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It is shown that the Hermite (polynomial) semigroup {e−tH : t > 0} maps Lp(Rn, ρ) into the space
of holomorphic functions in Lr(Cn, V

(r+ε)/2
t,p/2 ) for each ε > 0, where ρ is the Gaussian measure,

V
(r+ε)/2
t,p/2 is a scaled version of Gaussian measure with r = p if 1 < p < 2 and r = p′ if 2 < p < ∞

with 1/p + 1/p′ = 1. Conversely if F is a holomorphic function which is in a “slightly” smaller
space, namely Lr(Cn, V r/2

t,p/2), then it is shown that there is a function f ∈ Lp(Rn, ρ) such that
e−tHf = F. However, a single necessary and sufficient condition is obtained for the image of
L2(Rn, ρp/2) under e−tH, 1 < p < ∞. Further it is shown that if F is a holomorphic function such that

F ∈ L1(Cn, V 1/2
t,p/2) or F ∈ L

1,p
m (R2n), then there exists a function f ∈ Lp(Rn, ρ) such that e−tHf = F,

wherem(x, y) = e−x
2/(p−1)e4t+1e−y

2/e4t−1 and 1 < p < ∞.
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1. Introduction

It is well known that the Bargmann transform is an isometric isomorphism of L2(Rn) onto the
Fock space F(Cn), which is associated with the realization of the creation and annihilation
operators for Bosons in quantummechanics. We refer to [1, 2] for further results. Similar type
of results are shown for semigroups generated by the Laplace-Beltrami operator on compact
spaces (see [3, 4]). The image of L2(Hn) under the heat kernel transform is studied for the
Heisenberg group in [5]. Such type of results are also known for Hermite, special Hermite,
Bessel, and Laguerre semigroups, see [6].

Hall in [7] studied the problem of characterizing the image of Lp(Rn) under the Segal-
Bargmann transform. In this paper, we want to study this problem for Hermite semigroup
instead of Segal-Bargmann transform. In fact, the idea of extending the classical results
involving the standard Laplacian on R

n or Fourier transform on R
n to Hermite expansions is

not new: to cite a few, summability theorems [8, 9], multipliers [10], Sobolev spaces [11], and
Hardy’s inequalities [12, 13].
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In order to prove that a holomorphic function to be in the image of Lp(Rn, ρ) under the
Segal-Bargmann transform Hall in [7] obtained a necessary condition for the range 1 < p ≤ 2
and the sufficient condition for 2 ≤ p < ∞. In this paper, we tried to obtain a single necessary
and sufficient condition for a holomorphic function to be in the image of Lp(Rn, ρ) under
Hermite (polynomial) semigroup. Though we were not completely successful, we could
prove the following.

If f ∈ Lp(Rn, ρ), then e−tHf is holomorphic and e−tHf ∈ Lr(Cn, V
(r+ε)/2
t,p/2 ) for every

ε > 0, but we are able to prove the converse only for the holomorphic functions which are in
Lr(Cn, V r/2

t,p/2) (with r = p, if 1 < p < 2 and r = p′, if 2 < p < ∞ with 1/p + 1/p′ = 1), where

Vt,p/2(z) = (π2/4)−n/2e2nt[((p − 1)e4t + 1)(e4t − 1)]−n/2e−2x
2/((p−1)e4t+1)e−2y

2/(e4t−1) and V s
t,p/2, the

sth power of Vt,p/2.However, we are able to obtain a single necessary and sufficient condition
for the image of L2(Rn, ρp/2) under e−tH, 1 < p < ∞,where ρp/2(u) = (pπ/2)−n/2e−2/pu

2
.

Notice that HLr(Cn, V r/2
t,p/2) ⊂ ⋂

ε>0HLr(Cn, V
(r+ε)/2
t,p/2 ) as V

(r+ε)/2
t,p/2 ≤ CV r/2

t,p/2, where the
constant C depends on ε, t, p, and n. We remark that the Gaussian-type density Vt,p/2(z)
defines a finite measure with total mass e2nt when n ≥ 1 and t > 0. Let m be a weight
function on R

2n and let 1 ≤ p, q ≤ ∞. Then the weighted mixed-norm space L
p,q
m (R2n)

consists of all (Lebesgue) measurable functions on R
2n, such that the norm ‖F‖Lp,q

m
=

(
∫

Rn(
∫

Rn |F(x,w)|pm(x,w)pdx)q/pdw)1/q is finite. If p = ∞ or q = ∞, then the corresponding
p-norm is replaced by the essential supremum. In this paper, we also prove that if F is
holomorphic and if F ∈ L1(Cn, V 1/2

t,p/2) or L
1,p
m (R2n), then there exists a function f ∈ Lp(Rn, ρ)

such that F is the image of f. Here m(x, y) = e−x
2/((p−1)e4t+1)e−y

2/(e4t−1).

