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Graph invariants provide a powerful analytical tool for investigation of abstract substructures
of graphs. This paper is devoted to large cycle substructures, namely, Hamilton, longest and
dominating cycles and some generalized cycles including Hamilton and dominating cycles as
special cases. In this paper, we have collected 36 pure algebraic relations between basic (initial)
graph invariants ensuring the existence of a certain type of large cycles. These simplest kind
of relations having no forerunners in the area actually form a source from which nearly all
possible hamiltonian results (including well-known Ore’s theorem, Posa’s theorem, and many
other generalizations) can be developed further by various additional new ideas, generalizations,
extensions, restrictions, and structural limitations.

1. Introduction

Graph invariants provide a powerful and may be the single analytical tool for investigation
of abstract structures of graphs. They, combined in convenient algebraic relations, contain
global and general information about a graph and its particular substructures such as cycle
structures, factors, matchings, colorings, and coverings. The discovery of these relations is
the primary problem of graph theory.

This paper is devoted to large cycle substructures, perhaps the most important cycle
structures in graphs: Hamilton, longest and dominating cycles and some generalized cycles
including Hamilton and dominating cycles as special cases.

In the literature, eight basic (initial) invariants of a graph G are known having
significant impact on large cycle structures, namely, order n, size q, minimum degree δ,
connectivity κ, independence number α, toughness τ and the lengths of a longest path and a
longest cycle in G \ C for a given longest cycle C, denoted by p and c, respectively.

In this paper we have collected 36 pure algebraic relations between basic graph
invariants ensuring the existence of a certain type of large cycles. The majority of these results
are sharp in all respects.
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Focusing only on basic graph invariants, as well as on pure algebraic relations between
these parameters, in fact, we present the simplest kind of relations for large cycles having
no forerunners in the area. Actually they form a source from which nearly all possible
hamiltonian results (including well-known Ore’s theorem, Posa’s theorem, and many other
generalizations) can be developed further by various additional new ideas, generalizations,
extensions, restrictions, and structural limitations such as:

(i) generalized and extended graph invariants: degree sequences (Pósa type, Chvatal type),
degree sums (Ore type, Fun type), neighborhood unions, generalized degrees, local
connectivity, and so on,

(ii) extended list of path and cycle structures: Hamilton, longest and dominating cycles,
generalized cycles including Hamilton and dominating cycles as special cases,
2-factor, multiple Hamilton cycles, edge disjoint Hamilton cycles, powers of
Hamilton cycles, k-ordered Hamilton cycles, arbitrary cycles, cycle systems,
pancyclic-type cycle systems, cycles containing specified sets of vertices or edges,
shortest cycles, analogous path structures, and so on,

(iii) structural (descriptive) limitations: regular, planar, bipartite, chordal and interval
graphs, graphs with forbidden subgraphs, Boolean graphs, hypercubes, and so on,

(iv) graph extensions: hypergraphs, digraphs and orgraphs, labeled and weighted
graphs, infinite graphs, random graphs, and so on.

These 36 initial relations are quite sufficient for interested reader to make a clear
imagination about developmental mechanisms in hamiltonian graph theory including the
origins, current processes, and future possible developments along with various research
problems.

We refer to [1–3] for more background and general surveys.
The order n, size q, and minimum degree δ clearly are easy computable graph

invariants. In [4], it was proved that connectivity κ can be determined in polynomial time,
as well. Determining the independence number α and toughness τ are shown in [5, 6] to
be NP -hard problems. Moreover, it was proved [6] that for any positive rational number t,
recognizing t-tough graphs (in particular 1-tough graphs) is an NP -hard problem.

The order n and size q are neutral with respect to cycle structures. Meanwhile, they
become more effective combined together (Theorem 3.1). The minimum degree δ having
high frequency of occurrence in different relations is, in a sense, a more essential invariant
than the order and size, providing some dispersion of the edges in a graph. The combinations
between order n and minimum degree δ become much more fruitful especially under some
additional connectivity conditions. The impact of some relations on cycle structures can be
strengthened under additional conditions of the type δ ≥ α ± i for appropriate integer i.
By many graph theorists, the connectivity κ is at the heart of all path and cycle questions
providing comparatively more uniform dispersion of the edges. An alternate connectedness
measure is toughness τ—themost powerful and less investigated graph invariant introduced
by Chvátal [7] as a means of studying the cycle structure of graphs. Chvátal [7] conjectured
that there exists a finite constant t0 such that every t0-tough graph is hamiltonian. This
conjecture is still open. We have omitted a number of results involving toughness τ as a
parameter since they are far from being best possible.

Large cycle structures are centered around well-known Hamilton (spanning) cycles.
Other types of large cycles were introduced for different situations when the graph contains
no Hamilton cycles or it is difficult to find it. Generally, a cycle C in a graph G is a large cycle



International Journal of Mathematics and Mathematical Sciences 3

if it dominates some certain subgraph structures in G in a sense that every such structure
has a vertex in common with C. When C dominates all vertices in G then C is a Hamilton
cycle. When C dominates all edges in G then C is called a dominating cycle introduced by
Nash-Williams [8]. Further, if C dominates all paths in G of length at least some fixed integer
λ then C is a PDλ (path dominating)-cycle introduced by Bondy [9]. Finally, if C dominates
all cycles in G of length at least λ then C is a CDλ (cycle dominating)-cycle, introduced in
[10]. The existence problems of generalized PDλ and CDλ-cycles are studied in [10].

