
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2009, Article ID 179481, 6 pages
doi:10.1155/2009/179481

Research Article
On the Relation between the AINV and
the FAPINV Algorithms

Davod Khojasteh Salkuyeh and Hadi Roohani

Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran

Correspondence should be addressed to Davod Khojasteh Salkuyeh, khojaste@uma.ac.ir

Received 26 July 2009; Accepted 3 November 2009

Recommended by Victor Nistor

The approximate inverse (AINV) and the factored approximate inverse (FAPINV) are two
known algorithms in the field of preconditioning of linear systems of equations. Both of these
algorithms compute a sparse approximate inverse of matrix A in the factored form and are
based on computing two sets of vectors which are A-biconjugate. The AINV algorithm computes
the inverse factors W and Z of a matrix independently of each other, as opposed to the AINV
algorithm, where the computations of the inverse factors are done independently. In this paper,
we show that, without any dropping, removing the dependence of the computations of the inverse
factors in the FAPINV algorithm results in the AINV algorithm.

Copyright q 2009 D. Khojasteh Salkuyeh and H. Roohani. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the linear system of equations

Ax = b, (1.1)

where the coefficient matrix A ∈ R
n×n is nonsingular, large, sparse, and x, b ∈ R

n. Such
linear systems are often solved by Krylov subspace methods such as the GMRES (see Saad
and Schultz [1], Saad [2]) and the BiCGSTAB (see van der Vorst [3], Saad [2]) methods in
conjunction with a suitable preconditioner. A preconditioner is a matrixM such thatMu can
be easily computed for a given vector u and system MAx = Mb is easier to solve than (1.1).
Usually, to this end one intends to find M such that matrix M ≈ A−1 (MA ≈ In), where In is
the identity matrix. There are various methods to compute such an appropriate matrix (see
Benzi [4], Benzi and Tuma [5], Saad [2]). The factored approximate inverse (FAPINV) (Lee
and Zhang [6, 7], Luo [8–10], Zhang [11, 12]) and the approximate inverse (AINV) (see Benzi
and Tuma [13, 14]) are among the algorithms for computing an approximate inverse of A in



2 International Journal of Mathematics and Mathematical Sciences

the factored form. In fact both of these methods compute lower unitriangular matrices W
and ZT and a diagonal matrix D = diag(d1, d2, . . . , dn) such that WAZ ≈ D. In this case, the
matrix M = ZD−1W ≈ A may be used as a preconditioner for (1.1). It is well-known that the
AINV algorithm is free from breakdown for the class of H-matrices [13].

The main idea of the FAPINV algorithm was first introduced by Luo (see Luo [8–
10]). Then the algorithm was more investigated by Zhang in [12]. Since in this procedure the
factorization is performed in backward direction, we call it BFAPINV (for backward FAPINV)
algorithm. In [11], Zhang proposed an alternative procedure to compute the factorization
in the forward direction, which we call it FFAPINV (for forward FAPINV) algorithm. In
[7], Lee and Zhang showed that the BFAPINV algorithm is free from breakdown for M-
matrices. It can be easily seen that the FFAPINV algorithm is free from breakdown for M-
matrices, as well. In the left-looking AINV algorithm (see Benzi and Tuma [13, 14]), the
inverse factors are computed quite independently. In contrast, in the FFAPINV algorithm,
the inverse factors W and Z are not computed completely independently of each other. In
this paper, from the FFAPINV algorithmwithout any dropping, we obtain a procedure which
bypasses this dependence. Then we show that this procedure is equivalent to the left-looking
AINV algorithm. In the same way one can see that the right-looking AINV algorithm (see
Benzi and Tuma [13]) can be obtained from BFAPINV algorithm.

In Section 2, we give a brief description of the FFAPINV algorithm. The main results
are given in Section 3. Section 4 is devoted to some concluding remarks.