The advantage of taking Lp(Rn, ρ) instead of Lp(Rn) has been nicely explained by Hall
in [7]. We also wish to point out the following interesting fact, namely, if f ∈ Lp(Rn), then the
pointwise estimate of e−tHf is given by |e−tHf(x+ iy)| ≤ Ct,p,ne

(−1/2) tanh 2t x2
e(1/2) coth 2t y2

which
is independent of p (except the constant factor), which does not help in the current problem.
Here the constant Ct,p,n = e−nt(2π)−n/2(sinh 2t)−n/2(2π/q coth 2t)n/2q, with 1/p + 1/q = 1.
However, if f ∈ Lp(Rn, ρ), we get pointwise bounds as in Theorem 3.1. Further, we found
the semigroup associated with Hermite polynomials to be more suitable for this problem
rather than the semigroup associated with the Hermite functions. This is mainly because
questions about Lp structure for p /= 2 do depend on the measures used in the particular setup,
while questions about L2 structure do not. In Section 2, we discuss the Hermite (polynomial)
semigroup and discuss the image of L2(Rn, ρ) under the Hermite semigroup. In Section 3, we
prove our main results.

2. Hermite (polynomial) semigroup

Let H̃k(x) = (−1)kex2
(dk/dxk)(e−x

2
) denote the Hermite polynomial. For a multi-index

α ∈ N
n, x = (x1, x2, . . . , xn) ∈ R

n, define H̃α(x) = H̃α1(x1)H̃α2(x2) · · · H̃αn(xn) and
Hα(x) = (2αα!)−n/2H̃α(x). This collection {Hα(x) : α ∈ N

n} forms an orthonormal basis for
L2(Rn, ρ), where ρ(x)dx = π−n/2e−x

2
dx. Further, the functions Hα are eigenfunctions of the

operator H = −Δ+ 2
∑n

j=1xj(∂/∂xj) + nI with eigenvalues 2|α| + n. For f ∈ L2(Rn, ρ), consider
f =

∑
α∈Nn〈f,Hα〉Hα, where the sum converges to f in L2(Rn, ρ). For each k ∈ N, let Qk denote

the orthogonal projection of L2(Rn, ρ) onto the eigenspace spanned by {Hα : |α| = k}. Then
the spectral decomposition of H can be written as Hf =

∑∞
k=0(2k + n)Qkf. The operator H

defines a semigroup, called the Hermite polynomial semigroup, denoted by e−tH, for each
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t > 0 using the expansion

e−tHf =
∞∑

k=0

e−(2k+n)tQkf. (2.1)

Before stating our theorem, we will state the following identity which will be
repeatedly used in this paper:

1

(coth 2t + 1 − 2/p)sinh2 2t
+ 1 − coth 2t =

2
(p − 1)e4t + 1

. (2.2)

In fact, the left-hand side of (2.2) can be rewritten as

1
(cosh 2t + sinh 2t − (2/p) sinh 2t) sinh 2t

+
sinh 2t − cosh 2t

sinh 2t
. (2.3)

By using the exponential formula for sinh 2t and cosh 2t, the right-hand side of (2.2) can be
obtained by straightforward simplification.

We state here Mehler’s formula for Hermite functions

Φα(x) =
n∏

i=1

(2αiαi!π1/2)
−1/2

(−1)αi
dαi

dxαi

i

(e−x
2
i )ex

2
i /2, (2.4)

where α = (α1, α2, . . . , αn) ∈ N
n, x = (x1, x2, . . . , xn) ∈ R

n which will lead to a formula
involving Hermite polynomials (for the proof, we refer to [14] or [6]).

Mehler’s formula

For all w ∈ C with|w| < 1, one has

∑

α∈Nn

Φα(x)Φα(y)w|α| = π−n/2(1 −w2)
−n/2

e(−1/2)((1+w
2)/(1−w2))(x2+y2)+(2w/(1−w2))x·y, (2.5)

for all x, y ∈ R
n.Here x2 =

∑n
i=1x

2
i and x ·y =

∑n
i=1xi ·yi. But

∑

α∈Nn

Φα(x)Φα(y)w|α| = π−n/2e−x
2/2e−y

2/2
∑

α∈Nn

Hα(x)Hα(y)w|α| (2.6)

from which it follows that

∑

α∈Nn

Hα(x)Hα(y)w|α| = πn/2ex
2/2ey

2/2
∑

α∈Nn

Φα(x)Φα(y)w|α|. (2.7)
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If f ∈ L2(Rn, ρ), then

Qkf(u) =
∑

|α|=k
〈f,Hα〉Hα(u) =

∑

|α|=k

{∫

Rn

f(x)Hα(x)ρ(x)dx

}

Hα(u). (2.8)

Thus, it follows that

e−tHf(x) =
∫

Rn

Kt(x, u)f(u)ρ(u)du

=
∫

Rn

Lt(x, u)f(u)du,
(2.9)

where

Lt(x, u) = π−n/2 ∑

α∈Nn

e−(2|α|+n)tHα(x)Hα(u)e−u
2

= π−n/2e−u
2
e−nt

∑

α∈Nn

(
e−2t

)|α|
Hα(x)Hα(u).

