
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2009, Article ID 970284, 10 pages
doi:10.1155/2009/970284

Research Article
Generalizing Benford’s Law Using Power Laws:
Application to Integer Sequences

Werner Hürlimann

Feldstrasse 145, CH-8004 Zürich, Switzerland
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Many distributions for first digits of integer sequences are not Benford. A simple method to derive
parametric analytical extensions of Benford’s law for first digits of numerical data is proposed.
Two generalized Benford distributions are considered, namely, the two-sided power Benford
(TSPB) distribution, which has been introduced in Hürlimann (2003), and the new Pareto Benford
(PB) distribution. Based on the minimum chi-square estimators, the fitting capabilities of these
generalized Benford distributions are illustrated and compared at some interesting and important
integer sequences. In particular, it is significant that much of the analyzed integer sequences
follow with a high P -value the generalized Benford distributions. While the sequences of prime
numbers less than 1000, respectively, 10 000 are not at all Benford or TSPB distributed, they are
approximately PB distributed with high P -values of 93.3% and 99.9% and reveal after a further
deeper analysis of longer sequences a new interesting property. On the other side, Benford’s law
of a mixing of data sets is rejected at the 5% significance level while the PB law is accepted with a
93.6% P -value, which improves the P -value of 25.2%, which has been obtained previously for the
TSPB law.

Copyright q 2009 Werner Hürlimann. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Since Newcomb [1] and Benford [2] it is known that many numerical data sets follow
Benford’s law or are closely approximated by it. To be specific, if the random variable X,
which describes the first significant digit in a numerical table, is Benford distributed, then

P(X = d) = log
(
1 + d−1), d ∈ {1, . . . , 9}. (1.1)

Mathematical explanations of this law have been proposed by Pinkham [3], Cohen [4],
Hill [5–9], Allart [10], Janvresse and de la Rue [11], and Kossovsky [12]. The latter author has
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raised some conjectures, which have been proved in some special cases by Jang et al. [13].
Other explanations of the prevalence of Benford’s law exist. For example, Miller and Nigrini
[14] obtain it through the study of products of random variables and Kafri [15] through the
maximum entropy principle. In the recent years an upsurge of applications of Benford’s law
has appeared, as can be seen from the compiled bibliography by Hürlimann [16] and the
recent online bibliography by Berg and Hill [17]. Among them one might mention Judge and
Schechter [18], Judge et al. [19], and Nigrini and Miller [20]. As in the present paper, the
latter authors also consider power laws.

Hill [7] also suggested to switch the attention to probability distributions that follow
or closely approximate Benford’s law. Papers along this path include Leemis et al. [21] and
Engel and Leuenberger [22]. Some survival distributions, which satisfy exactly Benford’s law,
are known. However, there are not many simple analytical distributions, which include as
special case Benford’s law. Combining facts from Leemis et al. [21] and Dorp and Kotz [23]
such a simple one-parameter family of distributions has been considered in Hürlimann [24].
In a sequel to this, a further generalization of Benford’s law is considered.

It is important to note that many distributions for first digits of integer sequences are
not Benford but are power laws or something close. Thus there is a need for statistical tests for
analyzing such hypotheses. In this respect the interest of enlarged Benford laws is twofold.
First, parametric extensions may provide a better fit of the data than Benford’s law itself.
Second, they yield a simple statistical procedure to validate Benford’s law. If Benford’s model
is sufficiently “close” to the one-parameter extended model, then it will be retained. These
points will be illustrated through our application to integer sequences.

2. Generalizing Benford’s Distribution

If T denotes a random lifetime with survival distribution S(t) = P(T ≥ t), then the value Y
of the first significant digit in the lifetime T has the probability distribution

P
(
Y = y

)
=

∞∑

i=−∞

{
S
(
y · 10i

)
− S

((
y + 1

) · 10i
)}

, y ∈ {1, . . . , 9}. (2.1)

