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1. Introduction

There are several classifications of the complex nilpotent Lie algebras (NLA) of dimension
�7 (see [1–7], and the comparisons in [3, 5, 8]). In dimension �6, there are also historical
notations which go back to Dixmier [9] and Vergne [10]. In dimension 7, out of the several
classifications, Carles’ classification ([2] with a couple corrections as in [8]) is of particular
interest, as it is based on weight systems, with notations taking into account the rank and
the labeling of the weight systems, in the spirit of the historical notations. We label the
NLAs of dimension �7 according to the historical notations in dimensions �6 and according
to Carles’ notations in dimension 7. We refer to [8] for commutation relations (they are
given in a basis that diagonalizes a maximal torus, i.e., a maximal Abelian subalgebra of the
derivation algebra consisting of semisimple elements) and discussion of the classification,
as well as for comparison with other classifications. Let us simply recall here that there
are 98 (nonequivalent) weight systems for complex 7-dimensional indecomposable NLAs:
1 in rank 0, 24 in rank 1, 45 in rank 2, 24 in rank 3, and 4 in rank 4. The indecomposable
NLAs of dimension 7 are almost classified by their weight system with a few exceptions, and
one gets 123 nonisomorphic indecomposable NLAs of dimension 7, of which 6 continuous
1-parameter series (each continuous series counts as one algebra). We also recall the
isomorphisms for the continuous series: g7,0.4(λ′) ∼= g7,0.4(λ) ⇔ λ′ = ±λ; g7,1.1(iλ′ )

∼= g7,1.1(iλ) ⇔
λ′ = λ; g7,1.2(iλ′ )

∼= g7,1.2(iλ) ⇔ (λ′ = λ or λλ′ = 1); g7,1.3(iλ′ )
∼= g7,1.3(iλ) ⇔ λ′ = λ; g7,2.1(iλ′ ) ∼=

g7,2.1(iλ) ⇔ λ′ = λ. As to g7,3.1(iλ), g7,3.1(iλ′ )
∼= g7,3.1(iλ) if and only if λ′ = s(λ)with s any element of
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Table 1: Singular values for continuous series of 7-dimensional NLAs.

Algebra Singular values
g7,0.4(λ) : No singular value
g7,1.1(iλ) : λ = 1, λ = 3, λ ∈ {−ω,−ω2}
g7,1.2(iλ) (λ /= − 1) λ = 1, λ ∈ {−ω,−ω2}
g7,1.3(iλ) λ = 1;

g7,2.1(iλ) λ = 0, λ =
1
2
, λ = 2, λ ∈ {−ω,−ω2}

g7,3.1(iλ) λ = 0, 1, λ = −1, 2, 1
2
, λ ∈ {−ω,−ω2}

the group of transformations of λ : G = {λ, 1/λ, 1 − λ, 1/(1 − λ), 1 − 1/λ, λ/(λ − 1)}, which is
isomorphic to the symmetric group S3.

Now, given some 7-dimensional NLA, it is not always easy to match it (up to iso-
morphism) to an algebra of the list. For that purpose, however, the adjoint cohomology is
very effective. Adjoint and trivial cohomologies for all complex 7-dimensional indecompos-
able NLAs, along with their weight systems under the action of the maximal torus have been
computed in [11] (see also [12], and for trivial cohomology [13]). (Beside the Abelian case,
there is a couple special instances in which there are formulae valid in any dimension: for
standard filiform [11] and Heisenberg Lie algebras [14, 15].)

However, on one hand that work is unpublished, and on the other hand, when
identifying a particular NLA, one has to look up quickly some particular cohomology
sequence. Hence there is a point in publishing a handy list of cohomology for all NLAs of
dimension �7. In the present paper, we write down such a list. For each NLA g, we give the
sequences (dimZj(g, g))0�j�dimg and (dimHj(g, g))0�j�dimg for, respectively, the spaces of
adjoint cocycles and cohomology groups, along with the sequence of Betti numbers, that
is, the trivial cohomology (dimHj(g,C))0�j�dimg. We also pay attention to quadratic Lie
algebras, Poincaré duality and harmonic cocycles.

Nonisomorphic NLAs of dimension �6 have different adjoint cohomologies, even
though their trivial cohomologies may be equal. In dimension 7, up to 14 nonisomorphic
NLAs (of which 2 continuous series) may share the same trivial cohomology (e.g.,
(1, 2, 3, 4, 4, 3, 2, 1)), hence the trivial cohomology is ineffective in separating nonisomorphic
Lie algebras; it does not refine the classification by weight systems of the algebras either.
However, the adjoint cohomology does separate all but 13 pairs of NLAs, and refines the
classification by weight systems of the algebras, with only 4 exceptions. For any continuous
series, the adjoint cohomology is the same for all but some singular values of the parameter
at which gaps occur. The singular values for the 6 continuous series are listed in Table 1.
Throughout the paper, we denote ω = exp(2iπ/3). For continuous series, the term generic
will refer to the values of the parameter which are not singular.

The nonisomorphic 7-dimensional NLAs having the same adjoint cohomology come
in 13 pairs, as shown in Table 2. Adjoint cohomology refines the classification by weight
systems of the NLAs, except for the 4 pairs # 2, 3, 4, 8 in Table 2. In each of those 4 pairs,
the weight system on the cohomology is identical for the 2 components [11].

2. Cohomology tables

The results appear as in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. For continuous series, the places
where gaps occur for the singular values are underlined.
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Table 2: Pairs of 7-dimensional NLAs having same adjoint cohomology.

