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Slender rings and their products are characterized in terms of algebraic and topological properties.
Possible limitations on uncountable products of such rings are discussed.

1. Terminology and Notation

Ring, module, and topological terminology and notation are standard. R denotes a unital
ring with identity 1, and Rω denotes its countable product, that is, the set of all sequences of
elements of R. Of course ω = {0, 1, . . .}. Rω is both a left and right R-module; it will be treated
as a left R-module unless otherwise stated. Results for left R-modules carry over mutatis
mutandis to right R-modules.

The ith coordinate of an element x ∈ Rω will be denoted x(i). Let F denote the
submodule of Rω, consisting of those elements of Rω which have only finitely many nonzero
coordinates. Let en ∈ F have coordinates en(i) = 1 when i = n and 0 otherwise; that is,
en(i) = δni, the Kronecker delta. F is then the free submodule of Rω, generated by the en,
which form a basis of F.

Let πn denote the nth canonical projection of Rω onto R; that is, for x = (x(i) : i ∈ ω) ∈
Rω, πn(x) = x(n). Note that x = 0 ∈ Rω if and only if πn(x) = 0 for all n, and that πn(ei) = δni.

R is said to be slender if every R-module homomorphism from Rω to R is 0 on all
but finitely many en. As will be demonstrated, this condition determines the structure of the
endomorphism ring of Rω, EndR(Rω).

As discussed in Section 2, the “original” slender ring was the integers Z. Familiar
nonslender rings are the p-adic integers for any prime p ∈ Z. By using the method in [1,
page 159, (d)] and known injective properties of the p-adics, it is easy to see that they are not
slender.
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2. The Origin of Slender Rings

Slender rings had their origin in the seminal paper by Specker [2], who proved the results in
this Section for the ring of integers Z and its countable product Z

ω, which has become known
as the Baer-Specker group.

The proof of the first theorem is an elaboration on the proof of a somewhat different
theorem [3, page 172].

Theorem 2.1. Every homomorphism h from the Baer-Specker group to Z satisfies h(en) = 0 for all
but finitely many n.

Proof. Suppose that h(en)/= 0 for infinitely many en; it may be assumed that h(en)/= 0 for all
n. There exists a prime, say p0, which does not divide h(e0). Define a sequence bn = ane

n of
elements of Z

ω as follows, where an ∈ Z.
Set b0 = e0 and a0 = 1. Suppose that b0, . . . , bn and the corresponding a0, . . . , an have

been defined and primes p0, . . . , pn have been chosen, with pi | h(b0 + · · · + bi), i = 0, . . . , n /= 0.
Now choose a prime pn+1 different from p0, . . . , pn such that pn+1 does not divide h(en+1),
pn+1 � h(en+1). Then let bn+1 be a multiple k of p0 · · · pnen+1 such that h(b0 + · · · + bn + bn+1) is
divisible by pn+1.

To see that the distinctiveness of the primes pi makes such a choice of bn+1possible, note
that h(b0 + · · · + bn + bn+1) = h(b0 + · · · + bn) + kp0 · · · pnh(en+1), so that the problem reduces to
finding integers k and l that satisfy an integral equation of the form kpn+1 = j + lm, in which
pn+1 and m = p0 · · · pnh(en+1) are relatively prime and j = h(b0 + · · · + bn). Being relatively
prime, m and pn+1 generate all of Z, including j = h(b0 + · · · + bn), so that suitable k and l
indeed can be found. Set an+1 = kp0 · · · pn.

Let a ∈ Z
ω with a(i) = ai. Now p0 � h(e0), so p0 | a(i) for all i > 0 imply that h(a) =

h(b0) + h(0, a(1), a(2), . . .) = h(e0) + p0h(0, a(1)/p0, a(2)/p0, . . .) is not divisible by p0. Thus
h(a)/= 0. But for each i > 0, h(a) = h(b0 + · · · + bi) + pih(0, . . . , 0, a(i + 1)/pi, a(i + 2)/pi, . . .) so
that h(a) is divisible by pi because pi | h(b0 + · · ·+ bi). The only integer divisible by an infinite
number of primes is 0, so that h(a) = 0, a contradiction.

The following proof has been utilized in a number of contexts; for a more general
proof, see Theorem 3.1.

Theorem 2.2. If a homomorphism h from the Baer-Specker group to Z satisfies h(en) = 0 for all n,
then h = 0.