Alternatively, if D denotes the integer-valued random variable satisfying

10D ≤ T < 10D+1, (2.2)

then the first significant digit can be written in terms of T , and D as

Y =
[
T · 10−D

]
=
[
10log T−D

]
, (2.3)

where [x] denotes the greatest integer less than or equal to x. In particular, if the random
variable Z = log T − D is uniformly distributed as U(0, 1), then the first significant digit
Y is exactly Benford distributed. Starting from the uniform random variable W = U(0, 2)
or the triangular random variable W = Triangular(0, 1, 2) with probability density function
fW(w) = w if w ∈ (0, 1) and fW(w) = 2 −w if w ∈ [1, 2), one shows that the random lifetime
T = 10W generates the first digit Benford distribution (Leemis et al. [21, Examples 1 and 2]).
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A simple parametric distribution, which includes as special cases both the above
uniform and triangular distributions, is the twosided power random variable W = TSP(α, c)
considered in Dorp and Kotz [23]with probability density function

fW(w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c

2

(w
α

)c−1
, 0 < w ≤ α,

c

2

(
2 −w

2 − α

)c−1
, α ≤ w < 2.

(2.4)

If c = 1 then W = U(0, 2), and if c = 2, α = 1 then W = Triangular(0, 1, 2). This observation
shows that the random lifetime T = 10TSP(1,c) will generate first digit distributions closely
related to Benford’s distribution, at least if c is close to 1 or 2.

Theorem 2.1. Let W = TSP(1, c) be the twosided power random variable with probability density
function

fW(w) =

⎧
⎪⎨

⎪⎩

c

2
wc−1, 0 < w ≤ 1,

c

2
(2 −w)c−1, 1 ≤ w < 2,

(2.5)

and let the integer-valued random variable D satisfy D ≤ W < D + 1. Then the first digit random
variable Y = [10W−D] has the one-parameter twosided power Benford (TSPB) probability density
function

fY
(
y
)
=

1
2
{[
log(1 + y)

]c − [
logy

]c − [
1 − log(1 + y)

]c +
[
1 − logy

]c}
, y ∈ {1, . . . , 9}. (2.6)

Proof. This has been shown in Hürlimann [24].

3. From the Geometric Brownian Motion to the Pareto Benford Law

Another interesting distribution, which also takes the form of a twosided power law, is the
double Pareto random variable W = DP(s, α, β) considered in Reed [25] with probability
density function

fW(w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αβ

α + β

(
w

s

)β−1
, w ≤ s,

αβ

α + β

(
w

s

)−α−1
, w ≥ s.

(3.1)

Recall the stochastic mechanism and the natural motivation, which generates this
distribution. It is often assumed that the time evolution of a stochastic phenomenaXt involves
a variable but size independent proportional growth rate and can thus be modeled by a
geometric Brownian motion (GBM) described by the stochastic differential equation

dX = μ ·X · dt + σ ·X · dW, (3.2)
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where dW is the increment of aWiener process. Since the proportional increment of a GBM in
time dt has a systematic component μ ·dt and a randomwhite noise component σ ·dW , GBM
can be viewed as a stochastic version of a simple exponential growth model. The GBM has
long been used to model the evolution of stock prices (Black-Scholes option pricing model),
firm sizes, city sizes, and individual incomes. It is well known that empirical studies on such
phenomena often exhibit power-law behavior. However, the state of a GBM after a fixed time
T follows a lognormal distribution, which does not exhibit power-law behavior.

Why does one observe power-law behavior for phenomena apparently evolving like
a GBM? A simple mechanism, which generates the power-law behavior in the tails, consists
to assume that the time T of observation itself is a random variable, whose distribution is an
exponential distribution. The distribution of XT with fixed initial state s is described by the
double Pareto distribution DP(s, α, β)with density function (3.1), where α, β > 0, and α, −β are
the positive roots of the characteristic equation

(
μ − 1

2
σ2

)
z +

1
2
σ2z2 = λ, (3.3)

where λ is the parameter of the exponentially distributed random variable T . Setting s = 1
one obtains the following generalized Benford distribution.

Theorem 3.1. Let W = DP(1, α, β) be the double Pareto random variable with probability density
function

fW(w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αβ

α + β
(w)β−1, w ≤ 1,

αβ

α + β
(w)−α−1, w ≥ 1.

(3.4)

Let the integer-valued random variableD satisfyD ≤ W < D + 1. Then the first digit random
variable Y = [10W−D] has the two-parameter Pareto Benford (PB) probability density function

fY
(
y
)
=

α

α + β

{[
log(1 + y)

]β − [
log(y)

]β}

+
β

α + β
·

∞∑

k=1

{[
k + log

(
y
)]−α − [

k + log
(
1 + y

)]−α}
, y ∈ {1, . . . , 9}.