2. A Review of the FFAPINV Algorithm

Let W and Z be the inverse factors of A = (aij), that is,

WAZ = D, (2.1)

whereW = (wT
1 , w

T
2 , . . . , w

T
n)

T , Z = (z1, z2, . . . , zn), andD = diag(d1, d2, . . . , dn), in whichwi’s
and zi’s are the rows and columns of W and Z, respectively. Using (2.1) we obtain

wiAzj =

⎧
⎨

⎩

di, i = j,

0, i /= j.
(2.2)

From the structure of the matrices W and Z, we have

z1 = e1, zj = ej −
j−1∑

i=1

αizi, j = 2, . . . , n, (2.3)

w1 = eT1 , wj = eTj −
j−1∑

i=1

βiwi, j = 2, . . . , n, (2.4)

for some αi’s and βi’s, where ej is the jth column of the identity matrix.
First of all, we see that

d1 = zT1Az1 = eT1Ae1 = a11. (2.5)



International Journal of Mathematics and Mathematical Sciences 3

Now let 2 ≤ j ≤ n be fixed. Then from (2.2) and (2.3) and for k = 1, . . . , j − 1, we have

0 = wkAzj

= wkAej −
j−1∑

i=1

αiwkAzi

= wkA∗j − αkwkAzk

= wkA∗j − αkdk,

(2.6)

where A∗j is the jth column of A. Therefore

αi =
1
di
wiA∗j , i = 1, . . . , j − 1. (2.7)

In the same manner

βi =
1
di
Aj∗zi, i = 1, . . . , j − 1, (2.8)

where Aj∗ is the jth row of A. Putting these results together gives the Algorithm 1 for
computing the inverse factors of A.

Some observation can be posed here. It can be easily seen that (see, e.g., Salkuyeh [15])

dj = wjAzj = zTj Azj = wjAzj = Aj∗zj = wjA∗j . (2.9)

In this algorithm, the computations for the inverse factors Z and W are tightly coupled. This
algorithm needs the columns of the strictly upper triangular part of A for computing Z and
the strictly lower triangular part of A for computing W . A sparse approximate inverse of A
in the factored form is computed by inserting some dropping strategies in Algorithm 1.

3. Main Results

At the beginning of this section we mention that all of the results presented in this section are
valid only when we do not use any dropping. As we mentioned in the previous section the
computations for the inverse factors Z and W are tightly coupled. In this section, we extract
a procedure from Algorithm 1 such that the computations for the inverse factors are done
independently. We also show that the resulting algorithm is equivalent to the left-looking
AINV algorithm.

From WAZ = D we have ZTAZ = ZTW−1D. Obviously, the right-hand side of the
latter equation is a lower triangular matrix and diag(ZTAZ) = diag(ZTW−1D). Therefore

zTi Azj =

⎧
⎨

⎩

di, i = j,

0, i < j.
(3.1)



4 International Journal of Mathematics and Mathematical Sciences

(1) z1 := e1, w1 := eT1 and d1 := a11
(2) For j = 2, . . . , n, Do
(3) zj := ej ; wj := eTj
(4) For i = 1, . . . , j − 1, Do
(5) αi := (1/di)wiA∗j ; βi := (1/di)Aj∗zi
(6) zj := zj − αizi; wj := wj − βiwi

(7) EndDo
(8) dj := wjAzj
(9) EndDo

Algorithm 1: The FFAPINV algorithm without dropping.

Premultiplying both sides of (2.3) by zT
k
A, k = 1, 2, . . . , j − 1, from the left, we obtain

zTkAzj = zTkAej −
j−1∑

i=1

αiz
T
kAzi. (3.2)

Taking into account (3.1), we obtain

0 = zTkAej −
k−1∑

i=1

αiz
T
kAzi − αkz

T
kAzk. (3.3)

Therefore

αk =
1
dk

zTkA

(

ej −
k−1∑

i=1

αizi

)

. (3.4)

Hence we can state a procedure for computing the inverse factor Z without need to the
inverse factor W as follows:

(1) z1 := e1, d1 := a11

(2) For j = 2, . . . , n, Do

(3) For i = 1, . . . , j − 1, Do

(4) αi := (1/di)zTi A(ej −
∑i−1

k=1 αkzk)

(5) EndDo

(6) zj := ej −
∑j−1

i=1 αizi

(7) dj := zTj Azj

(8) EndDo



International Journal of Mathematics and Mathematical Sciences 5

(1) z1 := e1, d1 := a11
(2) For j = 2, . . . , n, Do
(3) zj := ej
(4) For i = 1, . . . , j − 1, Do
(5) αi := (1/di)Ai∗zj
(6) zj := zj − αizi
(7) EndDo
(8) dj := Aj∗zj
(9) EndDo

Algorithm 2: Left-looking AINV algorithm without dropping.