Proof. Clearly h(F) = 0. Let p and q be distinct primes. LetA be the subgroup ofZ
ω, consisting

of all sequences of the form (anp
n+1 : an ∈ Z, n ∈ ω). The elements of A/F are divisible by

every power of p. Thus h(F) = 0 necessitates h(A) = 0, as otherwise h would induce a
nontrivial homomorphism from A/F to Z, an impossibility in light of the divisibility of the
elements of A/F. Similarly, if C consists of all sequences of the form (cnqn+1), h(C) = 0. Now
each element b ∈ Z

ω can be written as b = a + c with a ∈ A and c ∈ C, because for each n,
1 = anp

n+1+cnqn+1 for some an, cn ∈ Z, so that b(n) = b(n)anp
n+1+b(n)cnqn+1. Thus Z

ω = A+C
and so h(Zω) = h(A) + h(C) = 0 + 0 = 0.

Remark 2.3. Theorem 2.2 frequently is stated in terms of the homomorphism being 0 on
F instead of just the en. The important point is that the homomorphism is completely
determined by its values on the en (or on F).
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The proofs of Theorems 2.1 and 2.2 use some number-theoretic properties of Z and
so can be extended to only slender rings having the requisite primes, such as rings of
polynomials over fields. Nevertheless, the results below hold for any ring with identity.

3. Homomorphisms of Countable Products of Slender Rings

The proof of the following theorem is adapted from a proof for Z [3, page 170].

Theorem 3.1. If R is slender and h is a homomorphism from Rω to R, such that h(en) = 0 for all n,
then h = 0.

Proof. Suppose that h/= 0 for some p ∈ Rω. Define a homomorphism ˜h fromF toRω by ˜h(e0) =
p and ˜h(en) = p−p(0)e0 − · · · − p(n−1)en−1 for n > 0. Extend ˜h to an endomorphism of Rω by
defining [˜h(x)](n) =

∑n
i=0 x(i)[˜h(e

i)](i). Now h˜h is a homomorphism from Rω to R such that
h˜h(en) = h[p − p(0)e0 − · · · − p(n− 1)en−1] = h(p)− p(0)h(e0)− · · · − p(n− 1)h(en−1) = h(p)/= 0
for all n, a contradiction to the slenderness of R.

Specker proved a less precise formulation of the next theorem for Z and Z
ω [2, Satz

III]. The proof given here seems shorter and simpler.

Theorem 3.2. If R is slender, then every nonzero homomorphism h from Rω to R has a unique
expression of the form h = πn0h(e

n0) + · · · + πnkh(e
nk), with k and the ni depending upon h and

each h(eni)/= 0.

Proof. Because R is slender, h is 0 except at some en0 , . . . , enk , in order n0 < · · · < nk if k > 0. Let
g = h − πn0h(e

n0) − · · · − πnkh(e
nk). Now g(ei) = 0 for all i, so g = 0 by Theorem 3.1, and thus

h has the form claimed. It is clear that h cannot be expressed as any other linear combination
of canonical projections with nonzero coefficients.

Note that if R is slender, then every homomorphism from its product Rω to R is
effectively a homomorphism from a finite subproduct to R.

Theorem 3.3. If R is a slender ring and g is an endomorphism of Rω, which satisfies g(en) = 0 for
all n, then g = 0.

Proof. If g /= 0, then for some p ∈ Rω, g(p)/= 0 so that πk(g(p))/= 0 for some k. But πkg would
be a nonzero homomorphism from Rω to R, which is 0 at each en, thereby contradicting
Theorem 3.1.

Theorem 3.3 simply says that, for a slender ring, each endomorphism of the product
Rω is determined by the endomorphism’s values on the standard basis of F, or on F itself.

The results of this Section can be used to determine the structure of EndR(Rω).

