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The regularity of solutions to variational inequalities involving local operators has been
studied extensively. Less attention has been paid to those involving nonlocal pseudodif-
ferential operators. We present two regularity results for such problems.
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1. Introduction

In the current paper, we are interested in the regularity of the solution to the problem

−Δw+ k2w = 0, xn+1 > 0,

w ≥ 0, xn+1 = 0,

− ∂w

∂xn+1
≥ h, xn+1 = 0, x ∈Ω,

(
− ∂w

∂xn+1
−h
)
w = 0, xn+1 = 0, x ∈Ω,

(1.1)

on the boundary {xn+1 = 0}, where x = (x1, . . . ,xn), and Ω is in one case Rn and in an-
other case an open bounded domain in Rn. After a reduction to the boundary, these two
problems involve a first-order pseudodifferential operator. We consider the restriction u
of w to the boundary {xn+1 = 0}. For the case Ω = Rn, we derive the regularity result
u ∈W1,p(Rn) using techniques that are novel for pseudodifferential operators. For the
case of Ω being an open bounded domain, we consider u supported in Ω. We then derive
the interior regularity result u ∈ H3/2(U) for each U⊂ ⊂ Ω. To the best of the authors’
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knowledge, this is a new result for a variational inequality involving a first-order pseudo-
differential operator. The regularity of solutions to variational inequalities is considered
in Kinderlehrer and Stampacchia [1], Troianiello [2], and also Brezis and Stampacchia
[3]. The approach used in the current paper is essentially different from that given in
[1, 2] but has some similarities to that in [3]. We begin by discussing some preliminaries.

2. Preliminaries

Let C∞0 (Rn) be the space of all real-valued functions with compact support and infinitely
differentiable. Define the Sobolev spaceHs(Rn) as the completion of C∞0 (Rn) in the norm

‖φ‖s =
(∫

Rn

(
1 + |ξ|)2s∣∣φ̂(ξ)

∣∣2
dξ
)1/2

, (2.1)

where φ̂ is the Fourier transform of φ. Throughout the paper, Ω will denote a bounded

domain with C∞ boundary. Define
◦
Hs(Ω) as those elements of Hs(Rn) supported in Ω.

DefineHs(Ω) as the restriction ofHs(Rn) functions to Ω with norm ‖φ‖∗s = inf ‖�φ‖s for
φ ∈Hs(Ω), where the infimum is taken over all extensions �φ. We have the dualities

(
Hs
(
Rn
))∗ =H−s(Rn

)
,

( ◦
Hs(Ω)

)∗ =H−s(Ω),
(
Hs(Ω)

)∗ = ◦
H−s(Ω).

(2.2)

The first duality is set up by the natural pairing [·,·] and the second by 〈·,·〉. For a
discussion of these spaces see for example Eskin [4]. We also define complex Sobolev
spaces. Let �∞

0 (Rn) be the space of infinitely differentiable functions of a real variable

taking on complex values. Define the complex Sobolev space
◦
�s(Rn) as the completion

of �∞
0 (Rn) in the norm ‖·‖s. We define

◦
�s(Ω) and �s(Ω) similarly.

We define a pseudodifferential operator A(D) with symbol A(ξ) on C∞0 (Rn) by φ ∈
C∞0 (Rn):

A(D)φ(x)= 1
(2π)n

∫
Rn
A(ξ)φ̂(ξ)eix·ξdξ. (2.3)

We assume that the symbol A(ξ) satisfies a polynomial bound of the form

∣∣A(ξ)
∣∣≤ C(1 + |ξ|)p (2.4)

for some constants p and C > 0. A(D) is defined on Hs(Rn) by extending it by continuity.
A(D) is defined on �s(Ω) in a similar way.



Randolph G. Cooper Jr. III 3

3. Reduction to the boundary

We now reduce the problem (1.1) to the boundary {xn+1 = 0}. Taking the Fourier trans-
form of the equation in (1.1) in the tangential variables x = (x1, . . . ,xn), we obtain

− d2ŵ

dx2
n+1

+
(
k2 + |ξ|2)ŵ = 0. (3.1)

This has the classical solution

ŵ
(
ξ,xn+1

)= C1(ξ)e−xn+1

√
k2+|ξ|2 +C2(ξ)exn+1

√
k2+|ξ|2 . (3.2)

As we want w to be in a Sobolev space, let C2(ξ)= 0. Let û(ξ)= ŵ(ξ,0), then

ŵ
(
ξ,xn+1

)= û(ξ)e−xn+1

√
k2+|ξ|2 . (3.3)

Let A(D) be the pseudodifferential operator with symbol A(ξ)=
√
k2 + |ξ|2, then

− ∂w

∂xn+1

∣∣∣∣
xn+1=0

= A(D)u. (3.4)

We consider the problem in the whole space Rn. We obtain from (1.1)

u≥ 0

(a) A(D)u≥ h,

(b)
(
A(D)u−h)u= 0.