# Pair Adjoint cohomology
1 (g7,0.4(λ), g7,0.5) (1, 4, 9, 15, 16, 12, 7, 2)
2 (g7,1.1(iλ) (λ = −ω), g7,1.1(iλ) (λ = −ω2)) (1, 4, 9, 14, 16, 12, 6, 2)
3 (g7,1.2(iλ) (generic), g7,1.2(ii)) (1, 6, 16, 27, 30, 23, 12, 3)
4 (g7,1.3(iλ) (generic), g7,1.3(iii)) (1, 7, 19, 30, 32, 23, 11, 3)
5 (g7,1.20, g7,1.21) (1, 5, 12, 17, 17, 15, 10, 3)
6 (g7,2.1(iλ) (generic), g7,1.3(ii)) (1, 8, 20, 31, 33, 24, 12, 3)
7 (g7,2.1(iλ) (λ = 0), g7,2.11) (2, 9, 21, 33, 34, 24, 12, 3)
8 (g7,2.1(iλ) (λ = −ω), g7,2.1(iλ) (λ = −ω2)) (1, 8, 20, 31, 34, 25, 12, 3)
9 (g7,2.26, g7,3.4) (2, 8, 19, 32, 36, 26, 12, 3)
10 (g7,2.31, g7,2.41) (1, 7, 18, 29, 32, 24, 12, 3)
11 (g7,2.34, g7,2.35) (2, 7, 18, 29, 33, 25, 11, 3)
12 (g7,2.36, g6,12 × C) (2, 11, 29, 47, 51, 38, 18, 4)
13 (g6,11 × C, g4 × g3) (2, 12, 31, 48, 51, 38, 18, 4)

Recall that Z0(g, g) = H0(g, g) = c the center of g, and Z1(g, g) = Der(g), H1(g, g) =
Der(g)/ad(g). Recall also the following facts about Poincaré duality (PD) ([16, Theorem
6.10]). For any complexN-dimensional Lie algebra g and any g-module V, cohomology and
homology are related by the formulae (with V ∗ the contragredient g-module, and 0 � k � N)

Hk(g, V ) ∼= Hk(g, V ∗)∗, (2.1)

Hk(g, V ) ∼= HN−k

(

g, V⊗C

(
N∧

g

)∗)

, (2.2)

whence

Hk(g, V ) ∼= HN−k
(

g, V ∗⊗C

N∧
g

)∗
. (2.3)

Now, as the algebra g considered in this paper is nilpotent, hence unimodular (i.e., Tr(adX) =
0 for all X ∈ g), one has

∧Ng ∼= C (the trivial module), and (2.2), (2.3) read, respectively,

Hk(g, V ) ∼= HN−k(g, V ), (2.4)

Hk(g, V ) ∼= HN−k(g, V ∗)∗. (2.5)

Hence, HN(g, g) ∼= H0(g, g) ∼= g/[g, g] ∼= (H1(g,C))∗, and HN−k(g, g) ∼= Hk(g, g∗)∗, g∗

being equipped with the coadjoint representation. We say that PD holds true for the
cohomology of the g-module V if HN−k(g, V ) ∼= Hk(g, V ). PD holds true for the trivial
cohomology. However, it does not hold true in general for the adjoint cohomology. The
NLAs satisfying Poincaré duality for the adjoint cohomology are signalled with a ‡; among
them, those quadratic NLAs have a �. Recall that a Lie algebra g is called quadratic if
there exists a nondegenerate symmetric bilinear form B on g which is invariant, that is,
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Table 3: Cohomology table for NLAs of dimension 7: rank 0.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
g7,0.1 (1,10,48,114,147,109,44,7) (1,4,9,15,16,11,6,2) (1,2,3,4,4,3,2,1)
g7,0.2 (1,10,49,113,147,109,44,7) (1,4,10,15,15,11,6,2) (1,2,3,4,4,3,2,1)
g7,0.3 (1,11,50,116,149,110,44,7) (1,5,12,19,20,14,7,2) (1,2,4,6,6,4,2,1)
g7,0.4(λ) (1,10,48,114,147,110,44,7) (1,4,9,15,16,12,7,2) (1,2,3,4,4,3,2,1)
g7,0.5 (1,10,48,114,147,110,44,7) (1,4,9,15,16,12,7,2) (1,2,3,4,4,3,2,1)
g7,0.6 (1,10,48,114,148,110,44,7) (1,4,9,15,17,13,7,2) (1,2,3,5,5,3,2,1)
g7,0.7 (1,10,49,115,148,110,44,7) (1,4,10,17,18,13,7,2) (1,2,3,4,4,3,2,1)
g7,0.8 (1,10,50,114,148,112,45,7) (1,4,11,17,17,15,10,3) (1,3,4,4,4,4,3,1)

B([x, y], z) + B(y, [x, z]) = 0 for all x, y, z ∈ g. This amounts to the adjoint and coadjoint
representations being equivalent, and hence implies PD for the adjoint cohomology. It is
known that quadratic structures B on g are in one-to-one correspondence with those elements
I ∈ ∧3g∗ whose super-Poisson bracket {I, I} vanishes [17], the correspondence being B �→ IB,
with IB(x, y, z) = B([x, y], z) for all x, y, z ∈ g. Recall that the super-Poisson bracket is, for
ω ∈ ∧kg∗, π ∈ ∧

g∗, {ω,π} = 2(−1)k∑i,jB(yi, yj)(xi
ω) ∧ (xj
π), with 
 the (left) interior
product, (xj)1�j�dimg

the basis of g (in which the commutation relations are given in [8]) and

yj such that B(yj , ·) = ωj, with (ωj)1�j�dimg the dual basis to (xj)1�j�dimg
. There are only 6

quadratic non-Abelian NLAs of dimension � 7 (only one indecomposable in each dimension
5,6,7). Each of them has only one quadratic structure, up to equivalence under the natural
action of Aut g.Here are Bs and IBs in the basis (ωj).

g7,2.4 : B = ω1 ⊗ω7 +ω7 ⊗ω1 +ω2 ⊗ω6 +ω6 ⊗ω2 − (
ω3 ⊗ω5 +ω5 ⊗ω3) +ω4 ⊗ω4;

IB = ω1 ∧ω3 ∧ω4 −ω1 ∧ω2 ∧ω5;

g6,3 × C : B = ω1 ⊗ω6 +ω6 ⊗ω1 − (
ω2 ⊗ω5 +ω5 ⊗ω2) +ω3 ⊗ω4 +ω4 ⊗ω3 +ω7 ⊗ω7;

IB = ω1 ∧ω2 ∧ω3;

g5,4 × C
2 : B = ω1 ⊗ω5 +ω5 ⊗ω1 − (

ω2 ⊗ω4 +ω4 ⊗ω2) +ω3 ⊗ω3 +ω6 ⊗ω6 +ω7 ⊗ω7;

IB = ω1 ∧ω2 ∧ω3;

g6,3 : B = ω1 ⊗ω6 +ω6 ⊗ω1 − (
ω2 ⊗ω5 +ω5 ⊗ω2) +ω3 ⊗ω4 +ω4 ⊗ω3;

IB = ω1 ∧ω2 ∧ω3;

g5,4 × C : B = ω1 ⊗ω5 +ω5 ⊗ω1 − (
ω2 ⊗ω4 +ω4 ⊗ω2) +ω3 ⊗ω3 +ω6 ⊗ω6;

IB = ω1 ∧ω2 ∧ω3;

g5,4 : B = ω1 ⊗ω5 +ω5 ⊗ω1 − (
ω2 ⊗ω4 +ω4 ⊗ω2) +ω3 ⊗ω3;

IB = ω1 ∧ω2 ∧ω3.