(2.10)

Notice that, Kt is the kernel of e−tH. However, Lt is used for computational purpose. Then by
using (2.7), we can write

Lt(x, u) = (2π)−n/2(sinh 2t)−n/2e−1/2(coth 2t−1)x2
e−1/2(coth 2t+1)u2

ex·u/ sinh 2t. (2.11)

Since Kt(x, u) extends to an entire function Kt(z, u) for z ∈ C
n, F(z) = e−tHf(z) can also be

extended to C
n as an entire function, where z = x + iy. This can be verified by using Morera’s

theorem.

Remark 2.1. The map e−tH is one-one . Let e−tHf = 0 for f ∈ L2 ∩ Lp(Rn, ρ). Then e−tHf(−iξ) =
0 ∀ξ ∈ R

n.
Let ĝ(ξ) = (2π)−n/2

∫

Rng(x)e−ix·ξdx denote the Fourier transform of g. Then it follows
from (2.11) that

e−tHf(−iξ) = (sinh 2t)−n/2e(1/2)(coth 2t−1)ξ2Ĝ
(

ξ

sinh 2t

)

= 0, (2.12)

where G(u) = f(u)e(−1/2)(coth 2t−1)u2
forcing Ĝ(ξ/ sinh 2t) = 0. Then by uniqueness of Fourier

transform G = 0,which in turn implies f = 0, showing that e−tH is one-one. (In fact, the above
proof shows that e−tH is injective on L2(Rn, ρ).However, in general, one can show that e−tH is
injective on the Lp space (1 < p < ∞) using the fact that the Fourier transform is injective on
the Lp space).

We should call e−tHf Hermite Bargmann transform. Hereafter, we should write
HLr(Cn, α(z)) for the class of holomorphic functions in Lr(Cn, α(z)).
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Theorem 2.2. Fix t > 0 and let 1 < p < ∞. Then the Hermite polynomial semigroup e−tH is an
isometric isomorphism of L2(Rn, ρp/2) onto the space of holomorphic functions HL2(Cn, Vt,p/2).

Proof. Let f ∈ L2(Rn, ρp/2). Then F(z) = e−tHf(z) is given by

F(z) = (2π)−n/2(sinh 2t)−n/2e(−1/2)(coth 2t−1)z2
∫

Rn

e(−1/2)(coth 2t+1)u2
e(z·u/ sinh 2t)f(u)du

= (2π)−n/2(sinh 2t)−n/2e(−1/2)(coth 2t−1)z2
∫

Rn

e(−1/2)(coth 2t+1)u2
e(−i(−y+ix)·u)/ sinh 2tf(u)du.

(2.13)

Put g(u) = f(u)e(−1/2)(coth 2t+1)u2
ex·u/ sinh 2t. Then

∫

Rn

|F(z)|2 e(coth 2t−1)(x2−y2)dy

= (sinh 2t)−n
∫

Rn

∣
∣
∣
∣ĝ

( −y
sinh 2t

)∣
∣
∣
∣

2

dy

=
∫

Rn

|ĝ(y)|2dy (by applying change of variables)

=
∫

Rn

|g(y)|2du (using Plancherel formula)

=
∫

Rn

|f(u)|2e−(coth 2t+1)u2
e2x·u/ sinh 2tdu

=
(
pπ

2

)n/2∫

Rn

|f(u)|2e−(coth 2t+1−2/p)u2
e2x·u/ sinh 2tρp/2(u)du.

(2.14)

Multiplying both sides by e−x
2/(coth 2t+1−2/p)sinh2 2t and integrating with respect to x, we get

∫

Cn

|F(z)|2e(coth 2t−1)(x2−y2)e−x
2/(coth 2t+1−(2/p))sinh2 2tdy dx

=
(
pπ

2

)n/2∫

Rn

|f(u)|2e−(coth 2t+1−2/p)u2
∫

Rn

e−x
2/((coth 2t+1−2/p)sinh2 t)+2x·y/ sinh 2tdx ρp/2(u)du

=
(
pπ

2

)n/2∫

Rn

|f(u)|2
∫

Rn

e−[(x/
√

(coth 2t+1−2/p) sinh 2t)−u
√

(coth 2t+1−2/p)]2dx ρp/2(u)du.