(3.5)

Multiplying (3.5)(a) by φ ∈ C∞0 (Rn) with φ ≥ 0 and then integrating (3.5)(b), we obtain

u≥ 0

(a)
[
A(D)u,φ

]≥ [h,φ],

(b)
[
A(D)u,u

]= [h,u],

(3.6)

subtracting (3.6)(b) from (3.6)(a), we obtain the following problem: given h∈H−1/2(Rn),
find a u∈H1/2(Rn) with u≥ 0 satisfying the variational inequality

[
A(D)u,φ−u]≥ [h,φ−u] ∀φ∈H1/2

(
Rn
)
, φ≥ 0. (3.7)

Further letting φ = 0,2u in (3.7), we obtain (3.6)(b). Subtracting this from (3.7), we ob-
tain (3.6)(a). We see that the two problems are equivalent.

The operator A(D) satisfies

A(D) : H1/2
(
Rn
)−→H−1/2

(
Rn
)

continuously,

c‖φ‖2
1/2 ≤

[
A(D)φ,φ

]≤ C‖φ‖2
1/2 ∀φ∈H1/2

(
Rn
)
.

(3.8)

By (3.8), using the Lions-Stampacchia theorem [5], there is a unique solution to (3.7).
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4. Global regularity result

We will use Lewy-Stampacchia inequalities (see Rodrigues [6] and Troianiello [2]) to
show the regularity of the solution to (3.7). Let

f + =
⎧⎨
⎩

0, f ≤ 0,

f , f > 0,
(4.1)

and similarly

f − =
⎧⎨
⎩

0, f ≥ 0,

− f , f < 0.
(4.2)

If φ∈H1/2(Rn), then φ+ ∈H1/2(Rn). Indeed let w ∈H1(Rn+1) be the solution to

−Δw+ k2w = 0, xn+1 > 0,

w = φ, xn+1 = 0.
(4.3)

Then, we have that w+ ∈H1(Rn+1) (see Gilbarg and Trudinger [7]) and by the trace the-
orem, φ+ =w+|xn+1=0 ∈H1/2(Rn+1).

Multiplying the first equality in (4.3) by w+ and integrating by parts, we obtain

[
− ∂w

∂xn+1

∣∣∣∣
xn+1=0

,w+
∣∣
xn+1=0

]
= k2

∥∥w+
∥∥2
H0(Rn+1

+ ) +
∥∥∇w+

∥∥2
H0(Rn+1

+ ) ≥ c
∥∥φ+

∥∥2
H1/2(Rn). (4.4)

Or rather

[
A(D)φ,φ+]≥ c∥∥φ+

∥∥2
H1/2(Rn). (4.5)

Property (4.5) is known as T-monotonicity. We will use the following theorem.

Theorem 4.1. For the variational inequality in (3.7), let g ∈ H−1/2(Rn) with g ≥ h and
g ≥ 0, then

h≤A(D)u≤ g. (4.6)

Proof. The lower bound follows immediately from the variational inequality. To prove
the upper bound, we consider the unique solution ũ∈ K̃ = {φ ∈H1/2(Rn) : φ≤ u} of the
auxiliary variational inequality

[
A(D)ũ− g,φ− ũ]≥ 0 ∀φ∈ K̃ . (4.7)

Letting φ= u then φ= ũ+ (ũ−u) in (4.7), we get

[
A(D)ũ− g, ũ−u]= 0. (4.8)

Adding this to (4.7), we obtain

[
A(D)ũ− g,φ−u]≥ 0 ∀φ∈ K̃ . (4.9)
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Choose an arbitrary ψ ∈H1/2(Rn) with ψ ≤ 0. Substituting φ = u+ψ into (4.9), we ob-
tain

[
A(D)ũ− g,ψ

]≥ 0 ∀ψ ∈H1/2
(
Rn
)
, ψ ≤ 0. (4.10)

Therefore, A(D)ũ≤ g. It suffices now to show that ũ= u.
Let φ = ũ+ in (4.7), then

[
A(D)ũ− g, (−ũ)+]≥ 0. (4.11)

Also as we have g ≥ 0, then

[− g, (−ũ)+]≤ 0. (4.12)

Subtracting the first inequality from the second, we obtain

c
∥∥(−ũ)+

∥∥2
1/2 ≤

[
A(D)(−ũ),(−ũ)+]≤ 0. (4.13)

Hence, ũ ≥ 0. We show now that u ≤ ũ. Let φ = u∨ ũ = (u− ũ)+ + ũ in (4.7) and φ =
u∧ ũ= (u− ũ)+ +u in (3.7). By adding we obtain

c
∥∥(u− ũ)+

∥∥2
1/2 ≤

[
A(D)(u− ũ),(u− ũ)+]≤ [h− g, (u− ũ)+]≤ 0. (4.14)

Hence, u≤ ũ and u= ũ. �

We will use the following result (see Taylor [8]).