(2.6)

3. About the programs

All computations were made by developing programs with the computer algebra system
Reduce. The adjoint cohomologies have been computed by program 1. Trivial cohomologies
were computed twice: by program 2, and by program 3 which computes via harmonic
cocycles. Actually, those programs do more than simply compute the dimensions of the
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Table 4: Cohomology table for NLAs of dimension 7: rank 1.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers

g7,1.01(i) (1,11,51,113,148,112,45,7) (1,5,13,17,16,15,10,3) (1,3,4,4,4,4,3,1)

g7,1.01(ii) (1,12,53,118,152,113,45,7) (1,6,16,24,25,20,11,3) (1,3,5,7,7,5,3,1)

g7,1.02 (1,11,49,114,148,110,44,7) (1,5,11,16,17,13,7,2) (1,2,3,5,5,3,2,1)

g7,1.03 (1,11,49,115,148,110,44,7) (1,5,11,17,18,13,7,2) (1,2,3,4,4,3,2,1)

g7,1.1(iλ) generic (1,10,48,113,147,109,44,7) (1,4,9,14,15,11,6,2) (1,2,3,4,4,3,2,1)

g7,1.1(iλ) λ = 1 (1,11,49,113,147,109,44,7) (1,5, 11, 15,15,11,6,2) unchanged

g7,1.1(iλ) λ = 3 (1,10,48,114,147,110,44,7) (1,4,9,15, 16, 12,7,2) (1,2,4, 5, 5, 4,2,1)

g7,1.1(iλ) λ ∈ {−ω,−ω2} (1,10,48,113,148,109,44,7) (1,4,9,14,16, 12,6,2) (1,2,3,5, 5,3,2,1)

g7,1.1(ii) (1,11,48,114,147,109,44,7) (1,5,10,15,16,11,6,2) (1,2,3,4,4,3,2,1)

g7,1.1(iii) (2,10,48,113,147,109,44,7) (2,5,9,14,15,11,6,2) (1,2,3,4,4,3,2,1)

g7,1.1(iv) (1,11,48,114,149,110,44,7) (1,5,10,15,18,14,7,2) (1,2,3,6,6,3,2,1)

g7,1.1(v) (1,10,50,113,148,112,45,7) (1,4,11,16,16,15,10,3) (1,3,4,4,4,4,3,1)

g7,1.1(vi) (1,11,50,115,149,112,45,7) (1,5,12,18,19,16,10,3) (1,3,4,4,4,4,3,1)

g7,1.2(iλ) (λ /= − 1) generic (1,12,53,121,154,114,45,7) (1,6,16,27,30,23,12,3) (1,3,6,7,7,6,3,1)

g7,1.2(iλ) λ ∈ {1,−ω,−ω2} (1,12,53,122, 155,114,45,7) (1,6,16,28, 32, 24,12,3) (1,3,6,8, 8,6,3,1)

g7,1.2(ii) (1,12,53,121,154,114,45,7) (1,6,16,27,30,23,12,3) (1,3,6,7,7,6,3,1)

g7,1.2(iii) (2,12,53,122,154,114,45,7) (2,7,16,28,31,23,12,3) (1,3,6,7,7,6,3,1)

g7,1.2(iv) (1,12,53,122,154,114,45,7) (1,6,16,28,31,23,12,3) (1,3,6,7,7,6,3,1)

g7,1.3(iλ) generic (1,13,55,122,155,113,45,7) (1,7,19,30,32,23,11,3) (1,3,5,7,7,5,3,1)

g7,1.3(iλ) λ = 1 (1,13,55,122,156,113,45,7) (1,7,19,30,33, 24,11,3) (1,3,5,8, 8,5,3,1)

g7,1.3(ii) (1,14,55,123,155,114,45,7) (1,8,20,31,33,24,12,3) (1,3,6,8,8,6,3,1)

g7,1.3(iii) (1,13,55,122,155,113,45,7) (1,7,19,30,32,23,11,3) (1,3,5,7,7,5,3,1)

g7,1.3(iv) (2,13,57,123,157,113,45,7) (2,8,21,33,35,25,11,3) (1,3,5,9,9,5,3,1)

g7,1.3(v) (1,13,56,123,155,117,46,7) (1,7,20,32,33,27,16,4) (1,4,6,7,7,6,4,1)

g7,1.4 (1,12,50,116,149,110,44,7) (1,6,13,19,20,14,7,2) (1,2,4,6,6,4,2,1)

g7,1.5 ‡ (2,11,49,115,147,109,44,7) (2,6,11,17,17,11,6,2) (1,2,3,4,4,3,2,1)

g7,1.6 (1,12,52,118,149,110,44,7) (1,6,15,23,22,14,7,2) (1,2,4,6,6,4,2,1)

g7,1.7 (2,15,59,128,159,115,45,7) (2,10,25,40,42,29,13,3) (1,3,7,11,11,7,3,1)

g7,1.8 (1,11,53,120,152,113,45,7) (1,5,15,26,27,20,11,3) (1,3,5,6,6,5,3,1)

g7,1.9 (2,14,58,124,156,114,45,7) (2,9,23,35,35,25,12,3) (1,3,6,9,9,6,3,1)

g7,1.10 (1,11,50,116,150,111,44,7) (1,5,12,19,21,16,8,2) (1,2,4,7,7,4,2,1)

g7,1.11 (1,11,52,117,151,113,45,7) (1,5,14,22,23,19,11,3) (1,3,5,6,6,5,3,1)

g7,1.12 (1,12,53,120,153,113,45,7) (1,6,16,26,28,21,11,3) (1,3,5,7,7,5,3,1)

g7,1.13 (2,12,51,117,150,111,44,7) (2,7,14,21,22,16,8,2) (1,2,4,7,7,4,2,1)

g7,1.14 (2,11,49,115,148,110,44,7) (2,6,11,17,18,13,7,2) (1,2,3,4,4,3,2,1)

g7,1.15 (1,13,54,120,153,113,45,7) (1,7,18,27,28,21,11,3) (1,3,5,7,7,5,3,1)

g7,1.16 (2,15,59,128,158,115,45,7) (2,10,25,40,41,28,13,3) (1,3,7,10,10,7,3,1)

g7,1.17 (1,11,48,114,147,110,44,7) (1,5,10,15,16,12,7,2) (1,2,3,4,4,3,2,1)

g7,1.18 (2,13,56,123,155,114,45,7) (2,8,20,32,33,24,12,3) (1,3,6,8,8,6,3,1)

g7,1.19 (2,11,55,120,157,113,45,7) (2,6,17,28,32,25,11,3) (1,3,5,9,9,5,3,1)

g7,1.20 (1,11,50,114,148,112,45,7) (1,5,12,17,17,15,10,3) (1,3,4,4,4,4,3,1)

g7,1.21 (1,11,50,114,148,112,45,7) (1,5,12,17,17,15,10,3) (1,3,4,4,4,4,3,1)
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Table 5: Cohomology table for NLAs of dimension 7: rank 2. (continues on next page).

