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Let X be a class of groups. A group which does not belong to X but all of whose proper quotient
groups belong to X is called just-non-X group. The present note is a survey of recent results on the
topic with a special attention to topological groups.

1. The Interest in the Literature

If X is a class of groups, a group G which belongs to X is said to be an X-group. A group G is
said to be a just-non-X group, or briefly a JNX group, if it is not an X-group but all of its proper
quotients are X-groups.

By default, every simple group which is not an X-group is a JNX group, so the
simple groups constitute an easy source of examples for JNX groups. Their structure was
studied for several choices of the class X, so there is a well-developed theory about the
topic. Some classic results can be found in [1–3] and recent contributions in [4–9]. Moreover
the study of JNX groups has been investigated both in finite groups and infinite groups
so that many techniques have general applications. Heineken’s work [2] is typical for this
line of research. In it a very special class of groups, namely, lagrangian groups, is treated.
More recently, a team of authors treated in this fashion the class of Dedekind groups in
[10].

H. Schunk was interested in studying JNX groups with respect to some problems of
local theory of finite groups as [1, Chapter 3] exemplifies. JNX groups were called groups
of boundary X in the original works of H. Schunk and conditions of splitting were found
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(see [1, Chapters 6, 11]). Most of the time, the literature on JNX groups shows that their
description overlaps the results of H. Schunk or a well-known splitting theorem of I. Schur
andH. Zassenhaus (see [1, 18.1, 18.2]). Already in the context of locally finite groups, wemay
find generalizations, as described in [11, Chapter 6].

Some variations can be adapted to the context of topological groups and we will list
only two recent contributions.

The first is in [5] and deals with JNL groups. Here a compact group is called a JNL
group if it is not a Lie group, but all of its proper Hausdorff quotients are Lie groups. It is
proved that a compact JNL group is profinite. This is another evidence that many techniques
and methods have a general application in topics concerning JNX groups and that their
topology is very special. We note that topological groups are treated in terms of classes
and varieties of groups in [12–17], where restrictions, which are caused by the presence of
topology, are investigated.

The second contribution is in [9] (and also in [4] under a different prospective) and
deals with a topological group which is not compact, but all of its proper quotients are
compact, that is, a just-non-compact group. Recall that a topological group G is a pro-Lie group
if it is complete and the set N(G) of all closed normal subgroups N of G such that G/N is
a Lie group is a filter basis converging to 1 (see [18] for feedback on pro-Lie groups). In [9]
Theorem 2.3 states that a just-non-compact group which is a pro-Lie group is a Lie group.
Furthermore, it can be written as the product of two suitable subgroups in which one of them
is finite.

On the other hand, the knowledge of JNX groups is often accompanied by the
following notion, which is dual in a certain sense.

A group G is called X-critical group, or minimal non-Xgroup, or briefly MNX group, if
G is not an X-group but all of its proper subgroups are X-groups. There is a long standing
line of research on MNX groups, as we can see in [1, pages 59, 330, 402, 408, 480, 515, 525,
781] and in [19–31].

This literature shows that terminology and notations are not uniform and some
results can be found independently with different approaches. For instance, the terminology
minimal non-X group is adopted by [32] while the terminology X-critical group is adopted
by [1, 20].

The reason why JNX groups and MNX groups are related is due to an unexpected
symmetry in their structure; this becomes clear once we compare [3, Theorems 11.1, 11.2,
12.26, 12.30, 14.1, 14.2, 14.8, 14.10, 14.18, 14.19, 15.4, 15.5, 15.11, 16.21, 16.24, 16.28, 16.30,
16.31, 16.32, 16.33, 17.5, 17.7, 17.8, 17.9, Corollaries 12.27, 12.28, 12.29] with [33, Theorem
9.1.9, Exercise 9.1.11, Theorem 10.3.3].