(2.15)

Let Kt,p,n = (pπ2/2)−n/2[(coth 2t + 1 − 2/p)sinh2 2t]
−n/2

. Then it follows that

Kt,p,n

∫

Cn

|F(z)|2e(coth 2t−1)(x2−y2)e−x
2/((coth 2t+1−(2/p))sinh2 2t)dx dy = ‖f‖2L2(Rn,ρp/2). (2.16)
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By using (2.2), the left-hand side of the above equation can be written as

(
pπ2

2

)−n/2[(
coth 2t + 1 − 2

p

)

sinh2 2t
]−n/2∫

Cn

|F(z)|2e−2x2/((p−1)e4t+1)e−2y
2/(e4t−1) dz

=
(
π2

4

)−n/2
e2nt

[
((p − 1)e4t + 1)(e4t − 1)

]−n/2
∫

Cn

|F(z)|2e−2x2/((p−1)e4t+1)e−2y
2/(e4t−1) dz,

(2.17)

which implies that e−tH is an isometry from the space L2(Rn, ρp/2) intoHL2(Cn, Vt,p/2). In the
above, dz = dx dy, z = x + iy.

It remains to show that e−tH defines an onto map. Since e−tH is an isometry, the range
is closed inHL2(Cn, Vt,p/2). It is enough to show that the range is dense inHL2(Cn, Vt,p/2). By
using exponential formula for sinh 2t, cosh 2t, and coth 2t, e−tH can be written as

e−tHf(z) = (2π)−n/2(sinh 2t)−n/2
∫

Rn

e−(e
−tz−etu)2/2 sinh 2tf(u)du. (2.18)

It can be easily seen that e−tH will take real variable polynomials in L2(Rn, ρp/2) to
holomorphic polynomials in HL2(Cn, Vt,p/2). On the other hand, if we take a holomorphic
polynomial in HL2(Cn, Vt,p/2), it can be expressed as an image of a real variable polynomial
in L2(Rn, ρp/2) under e−tH. In fact, suppose, for instance, if n = 1, the first one can show that

e−tHum(z) = C
m∑

k=0

(−1)kmck(e
−tz)m−k

wk, (2.19)

for fixed m ≥ 0, where C = −(2π)−n/2(sinh 2t)−n/2e−(m+1)t, wk =
∫

Rne
(−1/2 sinh 2t)y2

ykdy. Now if
we take F(z) =

∑m
i=0ciz

i, an mth degree holomorphic polynomial in HL2(C, Vt,p/2), we wish
to choose an mth degree real variable polynomial f(x) =

∑m
i=0aiu

i in L2(R, ρp/2) such that
e−tHf = F. This leads to the determination of the coefficients ai such that e−tH(

∑m
i=0aiu

i) =
∑m

i=0ciz
i. Using (2.19) and comparing the coefficients of zk on both sides for 0 ≤ k ≤ m,

one ends up with a matrix equation UX = Y with U an upper triangular matrix with
Uii = c0e

−(i+1)w0,where c0 = −(2π)−n/2(sinh 2t)−n/2, X = (a0, a1, . . . , am)
t, Y = (c0, c1, . . . , cm)

t.
Since w0 /= 0, detU/= 0 which in turn gives a unique solution for a0, a1, . . . , am. Thus every
holomorphic polynomial in HL2(Cn, Vt,p/2) is an image of a real variable polynomial in
L2(Rn, ρp/2). This idea can be appropriately extended for higher dimensions also. It remains
to show that the set of all holomorphic polynomials are dense in HL2(Cn, Vt,p/2), which will
force the image of e−tH to be dense in HL2(Cn, Vt,p/2). Toward this end, we show that any
F ∈ HL2(Cn, Vt,p/2)which is orthogonal to all holomorphic polynomials vanishes identically.
In particular, F is orthogonal to all monomials zα, α ∈ N

n. Now consider the following Fock
spaces Fs(t)(Cn), defined as the space of all entire functions G for which

‖G‖2Fs(t)
=
∫

Cn

|G(z)|2e−s(t)|z|2dz (2.20)
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are finite. It is easy to see that

F ∈ HL2(Cn, Vt,p/2) ⇐⇒ G(z) = F(z)ew(t)z2 ∈ Fs(t), (2.21)

where s(t) = 1/((p − 1)e4t + 1) + 1/(e4t − 1)(> 0),w(t) = (1/2)[1/(e4t − 1) − 1/((p − 1)e4t + 1)]
The assumption that F is orthogonal to all zα leads to the condition that G(z) = F(z)ew(t)z2 is
orthogonal to all zαew(t)z2 in Fs(t). The Taylor expansion F(z) =

∑
α∈Nnaαz

α leads to

G(z) =
∑

α∈Nn

aαz
αew(t)z2 . (2.22)

Since G is orthogonal to all zαew(t)z2 , we get aα = 0 for all α and so F = 0, thus proving our
assertion.