Algebra Adjoint cocycles Adjoint cohomology Betti numbers

g7,2.1(iλ) generic (1,14,55,123,155,114,45,7) (1,8,20,31,33,24,12,3) (1,3,6,8,8,6,3,1)
g7,2.1(iλ) λ = 0 (2,14,56, 124,155,114,45,7) (2, 9, 21, 33, 34,24,12,3) unchanged

g7,2.1(iλ) λ =
1
2

(1,15,55,123,155,114,45,7) (1,9, 21,31,33,24,12,3) unchanged

g7,2.1(iλ) λ = 2 (1,14,55,125, 157, 115,45,7) (1,8,20,33, 37, 27, 13,3) (1,3,7, 9, 9, 7,3,1)
g7,2.1(iλ) λ ∈ {−ω,−ω2} (1,14,55,123,156,114,45,7) (1,8,20,31,34, 25,12,3) (1,3,6,9, 9,6,3,1)
g7,2.1(ii) (1,14,56,123,155,114,45,7) (1,8,21,32,33,24,12,3) (1,3,6,8,8,6,3,1)
g7,2.1(iii) (1,14,58,125,159,118,46,7) (1,8,23,36,39,32,17,4) (1,4,7,8,8,7,4,1)
g7,2.1(iv) (1,14,58,124,157,118,46,7) (1,8,23,35,36,30,17,4) (1,4,7,8,8,7,4,1)
g7,2.1(v) (2,14,57,124,157,114,45,7) (2,9,22,34,36,26,12,3) (1,3,6,10,10,6,3,1)
g7,2.2 (1,15,59,130,159,116,45,7) (1,9,25,42,44,30,14,3) (1,3,7,9,9,7,3,1)
g7,2.3 (1,13,53,119,149,110,44,7) (1,7,17,25,23,14,7,2) (1,2,4,6,6,4,2,1)
g7,2.4 ‡� (2,12,49,115,147,110,44,7) (2,7,12,17,17,12,7,2) (1,2,3,4,4,3,2,1)
g7,2.5 (1,12,49,114,149,110,44,7) (1,6,12,16,18,14,7,2) (1,2,3,6,6,3,2,1)
g7,2.6 (2,12,49,115,148,110,44,7) (2,7,12,17,18,13,7,2) (1,2,3,4,4,3,2,1)
g7,2.7 ‡ (2,13,52,120,150,111,44,7) (2,8,16,25,25,16,8,2) (1,2,4,7,7,4,2,1)
g7,2.8 (2,13,51,119,152,112,44,7) (2,8,15,23,26,19,9,2) (1,2,5,9,9,5,2,1)
g7,2.9 (2,12,50,118,151,112,44,7) (2,7,13,21,24,18,9,2) (1,2,5,8,8,5,2,1)
g7,2.10 (1,12,51,115,149,112,45,7) (1,6,14,19,19,16,10,3) (1,3,4,4,4,4,3,1)
g7,2.11 (2,14,56,124,155,114,45,7) (2,9,21,33,34,24,12,3) (1,3,6,8,8,6,3,1)
g7,2.12 (2,14,57,123,157,113,45,7) (2,9,22,33,35,25,11,3) (1,3,5,9,9,5,3,1)
g7,2.13 (1,12,50,114,148,112,45,7) (1,6,13,17,17,15,10,3) (1,3,4,4,4,4,3,1)
g7,2.14 (1,12,51,113,148,112,45,7) (1,6,14,17,16,15,10,3) (1,3,4,4,4,4,3,1)
g7,2.15 (1,13,54,119,152,113,45,7) (1,7,18,26,26,20,11,3) (1,3,5,7,7,5,3,1)
g7,2.16 (1,14,55,120,153,113,45,7) (1,8,20,28,28,21,11,3) (1,3,5,7,7,5,3,1)
g7,2.17 (2,13,53,122,154,114,45,7) (2,8,17,28,31,23,12,3) (1,3,6,7,7,6,3,1)
g7,2.18 (2,15,58,125,157,115,45,7) (2,10,24,36,37,27,13,3) (1,3,6,10,10,6,3,1)
g7,2.19 (2,15,58,125,156,114,45,7) (2,10,24,36,36,25,12,3) (1,3,6,9,9,6,3,1)
g7,2.20 (2,16,59,128,158,115,45,7) (2,11,26,40,41,28,13,3) (1,3,7,10,10,7,3,1)
g7,2.21 (2,16,60,129,158,115,45,7) (2,11,27,42,42,28,13,3) (1,3,7,10,10,7,3,1)
g7,2.22 (2,14,56,125,156,115,45,7) (2,9,21,34,36,26,13,3) (1,3,7,9,9,7,3,1)
g7,2.23 (1,13,58,123,156,118,46,7) (1,7,22,34,34,29,17,4) (1,4,7,7,7,7,4,1)
g7,2.24 (2,13,54,123,155,114,45,7) (2,8,18,30,33,24,12,3) (1,3,6,8,8,6,3,1)
g7,2.25 (1,14,56,123,155,117,46,7) (1,8,21,32,33,27,16,4) (1,4,6,7,7,6,4,1)
g7,2.26 (2,13,55,124,157,114,45,7) (2,8,19,32,36,26,12,3) (1,3,6,10,10,6,3,1)
g7,2.27 (2,17,65,132,164,119,46,7) (2,12,33,50,51,38,18,4) (1,4,8,11,11,8,4,1)
g7,2.28 (1,16,63,131,163,119,46,7) (1,10,30,47,49,37,18,4) (1,4,8,10,10,8,4,1)
g7,2.29 (2,14,59,126,159,117,46,7) (2,9,24,38,40,31,16,4) (1,4,6,9,9,6,4,1)
g7,2.30 (1,15,56,125,156,117,46,7) (1,9,22,34,36,28,16,4) (1,4,6,8,8,6,4,1)
g7,2.31 (1,13,54,122,155,114,45,7) (1,7,18,29,32,24,12,3) (1,3,6,8,8,6,3,1)
g7,2.32 (1,14,55,122,156,113,45,7) (1,8,20,30,33,24,11,3) (1,3,5,8,8,5,3,1)
g7,2.33 (1,12,53,120,153,113,45,7) (1,6,16,26,28,21,11,3) (1,3,5,7,7,5,3,1)
g7,2.34 (2,12,55,121,157,113,45,7) (2,7,18,29,33,25,11,3) (1,3,5,9,9,5,3,1)
g7,2.35 (2,12,55,121,157,113,45,7) (2,7,18,29,33,25,11,3) (1,3,5,9,9,5,3,1)
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Table 5: Continued.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers

