q′ the di-
rect product of a denumerable family of copies of Q. Take h : M → E(M/N) defined by
h(x)= π(x). The endomorphism φ in Lemma 3.1 is not injective. Since Q′ ⊕P⊕ L is an
injective module, then φ is not left invertible. By hypothesis, there exists a nonzero idem-
potent θ ∈ EndR(Q′ ⊕P⊕ L) such that φθ = 0. We conclude from Lemma 3.1 that there
exists a nonzero projection p of M such that πp = 0. That is, p(M)⊂N . �
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4. Characterization of hereditary rings

Recall that a ring R is said to be left hereditary if every submodule of a projective module
is projective. Or equivalently, if every factor module of an injective module is injective.

The AI property can be used to give a characterization for left hereditary ring.

Theorem 4.1. Let R be a ring. Then the following statements are equivalent.
(i) R is left hereditary.

(ii) For every injective R-module M, for every u∈ EndR(M), Imu is a direct summand
of M.

(iii) For every injective R-module M, EndR(M) is right Rickart.
(iv) For every injective R-module M, EndR(M) is right AI .
(v) For every injective R-module M, and every nonright regular endomorphism u of M,

there exists a nonzero idempotent endomorphism p such that pu= 0.

Proof. (i)⇒(ii) is clear since Imu∼=M/Keru. For (ii)⇒(iii), see [7, Theorem 39.15]. (iii)⇒
(iv) and (iv)⇒(v) are also clear. So it remains to show that (v)⇒(i). Let M be an in-
jective R-module and N a submodule of M. We have to show that the factor module
M/N is injective. Let E(M/N) be its injective hull. Consider the canonical surjection
π :M →M/N and the canonical injection ı :M/N → E(M/N). Put h= ıπ and let us show
that h is surjective. Otherwise, there exist an injective R-module S and a homomorphism
g : E(M/N)→ S such that gh= 0. Now put in Lemma 3.1 that L= S, P = E(M/N),Q =M,
Q′ is the direct product of a denumerable family of copies of M, and consider the endo-
morphism φ′ of Q′ ⊕P⊕L of the lemma.

Take

ψ′ =

⎛

⎜
⎜
⎝

0 0 0

0 0 0

0 g 0

⎞

⎟
⎟
⎠ . (4.1)

Then ψ′ �= 0 and ψ′φ′ = 0. Since Q′ ⊕ P ⊕ L is injective, there exists an idempotent en-
domorphism θ′ of Q′ ⊕ P ⊕ L such that θ′φ′ = 0. Lemma 3.1 implies the existence of a
nonzero idempotent endomorphism p′ of E(M/N) such that p′h= 0, that is, p′(M/N)=
0. This contradicts the fact that M/N is essential in E(M/N). This contradiction shows
that h is surjective. Thus ı is surjective, and hence is bijective. This means that M/N is
isomorphic to E(M/N) and is injective. �

The dualization of the preceding theorem requires the existence of the dual notion of
injective hull, namely the projective cover. So, we suppose that the ring R is left perfect.

Theorem 4.2. Let R be a left perfect ring. Then the following statements are equivalent.
(i) R is left hereditary.

(ii) For every projective R-module M, and for every u ∈ EndR(M), Keru is a direct
summand of M.

(iii) For every projective R-module M, EndR(M) is left Rickart.
(iv) For every projective R-module M, EndR(M) is left AI .
(v) For every projective R-module M, and for every nonleft regular u∈ EndR(M), there

exists a nonzero idempotent p ∈ EndR(M) such that up = 0.
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Note that the equivalences of (i), (ii), and (iii) are true without the left perfectness
assumption (see [7]).
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