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Permutation tests are often presented in a rather casual manner, in both introductory and
advanced statistics textbooks. The appeal of the cleverness of the procedure seems to replace
the need for a rigorous argument that it produces valid hypothesis tests. The consequence of
this educational failing has been a widespread belief in a “permutation principle”, which is
supposed invariably to give tests that are valid by construction, under an absolute minimum of
statistical assumptions. Several lines of argument are presented here to show that the permutation
principle itself can be invalid, concentrating on the Fisher-Pitman permutation test for two means.
A simple counterfactual example illustrates the general problem, and a slightly more elaborate
counterfactual argument is used to explain why the main mathematical proof of the validity of
permutation tests is mistaken. Two modifications of the permutation test are suggested to be
valid in a very modest simulation. In instances where simulation software is readily available,
investigating the validity of a specific permutation test can be done easily, requiring only a
minimum understanding of statistical technicalities.

1. Introduction

Permutation tests are frequently recommended on two grounds. First, they require fewer
assumptions than corresponding model-based tests, and secondly, their validity (as statistical
hypothesis tests) is guaranteed by construction. The purpose of this note is to indicate a way
in which the first property undermines the second property. The setting is the usual one in
which the Mann-Whitney test is asserted to be appropriate, but going beyond this to the
assertion of a more general permutation principle (Lehmann [1]).

Users of statistical methods appear to be of two minds about permutation tests. On
one hand, since the “randomization” test in the context of a randomized clinical trial is
an example of a permutation test, much of the argument in favor of randomization as
an experimental principle has been that there is a guaranteed correct statistical test. This
argument has had an enormous impact on the design of biomedical studies, with virtually all
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researchers agreed that randomization is necessary for a study to be valid. If a randomization
test is invalid, however, then the technical argument for randomization becomes rather thin.
On the other hand, formal permutation tests occur fairly rarely in statistical practice. In
the two-sample situation discussed here, the dominant statistical method is the t-test, and
although randomization arguments have been used to justify it, it can also be recommended
without mentioning randomization. Perhaps the only other analyses that are used with some
frequency are the nonparametric alternatives to the t-tests, and these are often justified
by appealing to a “permutation principle”, giving the impression that these alternatives
minimize untestable assumptions. In fact, the often-used Wilcoxon and Mann-Whitney tests
do not follow from a permutation principle, but even if they did I will argue here that this
principle is invalid.

First, I will present an exaggerated example that indicates in a practical sense how
the logic of the general permutation test can break down. Secondly, using the notion of
counterfactuals, I will show in a slightly more theoretical way what the source of the problem
is. Thirdly, I will suggest two potential alternatives to the permutation test, and argue in their
favor on the basis of a small simulation. Finally, I will indicate how Fisher’s exact test fails to
follow counterfactual principles, based on an example.

2. Regression Example

The two-sample location problem can be expressed as a model for individual pairs (y, x) of
the form y = θx + e, where x takes the values 1 and −1 (indicating two groups), e is a chance
perturbation, having mean 0 and being uncorrelated with x, and θ is the parameter of interest.
In this paper, I will only consider the case in which half of the observations have x = 1, and
so the total sample size n is even. Given data of this form, the conventional estimate of θ is

̂θ =
∑

xy

n
. (2.1)

The null hypothesis is that θ = 0, and the permutation test of this hypothesis is based
on the putative null distribution of the above estimate, obtained in the following way. Let x̃
denote a random permutation of the x-values. For simulation purposes, (y, x) is replaced by
(y, x̃), a large number of random permutations x̃ are generated, with y fixed, and for each
one the corresponding estimate of θ is computed. Finally, this large sample of θs is taken to
estimate the null hypothesis distribution of ̂θ.

A difficulty with this approach is illustrated in Figures 1 and 2. Figure 1(a) shows a
unit Normal distribution, intended as the distribution of y (or e) under the null hypothesis
that θ = 0. Half of the values from this distribution are regarded as being cases when x = −1,
the remainder when x = 1. Figure 1(b) shows the simulated permutation null distribution of
the estimate of θ. Figure 2(a) shows a another distribution for y (or e), again under the null
hypothesis. Figure 2(b) shows the simulated permutation null distribution of the estimate of
θ in this case. Both of these cases are correct, in the sense that if the distribution of e is given
on the left, then the null distribution of ̂θ is validly approximated on the right.