g7,2.36 (2,16,62,132,164,119,46,7) (2,11,29,47,51,38,18,4) (1,4,8,11,11,8,4,1)
g7,2.37 (1,13,53,121,154,114,45,7) (1,7,17,27,30,23,12,3) (1,3,6,7,7,6,3,1)
g7,2.38 (2,16,65,131,164,119,46,7) (2,11,32,49,50,38,18,4) (1,4,8,11,11,8,4,1)
g7,2.39 (2,17,63,131,163,115,45,7) (2,12,31,47,49,33,13,3) (1,3,7,13,13,7,3,1)
g7,2.40 (3,16,63,132,159,115,45,7) (3,12,30,48,46,29,13,3) (1,3,7,11,11,7,3,1)
g7,2.41 (1,13,54,122,155,114,45,7) (1,7,18,29,32,24,12,3) (1,3,6,8,8,6,3,1)
g7,2.42 (2,14,58,126,159,114,45,7) (2,9,23,37,40,28,12,3) (1,3,6,10,10,6,3,1)
g7,2.43 (2,16,60,129,159,115,45,7) (2,11,27,42,43,29,13,3) (1,3,7,11,11,7,3,1)
g7,2.44 (2,16,60,130,161,116,45,7) (2,11,27,43,46,32,14,3) (1,3,7,11,11,7,3,1)
g7,2.45 (2,17,65,134,165,119,46,7) (2,12,33,52,54,39,18,4) (1,4,8,12,12,8,4,1)
g6,12 × C (2,16,62,132,164,119,46,7) (2,11,29,47,51,38,18,4) (1,4,8,11,11,8,4,1)
g6,17 × C (2,14,55,122,154,113,45,7) (2,9,20,30,31,22,11,3) (1,3,5,7,7,5,3,1)
g6,19 × C (2,13,53,120,153,113,45,7) (2,8,17,26,28,21,11,3) (1,3,5,7,7,5,3,1)
g6,20 × C (2,12,50,115,149,112,45,7) (2,7,13,18,19,16,10,3) (1,3,4,4,4,4,3,1)

cohomology: program 1 computes a basis forH2(g, g) and, when the commutation relations
of g are given in a basis that diagonalizes a maximal torus, characters of the adjoint
cohomology under the action of the maximal torus; for trivial cohomology, the programs
compute characters and bases of the eigenspaces under the action of the maximal torus.

Program 2 computes all Hk(g,C) (0 � k � N) and their respective bases and
characters independently, making no use of PD. Then PD shows up as a result. There is also
a variant program 2′ which does the same, yet offers the option to make use of the computed
bases of Hk(g,C) and HN−k(g,C) (2k � N) to get the matrix of the bilinear form in PD and
modify the basis ofHN−k(g,C) so as to get the dual basis in PD of the basis ofHk(g,C).

As to program 3, harmonic cohomology comes naturally in the following way, which
can be formulated for unimodular g : suppose we already computed a basis of Hk(g,C)
only for 2k � N; how to deduce by PD a basis of HN−k(g,C)? Let � : Ck(g,C) =∧kg∗ →CN−k(g,C) =

∧N−kg (0 � k � N) be the isomorphism defined by �(f) = Ω�f , where
Ω = x1 ∧ · · · ∧ xN and � denotes the (right) interior product. As �(df) = (−1)k+1∂(�(f)) for all
f ∈ Ck(g,C) (∂ boundary operator) [18], � defines an isomorphism Hk(g,C)→HN−k(g,C),
which is actually (up to the factor (−1)k(N−k)) the one of (2.4) (V = C). Now, what we
look for is an explicit identification algorithm HN−k(g,C)→HN−k(g,C) to be implemented
in programs. For any subset I of {1, . . . ,N}, denote ωI = ωi1 ∧ · · · ∧ ωik for I = {i1, . . . , ik}
(1 � i1 < · · · < ik � N, 1 � k � N), ω∅ = 1, and similarly for xI. Let (·|·)be the
Hermitian scalar product on

∧
g∗ =

⊕N
k=0C

k(g,C) obtained by decreeing the basis (ωI)
to be orthonormal. For 1 � k � N, let z �→ gzbe the conjugate linear bijective map
Ck(g,C)→Ck(g,C) defined by (f | gz) = f(z) for all f ∈ Ck(g,C), z ∈ Ck(g,C) (we set
g1 = 1 for k = 0). Then for any subset I of {1, . . . ,N}, gxI = ωI and g�(ωI) = ρI,I ′ ω

I ′ , where
I ′ is the complementary subset to I, and ρI,I ′ = (−1)NI,I′ , NI,I ′ = card{(i, j) ∈ I × I ′; j < i}.
Let d∗ be the adjoint of d on