4. Infinite R-Matrices and EndR(Rω)

An infinite matrix over a ring R is a 2-dimensional array of elements from R, of the form
M = (M(i, j) : M(i, j) ∈ R; i, j ∈ ω). Such an infinite R-matrix is said to be row-finite if, for
each i,M(i, j) = 0 for almost all j; that is, only finitely many M(i, j)/= 0 for each i.
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IfM andN are row-finite R-matrices, their sumM +N is defined to be the row-finite
R-matrix with entries (M + N)(i, j) = M(i, j) + N(i, j). Their product MN is defined to be
the row-finite R-matrix with entries

MN
(

i, j
)

=
∑

k∈ω
N
(

k, j
)

M(i, k). (4.1)

This order is required to encompass the case of noncommutative rings, when functions
act from the left. The usual order of M(i, k)N(k, j) works when functions act from the
right. Every such sum is finite because, for each i, only finitely many M(i, k) are nonzero.
Multiplication of row-finite R-matrices is associative, a property not always found in the
multiplication of infinite matrices. With these definitions of addition and multiplication, the
set of row-finite infinite R-matrices forms a ring with identity I having entries I(i, j) = δij .

For purposes of matrix-vector multiplication, the elements ofRω are viewed as column
vectors. If M is a row-finite R-matrix and x ∈ Rω, the product of M and x is denoted Mx
and is defined to be the sequence in Rω with Mx(i) =

∑

k∈ω x(k)M(i, k). It is easy to see that
M induces an endomorphism of Rω via such matrix-vector multiplication.

Theorem 4.1. Every row-finite infinite R-matrix induces an endomorphism of Rω via matrix-vector
multiplication.

What is most interesting is the converse for slender rings:

Theorem 4.2. If R is slender, then every endomorphism of Rω is induced by multiplication of its
vectors by a row-finite infinite R-matrix.

Proof. Let g ∈ EndR(Rω) and define an R-matrix M by M(i, j) = [g(ej)](i) for i, j ∈ ω.
For each i, πig is a homomorphism from Rω to R and so by slenderness is 0 for almost all
ej , j ∈ ω. But πig(ej) = [g(ej)](i) = M(i, j) so that M is row-finite.

By Theorem 4.1, M induces an endomorphism of Rω. According to Theorem 3.3, to
prove that multiplication by M is the same as mapping by g, it suffices to demonstrate that
Mej = g(ej) for all j; that is, that (Mej)(i) = [g(ej)](i). Now (Mej)(i) =

∑

k∈ω ej(k)M(i, k) =
∑

k∈ω δjkM(i, k) = δjjM(i, j) = M(i, j) = [g(ej)](i).

Corollary 4.3. IfR is a slender ring, then the endomorphism ring EndR(Rω) under function addition
and composition is isomorphic to the ring of row-finite infinite R-matrices.

Proof. Note that the columns of the R-matrix M in the proof of Theorem 4.2 are the values of
the endomorphism g at the en.M is thus unique. There is then a 1-1 correspondence between
the ring of row-finite infinite R-matrices under addition and multiplication and EndR(Rω)
under function addition and composition. It is easy to see that this correspondence preserves
addition and multiplication.

5. Topologies for a Ring R and Its Product Rω

The foregoing algebraic properties of slender rings can be characterized topologically. Let a
ring R be equipped with the discrete topology, that is, the topology in which every subset is
open. The singletons, {r}, r ∈ R, form a basis of this discrete topology, which is metrizable
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by defining d(r, r) = 0 for all r ∈ R and d(r, s) = 1 for distinct r, s ∈ R. Under the discrete
topology of R, addition and scalar multiplication are continuous.

Let Rω be equipped with the product topology, that is, the topology in which the sets,
π−1n (U), n ∈ ω,U ⊆ R, form a subbasis. In fact, the sets π−1n ({r}), n ∈ ω, r ∈ R, form a subbasis.
Under the product topology of Rω, the canonical projections are continuous open maps and
addition and scalar multiplication are continuous.

This product topology is metrizable by defining d(x, x) = 0 for all x ∈ Rω and, for
distinct x, y ∈ Rω, d(x, y) = 2−n if x(i) and y(i) first differ at n ∈ ω. Thus, if d(x, y) < 2−n, then
x(i) = y(i) for at least i = 0, . . . , n. In general, d(x, y) = d(x − y, 0), an important fact used in
the following discussions. Note also that d(rx, 0) ≤ d(x, 0) for all r ∈ R and x ∈ Rω.

To see that d induces the product topology on Rω, let x ∈ Rω and consider the
neighborhood of x, N = {y ∈ Rω : d(x, y) < 2−n}. For all y ∈ N, x(i) = y(i), i = 0, . . . , n,
so that y ∈ O = π−10 ({x(0)})∩ · · · ∩π−1n ({x(n)}) and soN ⊆ O. Conversely, any y ∈ O satisfies
y(i) = x(i), i = 0, . . . , n, which means that d(x, y) < 2−n so that O ⊆N.