By some modifications this algorithm can be converted in a simple form, avoiding extra
computations. Letting qi = zTi A, steps (3)–(7) may be written as follows:

(i) zj := ej

(ii) For i = 1, . . . , j − 1, Do

(iii) αi := (1/di)qi(ej −
∑i−1

k=1 αkzk)

(iv) zj := zj − αizi

(v) EndDo

(vi) qj := zTj A

(vii) dj := qjzj .

Obviously the parameter αi at step (iii) of this procedure can be computed via

αi =
1
di
qizj . (3.5)

We haveAZ = W−1D. This shows that the matrix AZ is a lower triangular matrix. Therefore,
since Z is a unit upper triangular matrix, we deduce

αi =
1
di
qizj =

1
di
zTi Azj =

1
di
eTi Azj =

1
di
Ai∗zj . (3.6)

On the other hand from (2.9), in step (7) of this procedure, we can replace dj := qjzj by
dj := Aj∗zj . Now by using the above results we can summarized an algorithm for computing
Z as in Algorithm 2.

This algorithm is known as the left-looking AINV algorithm . We observe that the
left-looking AINV algorithm can be extracted from the FFAPINV algorithm. This algorithm
computes Z with working on rows of A. Obviously the factor W can be computed via this
algorithm, working on rows of AT . In the same way, one can obtain the right-looking AINV
algorithm from the BFAPINV algorithm.



6 International Journal of Mathematics and Mathematical Sciences

4. Conclusions

In this paper, we have shown that the AINV and FAPINV algorithms are strongly related. In
fact, we have shown that the AINV algorithm can be extracted from the FAPINV algorithm
by somemodification. Although, without any dropping, the computation of inverse factors of
a matrix by the two algorithms is done in different ways, but the results are the same. Hence
many of the properties of each of these algorithms are valid for the other one. For example,
in (Benzi and Tuma [13]), it has been shown that the right-looking AINV algorithm without
any dropping role is well defined for H-matrices. Therefore we conclude that the BFAPINV
algorithm is well defined for H-matrices as well.

Acknowledgment

The authors would like to thank one of the referees for helpful suggestions.

References

[1] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 20, no. 3, pp.
856–869, 1986.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Press, New York, NY, USA, 2nd edition, 1995.
[3] H. A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of

nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 12, no. 2, pp.
631–644, 1992.

[4] M. Benzi, “Preconditioning techniques for large linear systems: a survey,” Journal of Computational
Physics, vol. 182, no. 2, pp. 418–477, 2002.

[5] M. Benzi and M. Tuma, “A comparative study of sparse approximate inverse preconditioners,”
Applied Numerical Mathematics, vol. 30, no. 2-3, pp. 305–340, 1999.

[6] E.-J. Lee and J. Zhang, “A two-phase preconditioning strategy of sparse approximate inverse for
indefinite matrices,” Tech. Rep. 476-07, Department of Computer Science, University of Kentuky,
Lexington, Ky, USA, 2007.

[7] E.-J. Lee and J. Zhang, “Factored approximate inverse preonditioners with dynamic sparsity
patterns,” Tech. Rep. 488-07, Department of Computer Science, University of Kentuky, Lexington,
Ky, USA, 2007.

[8] J.-G. Luo, “An incomplete inverse as a preconditioner for the conjugate gradient method,” Computers
& Mathematics with Applications, vol. 25, no. 2, pp. 73–79, 1993.

[9] J.-G. Luo, “A new class of decomposition for inverting asymmetric and indefinite matrices,”
Computers & Mathematics with Applications, vol. 25, no. 4, pp. 95–104, 1993.

[10] J.-G. Luo, “A new class of decomposition for symmetric systems,”Mechanics Research Communications,
vol. 19, pp. 159–166, 1992.

[11] J. Zhang, A procedure for computing factored approximate inverse, M.S. dissertation, Department of
Computer Science, University of Kentucky, Lexington, Ky, USA, 1999.

[12] J. Zhang, “A sparse approximate inverse preconditioner for parallel preconditioning of general sparse
matrices,” Applied Mathematics and Computation, vol. 130, no. 1, pp. 63–85, 2002.

[13] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner for nonsymmetric linear
systems,” SIAM Journal on Scientific Computing, vol. 19, no. 3, pp. 968–994, 1998.

[14] M. Benzi and M. Tuma, “Numerical experiments with two approximate inverse preconditioners,”
BIT, vol. 38, no. 2, pp. 234–241, 1998.

[15] D. K. Salkuyeh, “ILU preconditioning based on the FAPINV algorithm,” submitted.