In particular, when p = 2, we obtain the following result in which the function f ∈
L2(Rn, ρ) and the measure ρ are independent of t, but e−tHf ∈ L2(Cn, Vt), where Vt = Vt,1,
which depends on t (see also [15]).

Corollary 2.3. A holomorphic function F on C
n belongs to HL2(Cn, Vt) if and only if F(z) =

e−tHf(z) for some f ∈ L2(Rn, ρ), where Vt(z) = (π2/2)−n/2(sinh 4t)−n/2e−2x
2/(e4t+1)e−2y

2/(e4t−1).
Moreover, one has the equality of norms

‖F(z)‖HL2(Cn,Vt) = ‖f‖L2(Rn,ρ), (2.23)

whenever F = e−tHf.

3. The main results

First, we will obtain a pointwise bound for Hermite Bargmann transform of a function f ∈
Lp(Rn, ρ). From here onward, in order to define e−tH on Lp(Rn, ρ), 1 < p < ∞, we will first
define e−tH on the class of functions L2 ∩ Lp(Rn, ρ). Then using standard density argument,
we will define e−tH on Lp(Rn, ρ).

Theorem 3.1. Fix t > 0 and let 1 < p < ∞. Then for all f ∈ Lp(Rn, ρ), one has

∣
∣e−tHf(x + iy)

∣
∣ ≤ Kt,p,n‖f‖Lp(Rn,ρ)e

x2/((p−1)e4t+1)ey
2/(e4t−1). (3.1)

Proof. We have e−tHf(z) = (2π)−n/2(sinh 2t)−ne(−1/2)(coth 2t−1)z2∫
Rne

(−1/2)(coth 2t−1)u2
ez·u/ sinh 2t

f(u)e−u
2
du, for f ∈ L2 ∩ Lp(Rn, ρ). Let h(u) = e(−1/2)(coth 2t−1)u2

ez·u/ sinh 2t, Ct(x, y) =
(2 sinh 2t)−n/2e(−1/2)(coth 2t−1)(x2−y2). As f ∈ Lp(Rn, ρ) and h ∈ Lp′(Rn, ρ) by applying Hölder’s
inequality, it can be shown that

∣
∣e−tHf(z)

∣
∣ ≤ Ct(x, y)‖f‖Lp(Rn,ρ)

∥
∥e(−1/2)(coth 2t−1)u2

ez·u/ sinh 2t∥∥
Lp′ (Rn,ρ). (3.2)
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Consider

∥
∥e(−1/2)(coth 2t−1)u2

ez·u/ sinh 2t∥∥
p′

Lp′ (Rn,ρ)

=
∫

Rn

e(−p
′/2)(coth 2t−1)u2

ep
′x·u/ sinh 2tπ−n/2e−u

2
du

= π−n/2
∫

Rn

e(−p
′/2)[

√
(coth 2t−1+2/p′)u−(x/ sinh 2t

√
coth 2t−1+2/p′)]2ep

′x2/2sinh2 2t(coth 2t−1+2/p′)du

=
(

2
p′

)n/2

ep
′x2/2sinh2 2t(coth 2t+1−2/p)

(

coth 2t − 1 +
2
p′

)−n/2
.

(3.3)

Thus

|e−tHf(z)| ≤ Kt,p,n‖f‖Lp(Rn,ρ)e
(1/2)(coth 2t−1)y2

e(x
2/2)[1/(sinh2 2t(coth 2t+1−2/p))+1−coth 2t], (3.4)

where Kt,p,n is a constant depending on t, p, n. By using (2.2), it follows that

|e−tHf(z)| ≤ Kt,p,n‖f‖Lp(Rn,ρ)e
x2/((p−1)e4t+1)ey

2/(e4t−1), z = x + iy. (3.5)

Since L2 ∩ Lp(Rn, ρ) is dense in Lp(Rn, ρ), 1 < p < ∞, the result follows.

The next theorem follows from Theorem 3.1, by a straightforward computation.

Theorem 3.2. Fix t > 0 and let 1 < p ≤ 2. If f ∈ Lp(Rn, ρ), then e−tHf ∈ HLp(Cn, V
(p+ε)/2
t,p/2 ) for

every fixed ε > 0. In particular e−tHf ∈ ⋂
ε>0HLp(Cn, V

(p+ε)/2
t,p/2 ).

Remark 3.3. The above theorem is valid for 1 < p < ∞. We will see in Theorem 3.8 that
Theorems 3.2 and 3.7 can be put together in a general form. At this point, we thank one of
the referees for suggesting us this general form, namely, Theorem 3.8.

Theorem 3.4. If F is holomorphic and F ∈ Lp(Cn, V
p/2
t,p/2), where 1 < p ≤ 2 and t is a fixed number

greater than zero, then there exists a unique function f ∈ Lp(Rn, ρ) such that e−tHf = F.