(3.5)

Proof. The probability density function of T = 10W is given by

fT (t) =
1

t · ln 10 · fW
(

ln t
ln 10

)
=

⎧
⎪⎪⎪⎨
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αβ

α + β

1
t · ln 10

(
ln t
ln 10

)β−1
, 1 < t ≤ 10,

αβ

α + β

1
t · ln 10

(
ln t
ln 10

)−α−1
, t > 10.

(3.6)
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It follows that the first significant digit of T , namely, Y = [T · 10−D], has probability density

fY
(
y
)
=

∞∑

k=0

∫10k(y+1)

10ky
fT (t)dt. (3.7)

Making the change of variable u = ln t/ ln 10, one obtains (3.5) as follows:

fY
(
y
)
=

αβ

α + β

{∫ log(y+1)

logy
uβ−1du +

∞∑

k=1

∫k+log(y+1)

k+logy
u−α−1du

}

=
αβ

α + β

{
1
β
uβ

∣
∣
∣
∣
∣

log
(
1 + y

)

log
(
y
) +

∞∑

k=1

−1
α
u−α

∣
∣
∣
∣
∣

k + log
(
1 + y

)

k + log
(
y
)

}

=
α

α + β

{[
log(1 + y)

]β − [
log(y)

]β} +
β

α + β
·
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k=1

{[
k + log

(
y
)]−α − [

k + log
(
1 + y

)]−α}
.

(3.8)

One notes that setting β = 1 and letting α goes to infinity, the Pareto Benford
distribution converges to Benford’s law. Other important paper, which links Benford’s law
to GBMs’ law on the one side, is Kontorovich and Miller [26] and to Black-Scholes’ law on
the other side is Schürger [27]. Another law, which includes as a special case the Benford law,
is the Planck distribution of photons at a given frequency, as shown recently by Kafri [28, 29].

4. Fitting the First Digit Distributions of Integer Sequences

Minimum chi-square estimation of the generalized Benford distributions is straightforward
by calculation with modern computer algebra systems. The fitting capabilities of the new
distributions are illustrated at some interesting and important integer sequences. The first
digit occurrences of the analyzed integer sequences are listed in Table 1. The minimum chi-
square estimators of the generalized distributions as well as an assumed summation index
m for the infinite series (3.5) are displayed in Table 2. Statistical results are summarized in
Table 3. For comparison we list the chi-square values and their corresponding P -values. The
obtained results are discussed.

The definition, origin, and comments on the mathematical interest of a great part
of these integer sequences have been discussed in Hürlimann [24]. Further details on all
sequences can be retrieved from the considerable related literature. The mixing sequence
represents the aggregate of the integer sequences considered in Hürlimann [24].

All of the 19 considered integer sequences are quite well fitted by the new PB
distribution. For 14 sequences the minimum chi-square is the smallest among the three
comparative values and in the other 5 cases its value does not differ much from the chi-square
of the TSPB distribution ( bold cells in Table 3 and Table 5).

A strong numerical evidence for the Benford property for the Fibonacci, Bell, Catalan,
and partition numbers is observed (corresponding italic cells in Tables 2 and 3). In particular,
the values of the parameters α, β of the BP distribution for the Fibonacci sequence are
close to 1 and ∞, which means that the BP distribution is almost Benford as remarked
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Table 1: First digit distributions of some integer sequences.

Name of sequence Sample size Percentage of first digit occurrences
1 2 3 4 5 6 7 8 9