A sequence of elements of Rω, (xn : n ∈ ω), converges to x ∈ Rω if and only if the
initial components of the xn become the initial components of x as n becomes large. It readily
follows that xn converges to x if and only if (x − xn : n ∈ ω) converges to 0 ∈ Rω. Clearly the
sequence (en) converges to 0.

For x = (x(i) : i ∈ ω) ∈ Rω, if −→xn ∈ F, n ∈ ω, is defined as −→xn(i) = x(i) if i ≤ n
and −→xn(i) = 0 for i > n, then the sequence (−→xn) converges to x. Thus F is dense in Rω. If←−xn ∈ Rω, n ∈ ω, is defined as←−xn(i) = 0 if i ≤ n and←−xn(i) = x(i) for i > n, then the sequence
(←−xn) converges to 0.

Observe that every Cauchy sequence (xn : n ∈ ω) inRω converges to an element ofRω,
so thatRω is a complete metric space. To see this, simply observe that, at each coordinate i, the
xn(i) become constant as n becomes large, so that xn converges to xwith x(i) = limn→∞xn(i).

For any homomorphism of topological modules, continuity on the entire domain is
determined by continuity at 0. Thus, if h is a homomorphism from Rω to R, then h is
continuous on all of Rω if and only if it is continuous at 0. This is easy to see because if the
sequence xn converges to x ∈ Rω, then limn→∞[h(xn) − h(x)] = limn→∞h(xn − x) = 0 if and
only if h is continuous at 0. A similar result, of course, holds for any endomorphism of Rω.

Convention re Topologies

Unless stated otherwise, the topology on a ring is always the discrete topology, and the
topology on its product is always the product topology.

Theorem 5.1. A homomorphism to a ring R from its product Rω is uniformly continuous on Rω if
and only if it is continuous at 0. Ditto for an endomorphism of Rω.

Proof. Suppose that h is a homomorphism from Rω to R, which is continuous at 0. Given
ε > 0, there exists δ > 0 such that d(h(x), 0) < ε provided d(x, 0) < δ. If (yn : n ∈ ω)
converges to y ∈ Rω, so long as d(y, yn) < δ, then d(h(y), h(yn)) < ε. This holds because
d(h(y), h(yn)) = d(h(y) − h(yn), 0) = d(h(y − yn), 0) and d(y, yn) = d(y − yn, 0). Thus h is
uniformly continuous.

The proof for endomorphisms of Rω is essentially the same.

Theorem 5.2. If a ringR is slender, then every homomorphism from its productRω toR is uniformly
continuous, as is every endomorphism of Rω.
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Proof. Since 0 is trivial, let h be a nonzero homomorphism from Rω to R and let (xn) be a
sequence in Rω, which converges to 0. According to Theorem 3.2, h is a linear combination
of canonical projections, the last one of which is some nk. For n sufficiently large, the first nk

coordinates of the xn are 0 and so h(xn) = 0. Thus h is continuous at 0 and hence uniformly
continuous everywhere by Theorem 5.1.

Let g be nonzero endomorphism of Rω and let M be the row-finite infinite R-matrix
which induces g. Again, it suffices to check convergence at 0, so let (xn) be a sequence
of elements of Rω, which converges to 0. As n gets large, the products Mxn have initial
coordinates = 0 because M is row-finite and the xn have initial coordinates = 0. Specifically,
given any k ∈ ω, let nk be the largest j such thatM(i, j)/= 0, i ≤ k, and letmk ∈ ω be such that
coordinates 0-nk of xn are equal to 0 for all n > mk. Then coordinates 0-k of Mxn are 0 for all
n > mk so that limn→∞Mxn = 0. Again Theorem 5.1 completes the proof.

For slender R, the continuity of an endomorphism g of Rω at 0 is reflected by the row
finiteness of the matrixM inducing it. In particular, limn→∞en = 0 means that limn→∞Men =
0. SinceMen is column n ofM, the initial entries of the columns ofM (M(0, n),M(1, n), etc.)
increasingly = 0.

The ring properties previously described algebraically can be cast in topological terms.

Theorem 5.3. Let R be a ring with 1. Then a homomorphism h from Rω to R satisfies h(en) = 0 for
all but finitely many n if and only if it satisfies limn→∞h(en) = 0.