Proof. Let Gf = e−tHf. Then it follows from Theorem 2.2, that G is an isometric
isomorphism from L2(Rn, ρp/2) onto HL2(Cn, Vt,p/2). G can be explicitly written as Gf(z) =∫

Rn(Lt(z, u)/ρp/2(u))f(u)ρp/2(u)du, where Lt is given in (2.11). Let G∗,p denote the adjoint of
G,whereG is an operator fromHilbert space L2(Rn, ρp/2) into the Hilbert space L2(Cn, Vt,p/2).
Note that, G∗,pF will coincide with G−1F if F is a holomorphic function on C

n. Thus we can
write

G∗,pF(u) =
∫

Cn

Lt(z, u)
ρp/2

F(z)Vt,p/2dx dy. (3.6)
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In order to change the measures Vt,p/2 and ρp/2 into Lebesgue measure, construct a map G∗,p :
L2(Cn, dxdy) → L2(Rn, du) defined by

G∗,pF(u) = ρ1/2
p/2G

∗,p(V −1/2
t,p/2 F(z)). (3.7)

An explicit computation shows that G∗,p can be written as

G∗,pF(u) = C

∫

Cn

eix·y(coth 2t−1)e−iy·u/ sinh 2t

× e{−1/2(coth 2t+1−2/p)[u−(x/ sinh 2t(coth 2t+1−2/p))]2}F(z)dx dy.

(3.8)

It can be easily verified that G∗,p defines a bounded linear map of L1(Cn, dx dy) into
L1(Rn, du). By applying interpolation theorem ([16], M. Riesz convexity theorem), it follows
that G∗,p is a bounded map of Lq(Cn, dx dy) into Lq(Rn, du) for q satisfying 1 ≤ q ≤ 2. In
particular if we take p = q, then G∗,p will be bounded from Lp(Cn, dx dy) into Lp(Rn, du).
Again, we wish to change Lebesgue measure on R

n to ρ, and Lebesgue measure on C
n to

V
p/2
t,p/2. Toward this end, we define

G∗,p : Lp(
C

n, V
p/2
t,p/2

) −→ Lp(Rn, ρ) by G∗,pF(u) = ρ−1/p(u)G∗,p(V 1/2
t,p/2F(z)

)
. (3.9)

Note that, ρ(u)−1/p = ceu
2/p = c′ρ−1/2p/2 for some constants c and c′. Then it follows from (3.7)

that G∗,pF(u) = CG∗,pF(u). This shows that G∗,p is bounded from Lp(Cn, V
p/2
t,p/2) into Lp(Rn, ρ).

We claim that if F is in the holomorphic subspace of Lp(Cn, V
p/2
t,p/2), then GG∗,pF = F.

Let Ps(z) be the “polydisk” of radius s, centered at z, namely, Ps(z) = {w ∈ C
n :

|wk − zk| < s, k = 1, 2, . . . , n, and wk = uk + ivk, zk = xk + iyk} (see [17]). Then F(z) can be
written as

F(z) = (πs2)−n
∫

Cn

χPs(z)
1

α(w)
F(w)α(w)dudv, (3.10)

where χPs(z) denotes the characteristic function on Ps(z).
Define α(w) = e−pu

2/((p−1)e4t+1)e−pv
2/(e4t−1), w = u + iv, β = p′ − 1/p′. By using Hölder’s

inequality,

∫

Cn

|Fm(z)|2e−2x2/((p−1)e4t+1)e−2y
2/(e4t−1)dx dy

=
∫

Cn

|F(λmz)|2e−2x2/((p−1)e4t+1)e−2y
2/(e4t−1)dx dy

= C

∫

Cn

|F(z)|2e−2x2/((p−1)e4t+1)e−2y
2/λ2m(e

4t−1)dx dy.

(3.11)
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From this we can see that

|F(z)| ≤ Ce(x+s)
2/((p−1)e4t+1)e(y+s)

2/(e4t−1). (3.12)

Now define Fm(z) = F(λmz), where λm is an increasing sequence of numbers tending to 1.
Then Fm ∈ Lp(Cn, V

p/2
t,p/2) and Fm will converge to F in the norm of Lp(Cn, V

p/2
t,p/2). Consider

|F(z)| ≤ C

∥
∥
∥
∥χPs(z)

1
|α(w)|

∥
∥
∥
∥
Lp′ (Cn,α(w))

‖F‖Lp(Cn,α(w))

≤ C sup
w∈Ps(z)

1

|α(w)|β
m(Ps(z))

1/p′ ‖F‖Lp(Cn,α(w))

= C sup
w∈Ps(z)

1

|α(w)|β

= C sup
w∈Ps(z)

eu
2/((p−1)e4t+1)ev

2/(e4t−1) since pβ = 1.