Lemma 4.2. If for an integer α > 0, a real value k > 0, and 1 < p < ∞, we have
(k2−Δ)α/2φ(x)∈ Lp(Rn) then φ(x)∈Wα,p(Rn).

Using Theorem 4.1 and Lemma 4.2 we can now show a regularity result for the solu-
tion of (3.7).

Theorem 4.3. Suppose that h ∈ H−1/2(Rn)∩ Lp(Rn), then the solution of (3.7) satisfies

u∈
◦
H1/2(Rn)∩W1,p(Rn).

Proof. Observing that h+ ≥ h and h+ ≥ 0, by Theorem 4.1 we obtain that

h≤A(D)u≤ h+. (4.15)

Hence, A(D)u∈ Lp(Rn) and u∈W1,p(Rn). �

5. Interior regularity result

We now investigate the interior regularity of a solution u supported in an open bounded
domain Ω. We first generalize our problem to one that contains the original problem as a

particular case. We consider the operator B(D) with symbol
√
|ξ|2− k2, where k = a+ ib

and b > 0. It is easily seen that B(D) has the symbol of A(D) when a = 0. The operator
B(D) is similar to the operator one gets when one considers the hyperbolic version of
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problem (1.1). If we replace the first equation in (1.1) with the wave equation and do the
reduction to the boundary as in Section 3, we get an operator Γ(D0 + iτ,D′) with symbol

Γ
(
ξ0 + iτ,ξ′

)=
√(
ξ0 + iτ

)2−|ξ′|2. (5.1)

Here, ξ0 is the temporal Fourier variable and ξ′ represents the Fourier variable for the
tangential spatial variables (i.e., x1,x2,x3, . . . ,xn). Note here that we have complexified the
Fourier time variable. This problem was considered in Cooper [9]. The operator B(D)
has the symbol of Γ(D0 + iτ,D′) with the Fourier time variable replaced by a constant.

We next generalize the convex cone in which we will solve the variational inequality.

The set K ⊂
◦
�1/2(Ω) is a cone if f ,g ∈ K , we have that s f + tg ∈ K for any nonnega-

tive s and t. Clearly K is convex. We will write for f ,g ∈
◦
�1/2(Ω), f � g, if f − g ∈ K .

Further we write g � f if f � g. We assume throughout the remainder of the paper that
for any f ∈ K and any ζ ∈ C∞0 (Ω) with 0 ≤ ζ ≤ 1, we have ζ f ∈ K , (1− ζ) f ∈ K , and
(1− εΔ)−1 f ∈ K for ε > 0. It should be noted that the operator (1− εΔ)−1, when writ-
ten as a convolution operator, has a positive kernel (see Stein [10]). So, the last condi-
tion will hold for many cones. We will need these assumptions in deriving our regular-

ity result. Examples of such cones would be K1 = { f ∈
◦
�1/2(Ω) : f is real-valued and

f ≥ 0}, K2 = { f ∈
◦
�1/2(Rn) : Re f ≥ 0 and Im f ≥ 0}, and K3 = { f ∈

◦
�1/2(Ω) : Re f ≥

Im f }. An example of a cone that does not satisfy the first condition would be K4 = { f ∈
◦
�1/2((0,1)) : f is real-valued and

∫ 1
0 f (x)dx ≥ 0}. We define an ordering on �−1/2(Ω) by

f ,g ∈�−1/2(Ω) f � g if Re〈 f − g,φ〉 ≥ 0 for all φ ∈
◦
�1/2(Ω) with φ � 0. We state some

obvious consequences of the definitions of the ordering. Let f ∈
◦
�1/2(Ω) with 0 � f ,

g ∈�−1/2(Ω) with 0� g, and ζ ∈ C∞0 (Ω) with 0≤ ζ ≤ 1.
(i) As 0� (1− ζ) f , we have that ζ f � f .

(ii) If f1 � f2, then Re〈g, f2− f1〉 ≥ 0 and hence Re〈g, f2〉 ≥ Re〈g, f1〉.
(iii) We have that Re[ζg, f ]= Re〈g,ζ f 〉 ≤ Re〈g, f 〉 and hence 0� ζg � g.

We can now pose our generalized problem as follows: given an h ∈�−1/2(Ω), find a

u∈
◦
�1/2(Ω) with u� 0 satisfying

Re
〈
pΩB(D)u−h,φ−u〉≥ 0 ∀φ∈

◦
�1/2(Ω), φ� 0. (5.2)

We will use the following inequality from Bennish [11].