For instance, if A is the class of the abelian groups, just-non-A groups have been
completely described byM. F. Newman in [3, Theorems 11.1, 11.2]. He proved that a just-non-
A group is characterized to be a homomorphic image of a direct product of an extra-special
group by a quasicyclic group. Minimal non-A groups have been completely described by O.
Yu. Schmidt in [33, Theorem 9.1.9].

It is interesting to point out the great symmetry which pervades the result of M.
F. Newman and that of O. Yu. Schmidt. The largest normal nilpotent subgroup Fitt(G) of
a group G plays in the structure of a just-non-A group the same role which is played by
G/Frat(G) in the structure of a minimal non-A group, where Frat(G) denotes the intersection
of all maximal subgroups of G.

We continue to find these analogies for many choices of X and not only for X = A. The
quoted literature shows this fact in many situations.
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The importance of just-non-X groups and minimal non-X groups becomes more
relevant when we look at situations as in [32, Theorem 7.4.1]. Let P be the class of polycyclic
groups.

For instance, [32, Theorem 7.4.1] states that a finitely generated group G, which is not
a polycyclic group, has a suitable homomorphic image which is a just-non-P group.

Results of the type of [32, Theorem 7.4.1] holds for many choices of X and not only for
X = P. This shows that the knowledge of just-non-P groups deals with the knowledge of all
finitely generated groups and this emphasizes the importance of JNX groups from the point
of view of the general theory. Unfortunately, many problems remain unsolved also for easy
choices of X as [3]; Open Questions shows.

We end this section with some easy observations due to the choice of locally compact
groups, once we want to study JNX groups in the topological case. We know that there are
some cautionary observations which are necessary to note, in order to have an approach as in
[3] to topological groups. The existence of a topology in a group does not allow us to speak
in the usual way either of formations or of varieties of groups (see [1, 34]). The literature
on varieties of topological groups is relatively recent and most of the classical results of [3,
Chapter 2] do not hold in the context of topological groups, because we may have a largest
normal nilpotent closed subgroup which is not necessarily the Fitting subgroup (see, e.g.,
[16, 35] for the generalizations of the Fitting subgroup in profinite groups). Therefore we have
to work in the category of Hausdorff topological groups with corresponding morphisms.
In order to speak about quotients in a meaningful way in this category, we should refer to
quotients modulo closed normal subgroups (see [15, Definition 1.7]). Many situations in this
category show that we may not have any closed normal subgroups at all. This fact motivates
us to pick a category consisting of Hausdorff topological groups for which the structure and
the representation theory is highly developed such as the category of locally compact groups
(see [15, 17]).

2. Some Open Questions

The present section deals with some open questions in the context of topological groups when
we want to investigate JNX groups and MNX groups. There is literature in the abstract case
as we mentioned in Section 1 of the present survey. It seems reasonable that a line of research
as in [1, Chapters 6, 11] could be opened up in the context of topological groups, considering
varieties of topological groups in the sense of [34].

To the best of our knowledge, a systematic study in such a direction of research
should be new. Looking at similar situations for abstract groups, we can formulate some
open questions, but we need the following notions.

Definition 2.1. Let Ω be a class of topological groups and V(Ω) a variety of Hausdorff
groups generated by Ω. We will consider locally compact groups G in V(Ω), normal closed
subgroups N/= {1} of G, and normal closed subgroups M/=G of G. Define

MV(Ω)(G) =
{
N � G :

G

N
∈ V(Ω)

}
,

M̂V(Ω)(G) = {M � G : M ∈ V(Ω)}.
(2.1)
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(i) G is a just-non-V(Ω) group if it does not belong to V(Ω), but all of its closed normal
subgroups belong toMV(Ω)(G).

(ii) G is a minimal non-V(Ω) group if it does not belong to V(Ω), but all of its closed
normal subgroups belong to M̂V(Ω)(G).

In Definition 2.1, if G is simple and does not belong to V(Ω), then G satisfies both (i)
and (ii). This is a source of examples for Definition 2.1.