Now let us look at the situation with different eyes. Suppose that Figure 1(a) shows
the distribution of e, but that θ is large enough to produce the distribution of y seen in
Figure 2(a). The distribution of the parameter estimate under the null hypothesis is still
shown in Figure 1(b). But the permutation null distribution that will be computed from data



International Journal of Mathematics and Mathematical Sciences 3

−5 −4 −3 −2 −1 0 1 2 3 4 5

Distribution of the errors (and observations)

(a)

−1 −0.5 0 0.5 1

Permutation distribution of the estimate

(b)

Figure 1: A null situation for generating a permutation distribution.
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Distribution of observations
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Permutation distribution of the estimate

(b)

Figure 2: A situation that can be either null or non-null, for simulating a permutation distribution.

coming from the distribution in Figure 2(a) appears in Figure 2(b). This shows an example
of the following: in the situation where, as a matter of fact, the null hypothesis is false, the
permutation estimate of the null distribution can also be false.

3. Counterfactuals

One way of understanding this situation is based on the method of counterfactuals (Rubin,
[2]). In the two-sample circumstance, we would write the outcomes as y(θ, ψ), considered
as a stochastic process indexed by the parameter of interest (θ) and the nuisance parameter
(ψ). Again, in our situation this would be y(θ, ψ) = θx + y(0, ψ), where now y(0, ψ) plays
the role of e above. In the exposition by Lehmann [1], the parameter ψ would represent a
probability density, and y(0, ψ) would have density ψ. The value y(0, ψ) is generated by some
chance mechanism, and then y(θ, ψ) is generated by the model equation above. The values
we observe are y(θ, ψ), but for values of θ and ψ that we do not know. Counterfactuality
comes in because y(0, ψ) is the value we would have observed if the null hypothesis had
been true. As is usually the case in counterfactual arguments, we can only actually observe
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y(0, ψ) under special circumstances (when the null hypothesis is true), so that in general it is
only a hypothetical quantity.

Here is the argument of Lehmann [1]. The set of values {y(0, ψ)} (equivalent to the
order statistic) is complete and sufficient for the model defined by θ = 0 and ψ = any
density. It follows that the null conditional distribution of the sample y(0, ψ) given the order
statistic {y(0, ψ)} is based on the permutation distribution, irrespective of the value of ψ.
This is the basis for the permutation test. In practice, however, it is not {y(0, ψ)} that is
observed, but {y(θ, ψ)}. The conventional permutation distribution is based on the observed
order statistic, but this is not the order statistic that would have been observed if the null
hypothesis had been true. This is the core of the counterfactual objection to the permutation
test; it conditions on the observed order statistic {y(θ, ψ)} instead of conditioning on the null
order statistic {y(0, ψ)}, which Lehmann used for his proof. Because it is conditioning on
the latter that justifies the test, the argument for conditioning on the former is not obviously
correct.

In Lehmann’s theorem where the permutation test is derived, he implicitly considers
only observations of the form y(0, ψ), and shows that the (unbiased) rejection region R must
satisfy P[R | {y(0, ψ)}] = α, the level of the test. In his examples, he implies that R can be
found by solving P[R | {y(θ, ψ)}] = α. But since his theorem implicitly assumed the null
hypothesis, he did not show that R must satisfy this latter equation, and as we have seen in
the example above, it need not be satisfied.

There is yet another way of seeing the problem, which connects it more meaningfully
to the example. The observed order statistic {y(θ, ψ)} has the same distribution as an order
statistic {y(0, ψ0)}, where ψ0 is a distribution that depends on θ and ψ. The permutation
distribution based on {y(0, ψ0)} is indeed a possible null distribution, but it is not the null
distribution that would have been obtained if θ had been 0, and ψ had been left unchanged.
Thus, it is precisely the fact that the permutation argument permits different values of (θ, ψ)
to produce the same order statistic that creates the problem.

Finally, there is a way of seeing how the sufficiency argument actually misleads
the inference. The argument of Lehmann [1] is that conditional on the order statistic, the
distribution of the sample does not depend on the nuisance parameter ψ, in the submodel
where θ = 0. This is perhaps naturally interpreted to mean that the nuisance parameter has
been eliminated from the problem. But this is not the correct interpretation of Lehmann’s
equations. What they really say is that the only influence that the nuisance parameter ψ has
on the distribution of the sample is carried by the order statistic. The order statistic completely
mediates the effect of ψ on the distribution of the sample. Thus, both θ and ψ jointly influence
the permutation distribution of the sample, but the permutation test does not separate their
individual influences.