Proof. If h(en) = 0 for all n > k, then d(h(en), 0) = 0 for all n > k, so that limn→∞h(en) = 0.

Conversely, if limn→∞h(en) = 0, there is a positive integer k such that d(h(en), 0) < 1
for all n > k. But d(h(en), 0) < 1 implies that h(en) = 0 because only x = 0 satisfies d(x, 0) < 1
in the metric on R.

Corollary 5.4. A ring R with 1 is slender if and only if every homomorphism h from Rω to R satisfies
limn→∞h(en) = 0.

The next theorem is a casting of slenderness in topological terms.

Theorem 5.5. A ring R with 1 is slender if and only if every homomorphism from Rω to R is
continuous at 0.

Proof. If R is slender, then according to Theorem 5.2, every homomorphism from Rω to R is
certainly continuous at 0.

Conversely, if every homomorphism h from Rω to R is continuous at 0, then
limn→∞h(en) = 0 because limn→∞en = 0. The slenderness ofR follows fromCorollary 5.4.

The next theorem is the topological analog of Theorems 4.1 and 4.2.

Theorem 5.6. Let R be a ring with 1. Then every endomorphism of its product Rω is induced by a
row-finite matrix if and only if every endomorphism of Rω is continuous at 0.

Proof. If g is an endomorphism of Rω, which is induced by a row-finite matrixM, and if (xn)
is a sequence in Rω, that converges to 0, then as n get large, the initial coordinates of the
xn become 0. Since M is row-finite, the initial coordinates of the Mxn also become 0 so that
(Mxn) = (g(xn)) converges to 0, as in the proof of Theorem 5.2.
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Conversely, suppose that every endomorphism of Rω is continuous at 0, and let h be a
homomorphism from Rω to R. Define an endomorphism g of Rω by g(x) = (h(x), h(x), . . .).
By hypothesis, g is continuous at 0. Since limn→∞en = 0, limn→∞g(en) = 0; that is, the initial
coordinates of g(en), which all = h(en), must be 0 for n sufficiently large. Thus limn→∞h(en) =
0, so by Corollary 5.4, R is slender. Theorem 4.2 completes the proof.

6. Equivalent Conditions for Slenderness

It is convenient to draw together some of the more useful conditions for a ring to be slender.
There are, of course, other equivalences.

Theorem 6.1. Let R be a ring with 1, equipped with the discrete topology, and let its product Rω be
equipped with the product topology. Then conditions (I)–(VI) are equivalent.

(I) Every homomorphism h from Rω to R satisfies h(en) = 0 for all but finitely many n.
(II) R is slender.
(III) Every nonzero homomorphism h from Rω to R has a unique expression of the form h =

πn0h(e
n0) + · · · + πnkh(e

nk), with k and the ni depending upon h and each h(eni)/= 0.
(IV) Every endomorphism ofRω is induced by multiplication of its vectors by a row-finite infinite

matrix with entries from R.
(V) Every homomorphism from Rω to R is continuous at 0.
(VI) Every endomorphism of Rω is continuous at 0.

Proof. (I)⇔(II): This equivalence is simply definitional.
(II)⇒(III): This is Theorem 3.2.
(III)⇒(II): If every homomorphism h from Rω to R has the form stated, it is clear that

h(en) = 0 for all but finitely many n. Thus (II)⇔(III).
(II)⇔(V): This is Theorem 5.5. Thus (I), (II), (III), and (V) are equivalent.
(IV)⇔(VI): This is Theorem 5.6. It now suffices to demonstrate the equivalence of (V)

and (VI).
(V)⇒(VI): Let g be an endomorphism ofRω; by Theorem 5.1, it suffices to demonstrate

continuity at 0. Suppose that (xi) is a sequence in Rω, which converges to 0. Each πng is a
continuous homomorphism from Rω to R, which satisfies πng(xi) = 0 for all i > some kn ∈ ω.
Given any l ∈ ω, there exist kn ∈ ω such that πng(xi) = 0 for all i > kn, n = 0, . . . , l. If m =
max{k0, . . . , kl}, then at least coordinates 0-l of g(xi) are 0 for all i > m; that is, limi→∞g(xi) = 0
so that g is continuous at 0.

(VI)⇒(V): This was shown in the proof of Theorem 5.6.