Another source of examples for Definition 2.1(i) is given by the JNL groups in [5],
where V(Ω) = L is the variety of Lie groups and G is a compact group. Similarly, the just-
non-compact groups in [4, 8] are examples for Definition 2.1(i), when V(Ω) = C is the variety
of compact groups. At this point, the following question is natural.

Open Question 1. What is the structure of a just-non-V(Ω) group in Definition 2.1(i)? And the
structure of a minimal non-V(Ω) group in Definition 2.1(ii)?

Unfortunately, the next two results show that it is impossible to find a compact
minimal non-Lie group.

Lemma 2.2. Let G be a compact group andN a closed normal subgroup such that bothN and G/N
are Lie groups. Then G is a Lie group.

Proof. See [13, Theorem 3.1] (or [15, Theorem 6.7]).

Theorem 2.3. There are no compact minimal non-Lie groups.

Proof. Suppose that G is a compact minimal non-Lie group. Then G/= {1}, since {1} is a Lie
group. Hence there is an element g ∈ G \ {1}. By [15, Lemma 9.1(ii)], there is a closed normal
subgroup N such that g /∈N and G/N is a Lie group. Since N is a proper closed subgroup
andG is a compact minimal non-Lie group,N is a Lie group. From Lemma 2.2 it now follows
that G is a Lie group contrary to the definition.

Before of the next open question, we need to recall that the nilradical N(G) of a
topological group G is the subgroup generated by all normal closed nilpotent subgroups in
G. In case of profinite groups the reader may refer to [35, page 146]. In case of pro-Lie groups
the reader may refer to [18].

Theorem 2.4 (see [5, Proposition 2.4]). A compact JNL group with a nonsingleton center is a
central extension of a group Zp of p-adic integers for some prime p by a finite group.

Generalizations of Theorem 2.4 are recently obtained in [36]. However some problems
remain still open. In [5, Example 2.6 (b)] a JNL groupG is constructed, which is the semidirect
product of its nilradical N(G) by a finite group acting by automorphisms. It is reasonable to
expect that all compact centerfree JNL groups can be constructed in this way, but there is not
a proof of this fact.

A similar idea is behind the variation of the Schur-Zassenhaus theorem, quoted in
Section 1. Now, for the symmetric group on 3 elements S3, we know that S3 = C3 � C2 and
S3 is minimal non-Abelian. Still a semidirect product is involved in the structure of an MNX
group for a suitable choice of X, but here the topology is trivial, since S3 is finite. This allows
us to formulate the following questions.
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Open Question 2. (i) Is it possible to treat JNX groups andMNX groups in terms of categories?
And for which X?

(ii) Is it possible to treat the groups of Definition 2.1(i) and (ii) in terms of categories?
And for which Ω?

We end this survey by illustrating some connections with geometric group theory.
A central issue in geometric group theory is to study classes of discrete groups with

various properties of a geometrical and topological nature. These properties come from the
setting of infinite complexes by means of the following idea, which was first used on large
scale by Gromov. One can say that a finitely presented groupG has a certain property P if the
universal covering of some finite complex with G as fundamental group has the property P.

Among these properties we are interested in the so-called quasisimplefiltration
(see [37]). This property should be compared to a tameness condition at infinity which
is central in noncompact manifold theory, namely, the simple connectivity at infinity.
Roughly speaking, the simple connectivity at infinity expresses the fact that loops at the
infinity bound disks which are also near the infinity (see [38] fore more details on these
topics). This topological property has been used by Siebenmann, Stallings, and Freedman
for characterizing Euclidean spaces as being the contractible manifolds that are simply
connected at infinity. Actually, it has been conjectured for a long time that contractible
universal coverings of compact manifolds were homeomorphic to R

n (or, equivalently,
simply connected at infinity). In the 1980s M. Davis came up with examples refuting
the conjecture in any dimension n ≥ 4. Then it is meaningful to ask if there exists
a topological property which characterizes contractible universal coverings of compact
manifolds. A possible candidate comes from the work of A. Casson and V. Poenaru on
the previous conjecture in dimension 3 (see [38, 39]). More precisely, Casson and Poenaru
studied some geometric conditions on the Cayley graph of a finitely presented group
implying that the universal covering of a compact 3-manifold with given fundamental
group is R