4. Better Estimates of the Null Distribution

One obvious strategy to repair the permutation test is to replace the order statistic by
{y(θ, ψ) − ̂θx}. This is an attempt to estimate the true null order statistic {y(0, ψ)}. The
potential objection is that the variability of this estimate might be less than the variability
of the true null order statistic, producing an invalid test. The permutation test based on this
replacement is called the adjusted permutation test.

Another approach is to use a simulation based on a random permutation x̃, but
conditioned so that it is orthogonal to x. The corresponding simulation sample of estimates
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Table 1: Simulated means of effect estimates.

θ Null Conventional Adjusted Orthogonal
0 −0.00027 −0.00027 −0.00021 −0.00003
0.1 −0.00007 −0.00006 0.00002 0.00010
0.2 −0.00005 −0.00017 0.00005 −0.00049
0.3 0.00022 0.00022 0.00026 −0.00024
0.4 0.00021 0.00027 0.00021 0.00033
0.5 0.00051 0.00047 0.00048 −0.00009
0.6 −0.00015 −0.00005 −0.00005 −0.00038
0.7 0.00050 0.00053 0.00046 0.00018
0.8 −0.00025 −0.00035 −0.00033 0.00007
0.9 −0.00066 −0.00070 −0.00060 −0.00038
1 −0.00007 −0.00030 −0.00005 0.00004
1.1 −0.00015 0.00032 −0.00007 0.00006
1.2 0.00013 −0.00012 0.00012 −0.00009
1.3 0.00014 −0.00035 0.00011 −0.00019

Means of the sampling distributions of estimates of the null mean, using four procedures: (1) null, the usual method when
the null is true, (2) conventional, the usual method when the null is false, (3) adjusted, subtracting off the estimate, (4)
orthogonal, using only orthogonal permutations.

are then of the form

∑

x̃y
(

θ, ψ
)

n
=
∑

x̃y
(

0, ψ
)

n
. (4.1)

The simulated distribution of the estimate is thus based on order statistics that would
have counterfactually been seen under the null hypothesis, but with a restriction on the
permutations. It is not clear that this procedure is fully justified, because of the orthogonality
restriction. Here we call this the orthogonal permutation test.

In the simulation, we call the usual permutation test the conventional permutation test.
Because everything is based on a simulation, we know the true null order statistic, and the
permutation test based on it is called the null permutation test. This gives us altogether four
permutation tests, of which only the null permutation test is (within simulation variation)
known to be correct.

5. A Simulation

To compare these four tests, I performed a small simulation in the above regression situation.
The simulation used sample size 16, since the orthogonal permutation test is only possible for
x̃ taking values −1 and 1 if n is divisible by 4. The distribution of e was Normal (0,1), values
of θ were 0(.1)1.3, the number of simulated tests for each value of the parameter was 1000,
and the number of permutations in each test was 100. The simulation was carried out in Stata
(version 9), using a permutation routine that was written specifically for this research.

The results of the simulation are shown in Tables 1–4. Table 1 shows the average
estimate (each based on 1000 replications), verifying that all estimates of the null distribution
have the correct mean of 0. For the null case this can be shown theoretically, and so the values
here serve as a positive control on the simulations. The standard deviations of the estimates
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Table 2: Simulated SDs of effect estimates.

θ Null Conventional Adjusted Orthogonal
0 0.246 0.246 0.237 0.246
0.1 0.246 0.247 0.237 0.246
0.2 0.246 0.251 0.237 0.246
0.3 0.246 0.257 0.237 0.246
0.4 0.246 0.265 0.237 0.246
0.5 0.246 0.276 0.237 0.246
0.6 0.246 0.288 0.237 0.246
0.7 0.246 0.302 0.237 0.246
0.8 0.247 0.318 0.238 0.246
0.9 0.246 0.335 0.238 0.246
1 0.246 0.353 0.237 0.246
1.1 0.246 0.372 0.237 0.246
1.2 0.247 0.392 0.238 0.246
1.3 0.246 0.412 0.237 0.246

Standard deviations of the estimators in Table 1.