(3.13)

Then by using (3.12), we get

(3.11) ≤ C

∫

Cn

e(x+s)
2/((p−1)e4t+1)e(y+s)

2/(e4t−1)e−2x
2/λ2m((p−1)e4t+1)e−2y

2/λ2m(e
4t−1)dx dy

< ∞
(

as 2 <
2
λ2m

for each m

)

.

(3.14)

This shows that Fm ∈ HL2(Cn, Vt,p/2) for each m which in turn implies that GG∗,pFm = Fm

for each m. Since G∗,p is bounded from Lp(Cn, V
p/2
t,p/2) into Lp(Rn, ρ), G∗,pFm converges to

G∗,pF. Then GG∗,pFm = Fm will converge uniformly to GG∗,pF on compact sets. Since Fm also
converges to F in the norm of Lp(Cn, V

p/2
t,p/2), the pointwise limit and Lp limit must coincide,

showing GG∗,pF = F. Then taking f = G∗,pF proves our existence assertion. The uniqueness
follows from Remark 2.1.

Remark 3.5. As mentioned in the introduction,
⋂

ε>0HLp(Cn, V
(p+ε)/2
t,p/2 ) is larger than

HLp(Cn, V
p/2
t,p/2). In fact, if f(z) = ez

2/((p−1)e4t+1), then f ∈ ⋂
ε>0HLp(Cn, V

(p+ε)/2
t,p/2 ) but

f/∈HLp(Cn, V
p/2
t,p/2). But we are able to show that the transform e−tH is only onto the functions

in HLp(Cn, V
p/2
t,p/2).

The following theorem shows that the image of Lp(Rn, ρ) under Hermite polynomial
semigroup will be contained inHLp′(Cn, V

p′/2
t,p/2) also.

Theorem 3.6. Fix t > 0 and let 1 < p ≤ 2. If f ∈ Lp(Rn, ρ), then e−tHf ∈ HLp′(Cn, V
p′/2
t,p/2), where

p′ is such that 1/p + 1/p′ = 1.
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Proof. Let Gf = e−tHf. Then it follows from Theorem 2.2 that G is an isometric isomorphism
from L2(Rn, ρp/2) onto HL2(Cn, Vt,p/2). In order to change the weighted measure into
Lebesgue measures, construct a map Gp : L2(Rn, du) → L2(Cn, dx dy) defined by Gpf(z) =
V 1/2
t,p/2G(ρp/2(u)

−1/2f(u)). An explicit computation shows that Gp can be written as

Gpf(x + iy)

= C

∫

Rn

e−i(coth 2t−1)x·yeiy·u/ sinh 2te{(−1/2)(coth 2t+1−2/p)[u−x/ sinh 2t(coth 2t+1−2/p)]2}f(u)du,
(3.15)

where z = x + iy and C is a constant depending on t, p, n. It can be easily verified that Gp

defines a bounded operator from L1(Rn) into L∞(Cn). By the interpolation theorem, Gp is
also bounded from Lq(Rn, du) into Lq′(Cn, dx dy), for q satisfying 1 ≤ q ≤ 2. In particular we
take p = q, then Gp will be bounded from Lp(Rn, du) into Lp′(Cn, dx dy). Again, to change

measures, we define Gp : Lp(Rn, ρ(u)) → Lp′(Cn, V
p′/2
t,p/2) by Gpf(z) = V −1/2

t,p/2Gp(ρ(u)
1/pf(u))

we see that the operators G and Gp turn out to be the same up to a constant multiple. Thus G

is bounded from Lp(Rn, ρ(u)) into Lp′(Cn, V
p′/2
t,p/2), proving our assertion.

Using pointwise estimate in Theorem 3.1, one can obtain the following result.

Theorem 3.7. Fix t > 0 and let 2 ≤ p < ∞. If f ∈ Lp(Rn, ρ), then e−tHf ∈ HLp′(Cn, V
(p+ε)/2
t,p/2 ) for

any fixed ε > 0. In particular e−tHf ∈ ⋂
ε>0HLp′(Cn, V

(p+ε)/2
t,p/2 ).

As mentioned earlier, Theorems 3.2 and 3.7 are special cases of the following theorem.

Theorem 3.8. Suppose that f ∈ Lp(Rn, ρ) and that 1 < p < ∞, t > 0 and ε > 0. Then e−tHf ∈
HLs(Cn, V

(s+ε)/2
t,p/2 ) for any 1 ≤ s < ∞.

The proof is simply an application of the pointwise estimate proved in Theorem 3.1.
Then one gets Theorem 3.2 by taking s = p and Theorem 3.7 by taking s = p

′
.

As in the case of Theorem 3.4, we prove the following result.