Benford law 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6
Square 100 21.0 14.0 12.0 12.0 9.0 9.0 8.0 7.0 8.0
Cube 500 28.2 14.8 11.4 9.8 8.8 7.8 6.6 6.8 5.8
Cube 1000 22.6 15.9 12.4 10.6 9.4 8.3 7.4 7.1 6.3
Cube 10000 22.5 15.8 12.6 10.6 9.3 8.3 7.5 7.0 6.4
Square root 99 19.2 17.2 15.2 13.1 11.1 9.1 7.1 5.1 3.0
Prime < 100 25 16.0 12.0 12.0 12.0 12.0 8.0 16.0 8.0 4.0
Prime < 1000 168 14.9 11.3 11.3 11.9 10.1 10.7 10.7 10.1 8.9
Prime < 10000 1229 13.0 11.9 11.3 11.3 10.7 11.0 10.2 10.3 10.3
Princeton number 25 28.0 8.0 12.0 12.0 8.0 12.0 8.0 4.0 8.0
Mixing sequence 618 28.3 14.6 11.5 9.9 7.6 7.8 8.1 6.6 5.7
Pentagonal number 100 35.0 12.0 10.0 8.0 10.0 6.0 8.0 5.0 6.0
Keith number 71 32.4 14.1 14.1 7.0 4.2 7.0 12.7 2.8 5.6
Bell number 100 31.0 15.0 10.0 12.0 10.0 8.0 5.0 6.0 3.0
Catalan number 100 33.0 18.0 11.0 11.0 8.0 8.0 4.0 3.0 4.0
Lucky number 45 42.2 17.8 8.9 4.4 2.2 6.7 8.9 2.2 6.7
Ulam number 44 45.5 13.6 6.8 6.8 4.5 6.8 4.5 6.8 4.5
Numeri ideoni 65 30.8 18.5 13.8 10.8 6.2 3.1 7.7 6.2 3.1
Fibonacci number 100 30.0 18.0 13.0 9.0 8.0 6.0 5.0 7.0 4.0
Partition number 94 28.7 17.0 14.9 9.6 7.4 6.4 7.4 5.3 3.2

Table 2:Minimum chi-square estimators.

Name of sequence Sample size TSPB PB
Parameter Parameters

c alpha beta m
Square 100 0.79837 15.55957 1.74552 100
Cube 500 2.46519 5.55849 1.69860 100
Cube 1000 2.26798 20.56506 1.47082 100
Cube 10000 2.27054 20.53577 1.475760 100
Square root 99 1.40176 89491723 1.34334 100
Prime < 100 25 2.68581 23.13952 2.14449 100
Prime < 1000 168 2.95216 22.99754 2.28436 100
Prime < 10000 1229 3.03542 29.76729 2.30760 100
Princeton number 25 2.76170 6.94595 2.36119 100
Mixing sequence 618 2.53958 4.78641 1.83119 100
Pentagonal number 100 2.94847 2.06797 3.31268 100
Keith number 71 2.73338 2.16107 2.63720 1000
Bell number 100 1.08191 10.14820 1.24828 100
Catalan number 100 1.13522 0.67095 1.15377 5000
Lucky number 45 3.15721 7.56962 0.94576 100
Ulam number 44 3.55375 9.99445 0.81215 100
Numeri ideoni 65 1.12410 1297612.16 0.98591 100
Fibonacci number 100 2.05365 257000.42 1.00560 100
Partition number 94 1.23268 0.65651 1.71409 1000
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Table 3: Fitting integer sequences to the Benford and generalized Benford distributions

Name of sequence Sample size Benford Twosided Power Benford Pareto Benford

chi-square P -value chi-square P -value chi-square P -value

Square 100 9.096 33.43 7.837 34.72 0.362 99.91

Cube 500 9.696 28.70 5.808 56.23 0.286 99.96

Cube 1000 46.459 0.00 43.725 0.00 0.48 99.81

Cube 10000 443.745 0.00 472.011 0.00 3.138 79.13

Square root 99 8.612 37.61 7.002 42.86 2.778 83.61

Prime < 100 25 7.741 45.91 7.299 39.84 1.849 93.30

Prime < 1000 168 45.016 0.00 36.651 0.00 0.333 99.93

Prime < 10000 1229 387.194 0.00 307.322 0.00 3.297 77.07

Princeton number 25 3.452 90.29 2.762 89.72 1.302 97.16

Mixing sequence 618 15.550 4.93 9.014 25.17 1.819 93.55

Pentagonal number 100 5.277 72.76 2.127 95.24 1.968 92.26
Keith number 71 9.215 32.45 7.688 36.09 7.402 28.53
Bell number 100 3.069 93.00 3.014 88.37 2.607 85.63
Catalan number 100 2.404 96.61 2.304 94.11 1.934 92.57
Lucky number 45 7.693 46.40 5.165 63.98 5.564 47.37
Ulam number 44 6.350 60.81 2.520 92.56 2.526 86.56
Numeri ideoni 65 2.594 95.72 2.522 92.54 2.584 85.89
Fibonacci number 100 1.029 99.81 1.021 99.45 1.027 98.46
Partition number 94 1.394 99.43 1.132 99.24 1.513 95.86