Remark 6.2. Conditions (V) and (VI) of Theorem 6.1 could, of course, be stated by deleting ”at
0” inasmuch as Theorem 5.1 covers uniform continuity everywhere. Similarly, “continuous”
could be strengthened to “uniformly continuous” without weakening the theorem. The
equivalence of (I) and (V) is shown in [4, Theorem 3(3)] using “continuous” instead of “at 0”.

7. Extensions to Uncountable Products of Slender Rings

Although there is nothing sacrosanct about countable products of slender rings, it turns
out that little may be gained from considering uncountable products. Notation used in the
countable case will be carried over to the uncountable without further comment.
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It is clear that ifR is slender, then every homomorphism h fromRI toR satisfies h(ei) =
0 for all but finitely many i, for every infinite index set I. Obviously, if every homomorphism
h from RI to R satisfies h(ei) = 0 for all but finitely many i, for some infinite index set I,
then R is slender. The problem for uncountable products, even when R is slender, is that the
analog of Theorem 3.1 may not hold; that is, there may exist a nonzero homomorphism from
RI to R, which annihilates all ei.

Whether uncountable products yield anything new depends upon the existence vel
non of measurable cardinals. An uncountable cardinal number κ is said to be κ-measurable
if there exists a set I of cardinality κ and a measure μ on the subsets of I, which (i) assumes
only the values 0, 1; (ii) satisfies μ(∅) = 0 = μ({i}) for all i ∈ I, and μ(I) = 1; and (iii) is
κ-additive in the sense that if {Jk : k ∈ K} is a collection of mutually disjoint subsets of I
with |K| < κ, then μ(

⋃

k∈K Jk) =
∑

k∈K μ(Jk). With this definition of measurable cardinals,
uncountable products of rings may be subject to the limitation discussed in the proposition
below, the proof of which is modeled after one for Z [1, page 161, Remark].

Proposition 7.1. Let R be a ring with 1. If there exists a κ-measurable cardinal satisfying κ > |R|,
and I is an index set of cardinality κ and μ is a κ-additive measure on I, then there exists a nonzero
homomorphism h from RI to R, such that h(ei) = 0 for all i ∈ I.

Proof. For every a = (a(i) : i ∈ I) ∈ RI and r ∈ R, define Xr(a) = {i ∈ I : a(i) = r}.
Then the Xr(a) are pairwise disjoint subsets of I whose union is I. Since |R| < κ, 1 = μ(I) =
μ(
⋃

r∈RXr(a)) =
∑

r∈R μ(Xr(a)), so that exactly one of the sets, say Xs(a), has measure 1. Set
η(a) = s. Using the properties of μ, it will be shown that η preserves addition and scalar
multiplication and η(ei) = 0 for all i ∈ I.

First, to see that η(ei) = 0 for all i ∈ I, observe that I = X0(ei) ∪X1(ei) = {I \ {i}} ∪ {i},
so that μ(X0(ei)) = 1. Thus η(ei) = 0.

To confirm additivity, suppose that η(a) = s and η(b) = t; then μ({i ∈ I : a(i)/= s}) = 0
and μ({i ∈ I : b(i)/= t}) = 0. Now I ⊆ (Xs(a) ∩ Xt(b)) ∪ {i ∈ I : a(i)/= s} ∪ {i ∈ I : b(i)/= t} so
that

1 = μ(I) ≤ μ(Xs(a) ∩Xt(b)) + μ{i ∈ I : a(i)/= s} + μ{i ∈ I : b(i)/= t}

= μ(Xs(a) ∩Xt(b)) ≤ 1,
(7.1)

so μ(Xs(a)∩Xt(b)) = 1. SinceXs(a)∩Xt(b) ⊆ Xs+t(a+b), 1 = μ(Xs(a)∩Xt(b)) ≤ μ(Xs+t(a+b)) ≤
1; that is, μ(Xs+t(a + b)) = 1, so η(a + b) = s + t.

Finally, to check that η(ra) = rs = rη(a) for r ∈ R, note that Xs(a) ⊆ Xrs(ra) so that
1 = μ(Xs(a)) ≤ μ(Xrs(ra)) ≤ 1 or μ(Xrs(ra)) = 1. Thus η(ra) = rs = rη(a) and η is an
R-homomorphism.

Remark 7.2. In the Proof of Proposition 7.1, not only is it true that η(F) = 0, but η(Fκ) = 0
where Fκ is the submodule of RI consisting of all x ∈ RI with μ({i ∈ I : x(i)/= 0}) = 0. Thus η
has a large kernel.