Theorem 3.9. If F is holomorphic and F ∈ Lp′(Cn, V
p′/2
t,p/2), where 2 ≤ p < ∞ and t is a fixed number

greater than zero, then there exists a unique function f ∈ Lp(Rn, ρ) such that e−tHf = F, where p′ is
such that 1/p + 1/p′ = 1.

Proof. In the proof of Theorem 3.4, we have noticed that G∗,p is bounded from L1(Cn, dx dy)
into L1(Rn, du). Instead, one can also verify that G∗,p is bounded from L1(Cn, dx dy) into
L∞(Rn, du). In this case the interpolation theorem will show that G∗,p will be bounded from

Lp′(Cn, dx dy) into Lp(Rn, du). SoG∗,p will also be bounded from Lp′(Cn, V
p′/2
t,p/2) into L

p(Rn, ρ).

In this case also, we can show that GG∗,pF = F, for F ∈ HLp′(Cn, V
p′/2
t,p/2). Now, let f = G∗,pF.

The uniqueness follows from Remark 2.1.

Remark 3.10. As mentioned earlier, we are able to show that the transform e−tH is only onto
the functions in HLp′(Cn, V

p′/2
t,p/2), instead of

⋂
ε>0HLp′(Cn, V

(p′+ε)/2
t,p/2 ).
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The following theorem gives a sufficient condition for a holomorphic function F to be
in the image of e−tH. As we will now see, this condition is a certain type of integrability of F.

Theorem 3.11. If F is holomorphic and F ∈ L1(Cn, V 1/2
t,p/2), where 1 < p < ∞ and t is a fixed number

greater than zero, then there exists a unique function f ∈ Lp(Rn, ρ) such that e−tHf = F.

Proof. By proceeding as in Theorem 3.4, G∗,p can be rewritten as

G∗,pF(u) = C

∫∫

Rn

e2u
2/pe(−1/2)(coth 2t−1)(x−iy)2e(−1/2)(coth 2t+1)u2

e(x−iy)·u/ sinh 2t

× e−x
2/((p−1)e4t+1)e−y

2/e4t−1[F(z)e−x
2/((p−1)e4t+1)e−y

2/e4t−1]dx dy.

(3.16)

Further, by considering Lp norm with respect to the variable u, we can show that

∥
∥e2u

2/pe(−1/2)(coth 2t−1)(x2−y2)e(−1/2)(coth 2t+1)u2
ex·u/ sinh 2te−x

2/((p−1)e4t+1)e−y
2/(e4t−1)∥∥

Lp(Rn,ρ) = C,

(3.17)

where C = (p/2(coth 2t + 1) − 1)−n/2 is independent of x and y. Since F ∈ L1(Cn, V 1/2
t,p/2), we

can show by Minkowski’s integral inequality that

‖G∗,pF‖Lp(Rn,ρ) ≤ C

∫

Cn

|F(x + iy)|e−x2/((p−1)e4t+1)e−y
2/(e4t−1)dx dy. (3.18)

Thus G∗,p is bounded from L1(Cn, e−x
2/((p−1)e4t+1)e−y

2/(e4t−1)) into Lp(Rn, ρ). Again as in
Theorem 3.4, by taking an increasing sequence λm of real numbers converging to 1, one can
show that GG∗,pF = F, for any holomorphic function F in L1(Cn, e−x

2/((p−1)e4t+1)e−y
2/(e4t−1)).

Then taking f = G∗,pF proves our existence assertion. The uniqueness follows from
Remark 2.1.

Theorem 3.12. Fix t > 0 and let 1 < p < ∞. Suppose F is holomorphic and F ∈ L
1,p
m (R2n), where

m(x, y) = e−x
2/((p−1)e4t+1)e−y

2/(e4t−1) then there exists a unique f ∈ Lp(Rn, ρ) with e−tHf = F.

Proof. We have G∗,pF(u) as in (3.16). Then

|G∗,pF(u)| ≤ Ceu
2/p

∫

Rn

e(−1/2)(coth 2t+1−2/p)[u−x/ sinh 2t(coth 2t+1−2/p)]2

×
(∫

Rn

|F(x + iy)|e−x2/((p−1)e4t+1)e−y
2/(e4t−1)dy

)

dx.

(3.19)

Then, by applying Minkowski’s integral inequality, it follows from hypothesis that
e−u

2/pG∗,pF ∈ Lp(Rn, du), which means that G∗,pF ∈ Lp(Rn, ρ(u)du). Thus G∗,p is bounded
from L

1,p
m (R2n) into Lp(Rn, ρ). Again, by showing GG∗,pF = F, for F holomorphic and

F ∈ L
1,p
m (R2n), we obtain the required result. The uniqueness follows from Remark 2.1.
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Eds., vol. 260 of Contemporary Mathematics, pp. 1–59, American Mathematical Society, Providence, RI,
USA, 2000.