after Theorem 3.1. It is well known that the Fibonacci sequence is Benford distributed (e.g.,
Brown and Duncan [30], Wlodarski [31], Sentance [32], Webb [33], Raimi (1976), [34]
Brady [35] and Kunoff [36]).The same result for Bell numbers has been derived formally in
Hürlimann [24, Theorem 4.1]. More generally, a proof that a generic solution of a generic
difference equation is Benford is found in Miller and Takloo-Bighash [37] (see also Jolissaint
[38, 39]). Results for squares and cubes are also obtained. Recall that the exact probability
distribution of the first digit of mth integer powers with at most n digits is known and
asymptotically related to Benford’s law (e.g., Hürlimann [40]). The fit of the PB distribution
is very good when restricted to finite sequences but breaks down for longer sequences. A
further remarkable result is that Benford’s law of the mixing sequence is rejected at the 5%
significance level while the PB law is accepted with a 93.6%P -value, which improves the P -
value of 25.2% obtained for the TSPB law in Hürlimann [24].

The sequence of primes merits a deeper analysis. The Benford property for it has long
been studied. Diaconis (1977) [41] shows that primes are not Benford distributed. However,
it is known that the sequence of primes is Benford distributed with respect to other densities
rather thanwith the usual natural density [42–44]. According to Serre [45, Page76], , Bombieri
has noted that the analytical density of primes with first digit 1 is log102, and this result can
be easily generalized to Benford behavior for any first digit. Table 3 shows that the primes
less than 1,000 respectively 10 000 are not at all Benford or TSPB distributed, but they are
approximately PB distributed with high P -values of 93.3% and 99.9%. Does this statistical
result reveal a new property of the prime number sequence? To answer this question it is
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Table 4: First digit distributions of prime number sequences with optimal cutoff.

Sample size First digit occurrences
1 2 3 4 5 6 7 8 9

25 4 3 3 3 3 2 4 2 1
168 25 19 19 20 17 18 18 17 15
1216 160 146 139 139 131 135 125 127 114
9486 1193 1129 1097 1069 1055 1013 1027 1003 900
77736 9585 9142 8960 8747 8615 8458 8435 8326 7468
657934 80020 77025 75290 74114 72951 72257 71564 71038 63675
5701502 686048 664277 651085 641594 633932 628206 622882 618610 554868

Table 5: Best and linear best Pareto Benford fit for prime number sequences.

Sample size PB Parameters PB best fit PB linear best fit
alpha beta chi-square/sample size P -value chi-square/sample size P -value

25 23.13952 2.14449 7.396% 93.30 8.407% 91.01
168 22.99754 2.28436 0.198% 99.93 0.781% 97.10
1216 30.15504 2.25800 0.175% 90.76 0.152% 93.34
9486 32.59544 2.28442 0.172% 1.20 0.084% 23.86
77736 33.26550 2.31262 0.175% 0.00 0.075% 0.00
657934 33.82622 2.32908 0.185% 0.00 0.070% 0.00
5701502 34.28132 2.34148 0.188% 0.00 0.065% 0.00

necessary to take into account longer sequences and look at other cutoffs than 10k for an
integer k. Our calculations show that among those prime sequences below 10k for fixed k there
is exactly one sequence with minimum chi-square value with an optimal cutoff at a prime
with first digit 9. Tables 4 and 5 summarize our results for the primes up to 108. Besides the
PB best fit with minimum chi-square we also list the PB “linear best” fit obtained from the PB
best fit by taking a linear decreasing number of primes between those with the same number
of primes with first digit 1 and 9 as in the PB best fit. Though the P-value goes to zero very
rapidly the ratio of theminimum chi-square value to the sample size is more stable. For the PB
linear best fit this goodness-of-fit statistic, which is also considered in Leemis et al. [21], even
decreases and indicates therefore that the first digits of the prime number sequence might be
distributed this way. For this it remains to test using more powerful computing whether the
mentioned property still holds for even longer sequences of primes. One observes that the
best fit parameters as the sample size increases to infinity are quite stable and increase only
slightly.

Finally, it might be worthwhile to mention another recent intriguing result by Kafri
[29], which shows that digits distribution of prime numbers obeys the Planck distribution,
which is another generalized Benford law as already mentioned at the end of Section 3.
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