3. In the proof of this result, the authors approximate the universal covering
by compact, simply connected three-manifolds. Poenaru’s main ingredients are the notions
of geometric simple connectivity (i.e., handlebody decomposition without 1-handles) and
Dehn-exhaustibility for open manifolds (see [38, 39]). The latter condition was then slightly
modified and adapted to finitely presented groups by Brick and Mihalik in [37] as follows.

Definition 2.5. The simply connected noncompact PL space X is qsf (i.e., quasisimply filtered)
if for any compact C ⊂ X there exists a simply connected polyhedron K and a PL map
f : K → X so that C ⊂ f(K) and f |f−1(C) : f−1(C) → C is a PL homeomorphism.

A finitely presented group G is qsf if the universal covering of the presentation 2-
complex associated to one of its presentations is qsf.

Looking at [37–39] we note that the notion in Definition 2.5 influences strongly the
structure of finitely presented groups. A classic result is the following.

Theorem 2.6 (Brick-Mihalik, see [37]). Let G be a finitely presented group.

(i) G is qsf if and only if some finite index subgroup H of G is qsf.

(ii) Automatic, CAT(0), combable, hyperbolic, or one-relator groups are qsf.

(iii) Assume that 1 → A → G → B → 1 is a short exact sequence of infinite finitely
presented groups. Then G is qsf.



6 International Journal of Mathematics and Mathematical Sciences

It follows from Theorem 2.6 that the infinite dihedral group

D∞ = Z � C2 =
〈
a, x | ax = a−1, x2 = 1

〉
(2.2)

is qsf. At the same time, D∞ is a just-nonfinite group, since it has by construction a unique
normal subgroup Z and consequently a unique quotient of order 2. This easy example shows
that there are finitely presented groups which are both qsf and just-non-finite. Therefore the
following question is natural.

Open Question 3. In a finitely presented group G, for which choices of X do we have that G is
both qsf and JNX? Are there deeper connections between qsf and JNX?

Finally, we want to list some recent problems, which originate from [4, 9, 40, 41]. Recall
that a topological space is called a kω-space if it is the direct limit of an ascending sequence of
compact (Hausdorff) subspaces. A topological groupG is kω it is kω as topological space. The
class of kω-spaces is quite general and comprises, for example, all countable CW-complexes
and countable direct limits of σ-compact locally compact groups (see [40]).

It would be interesting to replace the assumption of the group being locally compact by
a milder condition such as being a (locally) kω group. There is a rich theory of kω topological
spaces and a wealth of well-understood examples arising from the theory of Kac-Moody
groups over locally compact field. More precisely the following problem is open.

Open Question 4. Is it possible to classify compactly generated just noncompact (locally) kω
groups?
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[19] A. O. Asar, “Locally nilpotent p-groups whose proper subgroups are hypercentral or nilpotent-by-

Chernikov,” Journal of the London Mathematical Society, vol. 61, no. 2, pp. 412–422, 2000.
[20] A. Ballester-Bolinches, “F-critical groups, F-subnormal subgroups, and the generalised Wielandt

property for residuals,” Ricerche di Matematica, vol. 55, no. 1, pp. 13–30, 2009.
[21] J. C. Beidleman and H. Heineken, “Minimal non-F-groups,” Ricerche di Matematica, vol. 58, no. 1, pp.

33–41, 2009.
[22] B. Bruno and R. E. Phillips, “Onminimal conditions related toMiller-Moreno type groups,”Rendiconti

del Seminario Matematico della Università di Padova, vol. 69, pp. 153–168, 1983.
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