Ulam has shown that if there exists an ℵ1-measurable cardinal (the meaning of which
should be clear), then there is a least one, call it m, and it in fact is m-measurable [5]. Thus m

often is referred to as the least measurable cardinal. Lady has shown that if R is slender and
h is a homomorphism from RI to R, satisfying h(ei) = 0 for all i ∈ I, then h = 0, provided
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|I| < m [4, Theorem 3(4)]. If there are nomeasurable cardinals, it then follows that, for slender
R, such a homomorphism h is zero regardless of the cardinality of I.

The state of uncountable products of rings can be summarized as follows.

Theorem 7.3. Let R be a ring with 1, equipped with the discrete topology, let σ be an uncountable
ordinal, and let the product Rσ be equipped with the product topology. If there are no measurable
cardinals, then conditions (I)–(V) are equivalent.

(I) R is slender.

(II) Every nonzero homomorphism h from Rσ to R has a unique expression of the form h =
πι0h(e

ι0) + · · · + πιkh(e
ιk), with k and the ιj depending upon h and each h(eιj )/= 0.

(III) Every endomorphism ofRσ is induced by multiplication of its vectors by a row-finite infinite
matrix with entries from R and with rows and columns indexed by σ.

(IV) Every homomorphism from Rσ to R is continuous at 0.

(V) Every endomorphism of Rσ is continuous at 0.

If there exists a least measurable cardinal m, then conditions (I)–(V) are equivalent for all ordinals σ
of cardinality < m.

Proof. Assume that nomeasurable cardinal exists. Note that the proof of Theorem 3.2 requires
only that a homomorphism which is 0 on all ei itself be zero, a result which follows from [4,
Theorem 3(4)] in the absence of measurable cardinals. Further note that Theorems 4.1 and 4.2
do not depend upon a countable product of rings. From earlier Sections, the equivalence of
conditions (I)–(III) is apparent.

Although metrizability of the product topology on Rσ is lost, the product topology
has the property that an endomorphism g of Rσ is continuous if and only if πig is continuous
for all i. Continuity at 0 continues to be the litmus test for overall continuity (as with any
topological module). Thus conditions (IV) and (V) are readily seen to be equivalent.

All that remains is to connect (I)–(III)with (IV)-(V). Suppose that (IV) holds and let h
be a continuous homomorphism fromRσ toR. Suppose that h(eιn)/= 0, ιn < σ, for all n ∈ ω. As
in previous Sections, let Rω have canonical projections pn and let en, n ∈ ω, be the basis of the
free submoduleF ⊂ Rω. InjectRω intoRσ via g defined for x ∈ Rω as [g(x)](ιn) = x(n), n ∈ ω,
and [g(x)](ι) = 0 otherwise. This injection is continuous because pn = πιng is the composition
of continuous functions for all n ∈ ω. Now hg is a continuous homomorphism from Rω to R
and so, by Theorem 6.1, must be 0 on all but finitely many en. Since g(en) = eιn , h must be 0
except for those finitely many eιn . Thus R is slender and so (IV)=⇒(I).

Finally, suppose that (II) holds and let h = πι0h(e
ι0)+· · ·+πιkh(e

ιk) be a homomorphism
from Rσ to R and let r ∈ R; it suffices to address subbasic open sets. For any x ∈ Rσ , x ∈
h−1({r}) if and only if h(x) = r; that is, if and only if x(ι0)h(eι0) + · · · + x(ιk)h(eιk) = r. Now
x ∈ π−1ι0 ({x(ι0)}) ∩ · · · ∩ π−1ιk ({x(ιk)}) ⊆ h−1({r}) so that h−1({r}) is open and h is continuous.
Thus (II)=⇒(IV), making conditions (I)–(V) equivalent, under the assumption that there are
no measurable cardinals.

If measurable cardinals exist, the key to the equivalence of (I)–(V) remains
demonstrating that only the zero homomorphism from Rσ to R annihilates all eι, and again
[4, Theorem 3(4)] supplies the proof for |σ| < m.

Remark 7.4. The equivalence of conditions (I)–(V) for all uncountable ordinals is equivalent
to the nonexistence of measurable cardinals. It is, of course, unnecessary in Theorem 7.3 to
use an ordinal for indexing, as any uncountable index set would suffice.
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