∧
g∗. Then d∗gz = g∂z for all z ∈ ∧

g =
⊕N

k=0Ck(g,C). d and d∗

are disjoint on
∧

g∗ in the sense of [19], hence kerd/imd =
⊕N

k=0H
k(g,C) is isomorphic to

kerΔ = kerd ∩ imd∗, where Δ = dd∗ + d∗d. Then {f ∈ Ck(g,C); Δf = 0} is the kth harmonic
cocycle space. It is contained in the kth cocycle space Zk(g,C). Each equivalence class of
Zk(g,C)modulo coboundaries contains exactly one harmonic cocycle.
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Table 6: Cohomology table for NLAs of dimension 7: rank 3.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers

g7,3.1(iλ) generic (1,15,59,130,159,116,45,7) (1,9,25,42,44,30,14,3) (1,3,7,9,9,7,3,1)

g7,3.1(iλ) λ = 0, 1 (2,15,59,130,161,116,45,7) (2,10,25,42,46, 32,14,3) (1,3,7,11, 11,7,3,1)

g7,3.1(iλ) λ = −1, 2, 1
2

(1,17,59,131,159,117,45,7) (1,11, 27, 43, 45, 31, 15,3) (1,3,8,10, 10,8,3,1)

g7,3.1(iλ) λ ∈ {−ω,−ω2} (1,15,59,130,160,116,45,7) (1,9,25,42,45, 31,14,3) (1,3,7,10, 10,7,3,1)

g7,3.1(iii) (1,15,63,130,161,119,46,7) (1,9,29,46,46,35,18,4) (1,4,8,9,9,8,4,1)

g7,3.2 (2,17,62,130,158,115,45,7) (2,12,30,45,43,28,13,3) (1,3,7,10,10,7,3,1)

g7,3.3 (2,15,56,126,156,115,45,7) (2,10,22,35,37,26,13,3) (1,3,7,9,9,7,3,1)

g7,3.4 (2,13,55,124,157,114,45,7) (2,8,19,32,36,26,12,3) (1,3,6,10,10,6,3,1)

g7,3.5 (2,14,56,125,157,114,45,7) (2,9,21,34,37,26,12,3) (1,3,6,10,10,6,3,1)

g7,3.6 (3,18,64,134,163,117,45,7) (3,14,33,51,52,35,15,3) (1,3,8,14,14,8,3,1)

g7,3.7 (2,15,61,131,164,119,46,7) (2,10,27,45,50,38,18,4) (1,4,8,11,11,8,4,1)

g7,3.8 (2,19,68,139,169,120,46,7) (2,14,38,60,63,44,19,4) (1,4,9,14,14,9,4,1)

g7,3.9 (2,18,65,137,168,120,46,7) (2,13,34,55,60,43,19,4) (1,4,9,13,13,9,4,1)

g7,3.10 (1,15,58,124,157,118,46,7) (1,9,24,35,36,30,17,4) (1,4,7,8,8,7,4,1)

g7,3.11 (2,18,65,136,166,119,46,7) (2,13,34,54,57,40,18,4) (1,4,8,13,13,8,4,1)

g7,3.12 (3,19,66,147,172,122,46,7) (3,15,36,66,74,49,21,4) (1,4,11,14,14,11,4,1)

g7,3.13 (2,16,59,127,159,117,46,7) (2,11,26,39,41,31,16,4) (1,4,6,9,9,6,4,1)

g7,3.14 (2,18,65,135,166,120,46,7) (2,13,34,53,56,41,19,4) (1,4,9,12,12,9,4,1)

g7,3.15 (2,17,63,133,164,119,46,7) (2,12,31,49,52,38,18,4) (1,4,8,11,11,8,4,1)

g7,3.16 (1,14,58,123,157,118,46,7) (1,8,23,34,35,30,17,4) (1,4,7,8,8,7,4,1)

g7,3.17 (1,16,56,127,157,117,46,7) (1,10,23,36,39,29,16,4) (1,4,6,9,9,6,4,1)

g7,3.18 (1,19,70,135,170,125,47,7) (1,13,40,58,60,50,25,5) (1,5,10,11,11,10,5,1)

g7,3.19 (2,19,70,148,171,124,47,7) (2,14,40,71,74,50,24,5) (1,5,9,15,15,9,5,1)

g7,3.20 (2,19,66,133,163,115,45,7) (2,14,36,52,51,33,13,3) (1,3,7,13,13,7,3,1)

g7,3.21 (2,15,58,127,159,114,45,7) (2,10,24,38,41,28,12,3) (1,3,6,10,10,6,3,1)

g7,3.22 (2,15,57,124,157,114,45,7) (2,10,23,34,36,26,12,3) (1,3,6,10,10,6,3,1)

g7,3.23 (3,17,63,132,159,116,45,7) (3,13,31,48,46,30,14,3) (1,3,7,11,11,7,3,1)

g7,3.24 (3,22,75,150,175,122,46,7) (3,18,48,78,80,52,21,4) (1,4,11,17,17,11,4,1)

g6,5 × C (3,18,65,135,165,119,46,7) (3,14,34,53,55,39,18,4) (1,4,8,11,11,8,4,1)

g6,7 × C (3,20,70,142,170,120,46,7) (3,16,41,65,67,45,19,4) (1,4,9,14,14,9,4,1)

g6,8 × C (3,19,66,135,165,119,46,7) (3,15,36,54,55,39,18,4) (1,4,8,11,11,8,4,1)

g6,10 × C (2,17,64,134,165,119,46,7) (2,12,32,51,54,39,18,4) (1,4,8,11,11,8,4,1)

g6,11 × C (2,17,63,132,164,119,46,7) (2,12,31,48,51,38,18,4) (1,4,8,11,11,8,4,1)

g6,13 × C (2,15,58,125,159,118,46,7) (2,10,24,36,39,32,17,4) (1,4,7,8,8,7,4,1)

g6,14 × C (3,16,58,126,158,115,45,7) (3,12,25,37,39,28,13,3) (1,3,6,10,10,6,3,1)

g6,15 × C (2,14,56,124,157,115,45,7) (2,9,21,33,36,27,13,3) (1,3,6,10,10,6,3,1)

g6,16 × C (2,15,57,123,154,113,45,7) (2,10,23,33,32,22,11,3) (1,3,5,7,7,5,3,1)

g6,18 × C (2,13,51,115,149,112,45,7) (2,8,15,19,19,16,10,3) (1,3,4,4,4,4,3,1)