(SDE) are shown in Table 2. Again the null test values are constant, as they should be within
the simulation variation. The orthogonal test has essentially the same SDEs as the null test,
and the adjusted test is only slightly higher. In contrast, the conventional test estimates an
SDE that grows with the size of the parameter, another result that can be verified theoretically
(see the Appendix).

The probability of rejecting the null hypothesis is shown in Table 3. Again the results
of the orthogonal test are essentially the same as the correct null test, with the adjusted test
losing only a small amount of power. Although the conventional test is worse than both
the adjusted and orthogonal tests, the difference is rather small. Note that the adjusted and
orthogonal tests appear to have been slightly larger than nominal levels, suggesting that
possibly some adjustment needs to be made. (In the simulations a value equal to the observed
was included in the rejection region, and the number of permutations per test was small, both
of which might account for some of the excess level, but more research is warranted.) Table 4
shows the efficiency of the conventional test relative to the others, in terms of sample size.
This is an estimation-based rather than a test-based comparison. Clearly the conventional
test fares poorly relative to the other tests, and the deficit grows with the size of the effect
parameter.

6. Fisher’s Exact Test Example

A similar problem affects the exact test for 2 × 2 tables. When the margins of a 2 × 2 table
are indeed fixed by the design of the experiment, then the permutation distribution may
well make sense. To the contrary, the exact test has been advocated as a general testing
procedure that is valid even when the margins are not fixed. The counterfactual approach
can be portrayed in these cases by defining indicators as follows: br(ur, βr , βc, βrc) = ind(ur <
βr), bc(uc, βr , βc, βrc) = ind(uc < βc). brc(urc, βr , βc, βrc) = ind(urc < βrc), where the u’s are
independent uniform chance variables, and “ind” means “indicator variable of”. The row
indicator is the larger of br and brc, and the column indicator is the larger of bc and brc. The
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Table 3: Simulated power of tests.

θ Null Conventional Adjusted Orthogonal
0 0.053 0.053 0.067 0.061
0.1 0.112 0.1 0.132 0.123
0.2 0.212 0.186 0.221 0.212
0.3 0.337 0.283 0.34 0.316
0.4 0.487 0.426 0.487 0.47
0.5 0.643 0.574 0.645 0.619
0.6 0.759 0.726 0.768 0.756
0.7 0.857 0.835 0.876 0.862
0.8 0.924 0.913 0.94 0.929
0.9 0.963 0.965 0.978 0.974
1 0.984 0.986 0.991 0.991
1.1 0.996 0.995 0.996 0.996
1.2 0.997 0.998 0.999 0.999
1.3 0.999 0.999 1 0.999

Powers of the tests based on the estimators in Table 1.

Table 4: Simulated sample-size efficiency of the conventional test versus other tests.

θ Null Adjusted Orthogonal
0.1 0.992 0.921 0.989
0.2 0.964 0.895 0.961
0.3 0.919 0.853 0.915
0.4 0.861 0.801 0.859
0.5 0.798 0.741 0.793
0.6 0.73 0.678 0.73
0.7 0.664 0.617 0.661
0.8 0.601 0.558 0.597
0.9 0.541 0.503 0.538
1 0.487 0.452 0.485
1.1 0.437 0.406 0.436
1.2 0.396 0.368 0.394
1.3 0.358 0.332 0.356

Efficiency of the estimators in Table 1.

null hypothesis is independent of row and column, which is the same as βrc = 0. The nuisance
parameter is (βr, βc).

Here is an illustrative example. Table 5 shows the result of a single simulation with βr =
0.6, βc = 0.6, and βrc = 0.3. The one-sided P -value from Fisher’s exact test is .517 (according to
Stata). If we eliminate brc (counterfactually imposing the null hypothesis), then the results are
as in Table 6. If we take it that there were 10 observations in the lower-right cell (as in Table 5),
but with the margins of Table 6, the one-sided P -value is .0124 (again from Stata). This
example makes it clear that the failure of the null hypothesis has an effect on the conditioning
statistic, which in this case consists of the marginal frequencies in the table. The conditioning
in Fisher’s exact test is not on the frequencies that would have been seen under the null
hypothesis with βrc = 0 but βr and βc unchanged, but rather under a different version of the
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Table 5: Single simulation (dependent).

1 4 5
5 10 15
6 14 20

Simulated data based on br , bc, and brc , exhibiting dependence of row
and column, but with P = .517

Table 6: Single simulation (independent).