Section 2 is devoted to necessary notation and terminology. In Section 3, we discuss
pure relations between various basic invariants of a graph andHamilton cycles. Next sections
are devoted to analogous pure relations concerning dominating cycles (Section 4), CDλ-
cycles (Section 5), long cycles (Section 6), long cycles with Hamilton cycles (Section 7), long
cycles with dominating cycles (Section 8), and long cycles with CDλ-cycles (Section 9).

2. Terminology

Throughout this paper we consider only finite undirected graphs without loops or multiple
edges. A good reference for any undefined terms is [11]. We reserve n, q, δ, κ, and α to denote
the number of vertices (order), number of edges (size), minimum degree, connectivity, and
independence number of a graph, respectively. Each vertex and edge in a graph can be
interpreted as simple cycles of lengths 1 and 2, respectively. A graph G is hamiltonian if
G contains a Hamilton cycle, that is, a cycle containing every vertex of G. The length c of a
longest cycle in a graph is called the circumference. For C a longest cycle in G, let p and c
denote the lengths of a longest path and a longest cycle in G \ C, respectively. A cycle C′ in
G is a PDλ-cycle if |P | ≤ λ − 1 for each path P in G \ C′ and is a CDλ-cycle if |C′′| ≤ λ − 1 for
each cycle C′′ in G \ C′. In particular, PD0-cycles and CD1-cycles are well-known Hamilton
cycles and PD1-cycles and CD2-cycles are often called dominating cycles. Let s(G) denote the
number of components of a graph G. A graph G is t-tough if |S| ≥ ts(G \S) for every subset S
of the vertex set V (G) with s(G \ S) > 1. The toughness of G, denoted τ(G), is the maximum
value of t for which G is t-tough (taking τ(Kn) = ∞ for all n ≥ 1).

Let a, b, t, k be integers with k ≤ t. We use H(a, b, t, k) to denote the graph obtained
from tKa +Kt by taking any k vertices in subgraphKt and joining each of them to all vertices
of Kb. Let Lδ be the graph obtained from 3Kδ + K1 by taking one vertex in each of three
copies of Kδ and joining them each to other. For odd n ≥ 15, construct the graph Gn from
K(n−1)/2 +Kδ +K(n+1)/2−δ, where n/3 ≤ δ ≤ (n−5)/2, by joining every vertex inKδ to all other
vertices and by adding a matching between all vertices inK(n+1)/2−δ and (n+1)/2−δ vertices
in K(n−1)/2. It is easily seen that Gn is 1-tough but not hamiltonian. A variation of the graph
Gn, with Kδ replaced by Kδ and δ = (n − 5)/2, will be denoted by G∗

n.

3. Hamilton Cycles

We beginwith a size lower bound insuring the existence of a Hamilton cycle based on the idea
that if a sufficient number of edges are present in the graph on n vertices, then a Hamilton
cycle will exist.

Theorem 3.1 (Erdös and Gallai [12]). Every graph with q ≥ (n2 − 3n + 5)/2 is hamiltonian.

Example for Sharpness. To see that the size bound (n2−3n+5)/2 in Theorem 3.1 is best possible,
note that the graph formed by joining one vertex ofKn−1 toK1, contains (n2 − 3n+ 4)/2 edges
and is not hamiltonian.
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The earliest sufficient condition for a graph to be hamiltonian is based on the order n
and minimum degree δ, ensuring the existence of a Hamilton cycle in a graph with sufficient
number of edges by keeping the minimum degree at a fairly high level.

Theorem 3.2 (Dirac [13]). Every graph with δ ≥ n/2 is hamiltonian.

Example for sharpness: 2Kδ +K1.
The graph 2Kδ +K1 shows that the bound n/2 in Theorem 3.2 cannot be replaced by

(n − 1)/2.
In [14], it was proved that the minimum degree bound n/2 in Theorem 3.2 can be

slightly relaxed for graphs on n ≥ 11 vertices under additional 1-tough condition.

Theorem 3.3 (Jung [14]). Every graph with n ≥ 11, τ ≥ 1 and δ ≥ (n − 4)/2 is hamiltonian.

Examples for sharpness: Kδ,δ+1; G∗
n.

This bound (n− 4)/2 itself was lowered further to (n− 7)/2 under stronger conditions
n ≥ 30 and τ > 1.

Theorem 3.4 (Bauer et al. [15]). Every graph with n ≥ 30, τ > 1 and δ ≥ (n−7)/2 is hamiltonian.

In 1981, the Dirac’s level n/2 was essentially lowered to (n + κ)/3 when κ < n/2 by
incorporating connectivity κ into the minimum degree bound.

Theorem 3.5 (Nikoghosyan [16]). Every graph with κ ≥ 2 and δ ≥ (n + κ)/3 is hamiltonian.