g5,6 × C2 (3,18,63,132,164,119,46,7) (3,14,32,48,51,38,18,4) (1,4,8,11,11,8,4,1)
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Table 7: Cohomology table for NLAs of dimension 7: rank 4.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
g7,4.1 (3,20,71,149,174,122,46,7) (3,16,42,73,78,51,21,4) (1,4,11,16,16,11,4,1)
g7,4.2 (3,25,78,157,178,123,46,7) (3,21,54,88,90,56,22,4) (1,4,12,18,18,12,4,1)
g7,4.3 (2,21,72,150,175,125,47,7) (2,16,44,75,80,55,25,5) (1,5,10,16,16,10,5,1)
g7,4.4 (1,28,91,140,189,134,48,7) (1,22,70,84,84,78,35,6) (1,6,14,14,14,14,6,1)
g6,1 × C (3,24,81,157,184,127,47,7) (3,20,56,91,96,66,27,5) (1,5,12,18,18,12,5,1)
g6,2 × C (2,20,70,138,171,125,47,7) (2,15,41,61,64,51,25,5) (1,5,10,12,12,10,5,1)
g6,3 × C ‡� (4,25,80,153,178,123,46,7) (4,22,56,86,86,56,22,4) (1,4,11,20,20,11,4,1)
g6,4 × C (3,19,68,140,169,120,46,7) (3,15,38,61,64,44,19,4) (1,4,9,14,14,9,4,1)
g6,6 × C (3,21,72,143,170,120,46,7) (3,17,44,68,68,45,19,4) (1,4,9,14,14,9,4,1)
g6,9 × C (2,16,63,132,163,119,46,7) (2,11,30,48,50,37,18,4) (1,4,8,11,11,8,4,1)
g5,3 × C2 (3,22,75,149,179,126,47,7) (3,18,48,77,83,60,26,5) (1,5,11,15,15,11,5,1)
g5,4 × C2 ‡� (4,22,68,135,166,120,46,7) (4,19,41,56,56,41,19,4) (1,4,8,11,11,8,4,1)
g5,5 × C2 (3,19,65,133,164,119,46,7) (3,15,35,51,52,38,18,4) (1,4,8,11,11,8,4,1)
g4 × g3 (2,17,63,132,164,119,46,7) (2,12,31,48,51,38,18,4) (1,4,8,11,11,8,4,1)

Table 8: Cohomology table for NLAs of dimension 7: rank 5.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
g5,1 × C2 (3,29,91,166,194,134,48,7) (3,25,71,110,115,83,35,6) (1,6,14,19,19,14,6,1)
g5,2 × C2 (4,27,89,168,190,128,47,7) (4,24,67,110,113,73,28,5) (1,5,13,21,21,13,5,1)
g4 × C3 (4,25,78,150,179,126,47,7) (4,22,54,81,84,60,26,5) (1,5,11,15,15,11,5,1)

Table 9: Cohomology table for NLAs of dimension 7: rank 6.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
g3 × C4 (5,34,106,191,209,136,48,7) (5,32,91,150,155,100,37,6) (1,6,16,25,25,16,6,1)

Table 10: Cohomology table for NLAs of dimension 7: rank 7 (Abelian).

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
C7 ‡� (7,49,147,245,245,147,49,7) (7,49,147,245,245,147,49,7) (1,7,21,35,35,21,7,1)

Lemma 3.1. Suppose that g is unimodular and let f ∈ Zk(g,C) (0 � k � N). Then g�(f) ∈
ZN−k(g,C) if and only if f is harmonic; in that case, g�(f) is also harmonic.

Proof. It is enough to prove d(g�(f)) = (−1)kg�(d∗f), that is, dΦf = (−1)k Φd∗f for all f ∈
Ck(g,C),withΦ the Hodge operator on

∧
g∗ defined byΦf = g�(f). For I subset of cardinality

k of {1, . . . ,N}, Φ2(ωI)=ρI,I ′ Φ(ωI ′)=ρI,I ′ ρI ′,I ωI =(−1)k(N−k)ωI, hence Φ2=
⊕N

k=0(−1)k(N−k) ×
IdCk(g,C). Now, f ∈ Ck(g,C), d∗Φf = d∗(g�(f)) = g∂�(f) = (−1)k+1g�(df) = (−1)k+1Φ(df) implies
successively d∗Φ2f = (−1)N−k+1ΦdΦf and Φd∗Φ2f = (−1)N−k+1Φ2dΦf = (−1)k(N−k+1)dΦf,
which reads Φd∗f = (−1)k dΦf .

Then Hk(g,C) is isomorphic to the space of harmonic cocycles and the map [f] �→
[g�(f)] which assigns to the class of the harmonic cocycle f the class of the harmonic cocycle
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Table 11: Cohomology table for NLAs of dimension 6.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
Rank 1
g6,12 (1,11,40,71,68,33,6) (1,6,15,21,19,11,3) (1,3,5,6,5,3,1)
g6,17 (1,10,36,67,64,32,6) (1,5,10,13,11,6,2) (1,2,3,4,3,2,1)
g6,19 (1,9,35,66,64,32,6) (1,4,8,11,10,6,2) (1,2,3,4,3,2,1)
g6,20 (1,8,34,64,63,32,6) (1,3,6,8,7,5,2) (1,2,2,2,2,2,1)
Rank 2
g6,5 (2,12,42,72,68,33,6) (2,8,18,24,20,11,3) (1,3,5,6,5,3,1)
g6,7 (2,14,44,75,69,33,6) (2,10,22,29,24,12,3) (1,3,6,8,6,3,1)
g6,8 (2,13,42,72,68,33,6) (2,9,19,24,20,11,3) (1,3,5,6,5,3,1)
g6,10 (1,12,41,72,68,33,6) (1,7,17,23,20,11,3) (1,3,5,6,5,3,1)
g6,11 (1,12,40,71,68,33,6) (1,7,16,21,19,11,3) (1,3,5,6,5,3,1)
g6,13 (1,10,38,68,67,33,6) (1,5,12,16,15,10,3) (1,3,4,4,4,3,1)
g6,14 (2,11,37,68,66,32,6) (2,7,12,15,14,8,2) (1,2,4,6,4,2,1)
g6,15 (1,10,36,67,66,32,6) (1,5,10,13,13,8,2) (1,2,4,6,4,2,1)
g6,16 (1,11,37,67,64,32,6) (1,6,12,14,11,6,2) (1,2,3,4,3,2,1)
g6,18 (1,9,34,64,63,32,6) (1,4,7,8,7,5,2) (1,2,2,2,2,2,1)
g5,6 × C (2,12,40,71,68,33,6) (2,8,16,21,19,11,3) (1,3,5,6,5,3,1)
Rank 3
g6,1 (2,17,50,82,74,34,6) (2,13,31,42,36,18,4) (1,4,8,10,8,4,1)
g6,2 (1,14,44,73,72,34,6) (1,9,22,27,25,16,4) (1,4,6,6,6,4,1)
g6,3 ‡� (3,18,48,78,72,33,6) (3,15,30,36,30,15,3) (1,3,8,12,8,3,1)
g6,4 (2,13,43,74,69,33,6) (2,9,20,27,23,12,3) (1,3,6,8,6,3,1)
g6,6 (2,15,45,75,69,33,6) (2,11,24,30,24,12,3) (1,3,6,8,6,3,1)
g6,9 (1,11,41,70,68,33,6) (1,6,16,21,18,11,3) (1,3,5,6,5,3,1)
g5,3 × C (2,15,47,79,76,34,6) (2,11,26,36,32,17,4) (1,4,7,8,7,4,1)
g5,4 × C ‡� (3,15,42,72,69,33,6) (3,12,21,24,21,12,3) (1,3,5,6,5,3,1)
g5,5 × C (2,13,41,71,68,33,6) (2,9,18,22,19,11,3) (1,3,5,6,5,3,1)
Rank 4
g5,1 × C (2,21,55,86,79,35,6) (2,17,40,51,45,24,5) (1,5,9,10,9,5,1)
g5,2 × C (3,19,55,86,75,34,6) (3,16,38,51,41,19,4) (1,4,9,12,9,4,1)
g4 × C2 (3,17,48,79,73,34,6) (3,14,29,37,32,17,4) (1,4,7,8,7,4,1)
g3 × g3 (2,16,50,82,74,34,6) (2,12,30,42,36,18,4) (1,4,8,10,8,4,1)
Rank 5
g3 × C3 (4,24,65,97,81,35,6) (4,22,53,72,58,26,5) (1,5,11,14,11,5,1)
Rank 6 (abelian)
C6 ‡� (6,36,90,120,90,36,6) (6,36,90,120,90,36,6) (1,6,15,20,15,6,1)