2 5 7
7 6 13
9 11 20

Data from the simulation in Table 5, but omitting the brc factor, thereby
correctly estimating the null margins. 10 observations in the lower right
cell would result in a P -value of .0124.

null hypothesis in which the actual nonnull value of βrc implicitly gives different values to βr
and βc. From the counterfactual standpoint, Fisher’s exact test uses the wrong margins.

7. Discussion

It has become increasingly common in the statistical and biomedical literature to see
assertions that amount to a general “permutation principle”. The issue is whether two (or
more) variables are related, and a test is performed based on an estimated null distribution,
which is produced by permuting one (or more) of the variables while leaving the remainder
fixed. In randomized trials, this is called the “randomization test”, and more recently “re-
randomization” has also been used for it, even in situations where no original randomization
has been performed. The impression is given that either no or very few assumptions are
necessary for the correctness of this procedure.

For example, one now sees the justification for the Wilcoxon one-sample test as the
application of this general permutation principle to the signed ranks of the observations, as if
no further assumptions were required. The Wilcoxon test is, to the contrary, the consequence
of a careful argument (Pratt and Gibbon [3]) that requires the symmetry of the underlying
distribution, the disregard of which has been noted for some time (Kruskal [4]). It is known
that the Wilcoxon test can be invalid in the presence of asymmetry; that is, the test detects
the asymmetry rather than a departure from the null hypothesis, when the null hypothesis
regarding the mean is true. Thus it is a specific argument based on symmetry and not a
general permutation principle that justifies the Wilcoxon test. Similar comments apply to the
Mann-Whitney test. There have been some cautionary articles about the general validity of
the permutation principle (Romano [5], Hayes [6], Zimmerman [7], Lu et al. [8], Zimmerman
[9], Modarres et al. [10]), but the dominant statistical thinking has been to ignore the cautions.

Based on the counterfactual argument and simulation of a regression case presented
here, it seems warranted to say that permutation tests need to be revisited. Despite the fact
that permutation tests are not widely used in practice, there is a very large literature on
them, and several books that explain in detail how they can be used in a wide variety of
situations. This literature is attractive because it seems to offer valid statistical procedures,
even in complex cases, and in cases where there are technical barriers to obtaining theoretical
results. Indeed, when a permutation principle does apply to a specific situation, the argument
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in favor of using it seems considerable, due to the reduction of untestable assumptions.
But when the permutation principle fails, then there is a risk of raising false confidence
in an unreliable procedure, with obvious negative consequences. The conclusion is that a
substantial amount of new research is required to distinguish between valid and invalid
permutation tests, and potentially also to devise modifications of the generally recommended
tests that would be appropriate in practice. In any case, it should be recognized that the
general assertion of a permutation principle that automatically produces valid tests appears
itself to be invalid.

Appendix

The purpose of this appendix is to derive the standard deviation of the permutation estimate
of a regression parameter. Let yi(i = 1, 2, . . . , n = 2m) be any collection of numbers. Let vector
x be chosen at random from among the ordered lists of n values +1 and −1, with half being
+1 and half being −1. It is obvious that

E

(

∑

i

xiyi

)

= 0, (A.1)

where the expectation is taken with respect to the distribution of the xi’s. By algebra,

(

∑

i

xiyi

)2

=
∑

i

y2
i +
∑

i /= j

xixjyiyj . (A.2)

Employing an elementary combinatorial argument

pr
(

xixj = 1
)

= pr
(

xi = xj
)

= 2

(

2m−2

m−2

)

(

2m

m

) =
m − 1

2m − 1
(A.3)

from which it follows immediately that

pr
(

xixj = −1
)

=
m

2m − 1
. (A.4)

Thus

E

⎡

⎣

∑

i /= j

xixjyiyj

⎤

⎦ =
(

m − 1
2m − 1

− m

2m − 1

)

∑

i /= j

yiyj = −
1

2m − 1

∑

i /= j

yiyj (A.5)

which after a few additional manipulations gives

E

[

(
∑

i xiyi
n

)2
]

=
1
n

∑

i

(

yi − y
)2

n − 1
. (A.6)
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The import of this result for permutation inference for a regression parameter is the
following. If the model yi = θxi+ei holds, then the last equation above shows that the variance
of the permutation distribution of the regression estimator depends on θ. Consequently, for
the observed values of yi the permutation distribution of the regression estimator has the
correct variance if and only if θ = 0, that is, if and only if the null hypothesis is in fact true.
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