Lemma 5.1. Let b>0, then c(1+ |ξ|)≤Re
√
|ξ|2− (a+ bi)2, where c>0 depends on a and b.

We obtain then from Lemma 5.1 that the operator B(D) satisfies

pΩB(D) :
◦
�1/2(Ω)−→�−1/2(Ω) continuously,

c‖φ‖2
1/2 ≤ Re

〈
pΩB(D)φ,φ

〉≤ C‖φ‖2
1/2 ∀φ∈�1/2

(
Rn
)
.

(5.3)
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By (5.3), using a slight modification of the Lions-Stampacchia theorem [5], there is a
unique solution u to (5.2). The following theorem gives our result concerning the interior
regularity of u.

Theorem 5.2. Given an h ∈ �1/2(Ω), let U ⊂⊂ Ω. Then, the solution of (5.2) satisfies
u∈�3/2(U).

Proof. For ease in notation, we will write Re[ψ,φ] = (ψ,φ). Choose a ζ ∈ C∞0 (Ω) such
that 0≤ ζ ≤ 1 and ζ = 1 on an open U ⊂⊂Ω. Let ζ· represent multiplication by ζ . Then

ζ· :
◦
�s(Ω)−→

◦
�s(Ω),

ζ· : �s(Ω)−→
◦
�s(Ω),

(5.4)

where both mappings are continuous. We have that 0 � ζu � u and 0 � pΩζ(B(D)u−
h)� pΩB(D)−h. Hence,

0≤ Re
[
ζ
(
B(D)u−h),ζu]= Re

〈
pΩζ

(
B(D)u−h),ζu〉

≤ Re
〈
pΩB(D)u−h,ζu

〉≤ Re
〈
pΩB(D)u−h,u

〉= 0.
(5.5)

We then obtain that
(
ζB(D)u− ζh,φ

)− (ζB(D)u− ζh,ζu
)

+
(
B(D)(φ− ζu),φ− ζu)

= (ζB(D)u− ζh,φ− ζu)+
(
B(D)(φ− ζu),φ− ζu)≥ 0,

(5.6)

where φ ∈
◦
�1/2(Ω) and φ � 0. Therefore

(
B(D)φ+Mu− ζh,φ− ζu)≥ 0, (5.7)

where M denotes the commutator

Mφ= ζB(D)φ−B(D)(ζφ). (5.8)

We have that M is a zeroth-order operator (see Eskin [4]).
Define the sequence of functions {vε}ε>0 by

u= vε− εΔvε =⇒ ζu= ζvε− εζΔvε. (5.9)

Clearly, vε → u in �1/2(Rn) and hence ζvε → ζu in
◦
�1/2(Ω). We will show that {ζvε}ε>0

is uniformly bounded in
◦
�3/2(Ω). We have that vε = (1− εΔ)−1u hence by assumption,

vε � 0. Let φ= ζvε in (5.7). We obtain then

−(B(D)ζvε,ζΔvε
)≤−(ζh,ζΔvε

)
+
(
Mu,ζΔvε

)
. (5.10)

Next, denote by M′ the commutator

M′φ = ζΔφ−Δ(ζφ)=−2∇φ ·∇ζ −φΔζ. (5.11)
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Clearly, B′ is a first-order operator. We obtain from (5.10)

−(B(D)ζvε,Δζvε
)≤−(ζh,Δζvε

)
+
(
Mu,Δζvε

)− (ζh,M′vε
)

+
(
Mu,M′vε

)
+
(
B(D)ζvε,M′vε

)
.

(5.12)

It follows then from applying the Cauchy-Schwartz inequality

c
∥∥ζvε∥∥2

3/2 ≤ ‖ζh‖1/2
∥∥ζvε∥∥3/2 +‖Mu‖1/2

∥∥ζvε∥∥3/2 +‖ζh‖1/2
∥∥M′vε

∥∥−1/2

+‖Mu‖1/2
∥∥M′vε

∥∥−1/2 +
∥∥B(D)ζvε

∥∥
1/2

∥∥M′vε
∥∥−1/2

= C1
(‖ζh‖1/2 +‖u‖1/2 +

∥∥vε∥∥1/2

)∥∥ζvε∥∥3/2 +C2
(‖ζh‖1/2 +‖u‖1/2

)∥∥vε∥∥1/2

(5.13)

for some C1,C2 > 0. Therefore, ‖ζvε‖3/2 ≤ C, for C > 0. Extracting a weakly convergent

subsequence and calling it again ζvε, we obtain ζvε ⇀ w in
◦
�3/2(Ω). As ζvε ⇀ ζu in

�1/2(Rn), w = ζu and hence ζu ∈ �3/2(Rn). We have that ζ = 1 on U , therefore u ∈
�3/2(U). �
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