g�(f) is a conjugate-linear isomorphism fromHk(g,C) ontoHN−k(g,C). If ([ψj]) is a basis for
Hk(g,C) (2k � N) consisting of harmonic cocycles, then ([g�(ψj )]) is a basis for HN−k(g,C)
consisting of harmonic cocycles. Hence we see that the price to be paid for computing
Hk(g,C) and their base only for 2k � N, yet get bases for the whole cohomology, is to go
to harmonic cohomology. That was implemented as an option in the variant program 3′: with
that option on, the basis ofHN−k(g,C) is computed as explained, then modified into the dual
basis in PD of the basis of Hk(g,C) (2k � N). With the option off, no use of PD occurs:
harmonic cocycles and bases are computed independently for each k (0 � k � N).
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Table 12: Cohomology table for NLAs of dimension 5.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
Rank 1
g5,6 (1,8,24,34,22,5) (1,4,7,8,6,2) (1,2,3,3,2,1)
Rank 2
g5,3 (1,10,28,37,23,5) (1,6,13,15,10,3) (1,3,4,4,3,1)
g5,4 ‡� (2,10,24,35,22,5) (2,7,9,9,7,2) (1,2,3,3,2,1)
g5,5 (1,9,24,34,22,5) (1,5,8,8,6,2) (1,2,3,3,2,1)
Rank 3
g5,1 (1,15,30,41,24,5) (1,11,20,21,15,4) (1,4,5,5,4,1)
g5,2 (2,13,31,39,23,5) (2,10,19,20,12,3) (1,3,6,6,3,1)
g4 × C (2,11,28,37,23,5) (2,8,14,15,10,3) (1,3,4,4,3,1)
Rank 4
g3 × C2 (3,16,37,43,24,5) (3,14,28,30,17,4) (1,4,7,7,4,1)
Rank 5
C5 ‡� (5,25,50,50,25,5) (5,25,50,50,25,5) (1,5,10,10,5,1)

Table 13: Cohomology table for NLAs of dimension � 4.

Algebra Adjoint cocycles Adjoint cohomology Betti numbers
g4 (dim4, rk 2) (1,7,15,14,4) (1,4,6,5,2) (1,2,2,2,1)
g3 × C (dim4, rk 3) (2,10,19,15,4) (2,8,13,10,3) (1,3,4,3,1)
C4 (abel.) ‡� (dim4, rk 4) (4,16,24,16,4) (4,16,24,16,4) (1,4,6,4,1)
g3 (dim3, rk 2) (1,6,8,3) (1,4,5,2) (1,2,2,1)
C3 (abel.) ‡� (dim3, rk 3) (3,9,9,3) (3,9,9,3) (1,3,3,1)
C2 (abel.) ‡� (dim2, rk 2) (2,4,2) (2,4,2) (1,2,1)
C (abel.) ‡� (dim1, rk 1) (1,1) (1,1) (1,1)

All programs handle dimensions up to 7 and (if necessary) one continuous parameter
L. Though they are meant for nilpotent Lie algebras whose commutation relations are given
in a basis that diagonalizes a maximal torus, they can be directly applied to any Lie algebra
of dimension �7 as well, not necessarily nilpotent nor unimodular (except for the variants),
giving explicit calculation of cohomology: in that case, all material involving weights has
simply to be skipped. As to trivial cohomology, note that program 2which computesHk(g,C)
up to k = 7 makes it possible, thanks to PD, to write down the dimensions of trivial
cohomology for unimodular Lie algebras of dimensions up to 15. In the same way, program 3
can handle higher dimensions. However, restrictionsmay come on one hand from the amount
of dynamic storage space available, and on the other from the running time, which increases
steeply as the dimension N of the Lie algebra gets higher, typically for the computation of
the dimensions of trivial cohomology, with 4 GB RAM: 1 second for N = 7, 10 seconds for
N = 9, 3 minutes forN = 11, 3 hours forN = 13, up to 10 days forN = 15.

The programs are downloadable in the companion archive [20] (programs 1,2,3
are, resp., geneLplus2007.red, ncl2007.red, nclhar2007.red, and the variants program2′,
program 3′ are, resp., ncld2007.red, ncldhar2007.red in [20]) hence we will not enter
technicalities about procedures here. Let us simply mention the following concerning the
continuous parameter. In the presence of the continuous parameter L, cocycles equations
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depend on certain unknowns and on L. They are linear with respect to the unknowns. The
programs define an algorithm which solves the equations over the rational function field
generated by the parameter, while keeping track of the divisions that have been done. If the
parameter is a zero of one of the polynomials by which a division occurred, it may very well
not be a singular value: one has to compute again the cohomology for all such values.
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