Examples for sharpness: 2Kδ +K1;H(1, δ − κ + 1, δ, κ) (2 ≤ κ < n/2).
A short proof of Theorem 3.5 was given by Häggkvist [17].
The bound (n + κ)/3 in Theorem 3.5 was slightly lowered to (n + κ − 2)/3 for 1-tough

graphs.

Theorem 3.6 (Bauer and Schmeichel [18]). Every graph with τ ≥ 1 and δ ≥ (n + κ − 2)/3 is
hamiltonian.

Examples for sharpness: Kδ,δ+1; Lδ.
Another essential improvement of Dirac’s lower bound n/2 was established in 1971

due to Nash-Williams under additional condition δ ≥ α.

Theorem 3.7 (Nash-Williams [8]). Every graph with κ ≥ 2 and δ ≥ max{(n + 2)/3, α} is ham-
iltonian.

Examples for sharpness: (λ + 1)Kδ−λ+1 +Kλ (δ ≥ 2λ); (λ + 2)Kδ−λ +Kλ+1 (δ ≥ 2λ + 1);
H(λ, λ + 1, λ + 3, λ + 2).

Theorem 3.7 was slightly improved by replacing the condition κ ≥ 2 with τ ≥ 1.

Theorem 3.8 (Bigalke and Jung [19]). Every graph with τ ≥ 1 and δ ≥ max{n/3, α − 1} is
hamiltonian.

Examples for sharpness: Kδ,δ+1 (n ≥ 3); Lδ (n ≥ 7); Kδ,δ+1 (n ≥ 3).
The bound (n + 2)/3 in Theorem 3.7 was essentially lowered under additional

condition of the type δ ≥ α + λ including Theorem 3.7 as a special case.
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Theorem 3.9 (Fraisse [20]). Let G be a graph, λ a positive integer and δ ≥ max{(n + 2)/(λ + 2) +
λ − 1, α + λ − 1}. If κ ≥ λ + 1 then G is hamiltonian.

Examples for sharpness: (λ + 1)Kδ−λ+1 +Kλ (δ ≥ 2λ); (λ + 2)Kδ−λ +Kλ+1 (δ ≥ 2λ + 1);
H(λ, λ + 1, λ + 3, λ + 2).

Later, Theorem 3.7 was essentially improved by incorporating the connectivity κ into
the minimum degree bound.

Theorem 3.10 (Nikoghosyan [21]). Every graph with κ ≥ 3 and δ ≥ max{(n + 2κ)/4, α} is
hamiltonian.

Examples for sharpness: 3K2 +K2; 4K2 +K3, H(1, 2, κ + 1, κ).
The graph 4K2 + K3 shows that for κ = 3 the minimum degree bound (n + 2κ)/4 in

Theorem 3.10 cannot be replaced by (n + 2κ − 1)/4.
Finally, the bound (n + 2κ)/4 in Theorem 3.10 was reduced to (n + κ + 3)/4 without

any limitations providing a best possible result for each κ ≥ 3.

Theorem 3.11 (Yamashita [22]). Every graph with κ ≥ 3 and δ ≥ max{(n + κ + 3)/4, α} is
hamiltonian.

Examples for sharpness: 3Kδ−1 +K2;H(2, n − 3δ + 3, δ − 1, κ); H(1, 2, κ + 1, κ).
The first pure relation between graph invariants involving connectivity κ as a

parameter was developed in 1972 due to Chvátal and Erdös [23].

Theorem 3.12 (Chvátal and Erdös [23]). Every graph with κ ≥ α is hamiltonian.

Example for sharpness: Kδ,δ+1.

4. Dominating Cycles

In 1971, Nash-Williams [8] proved that the minimum degree bound (n + 2)/3 insures the
existence of dominating cycles.

Theorem 4.1 (Nash-Williams [8]). Let G be a graph with δ ≥ (n+ 2)/3. If κ ≥ 2 then each longest
cycle in G is a dominating cycle.

Examples for sharpness: 2K3 +K1; 3Kδ−1 +K2;H(1, 2, 4, 3).
The graph 2K3 +K1 shows that the connectivity condition κ ≥ 2 in Theorem 4.1 cannot

be replaced by κ ≥ 1. The second graph shows that the minimum degree condition δ ≥
(n+2)/3 cannot be replaced by δ ≥ (n+1)/2. Finally, the third graph shows that the conclusion
“is a dominating cycle” cannot be strengthened by replacing it with “is a Hamilton cycle”.

Further, it was proved that the condition δ ≥ (n + 2)/3 in Theorem 4.1 can be slightly
relaxed under stronger 1-tough condition instead of κ ≥ 2.

Theorem 4.2 (Bigalke and Jung [19]). LetG be a graph with τ ≥ 1 and δ ≥ n/3. Then each longest
cycle in G is a dominating cycle.

Examples for sharpness: 2(κ + 1)K2 + κK1; L3; G∗
n.

Lu et al. [24] lowered the bound (n+2)/3 in Theorem 4.1 to (n+2κ)/4 by incorporating
the connectivity κ into the minimum degree bound.
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Theorem 4.3 (Lu et al. [24]). Let G be graph with κ ≥ 3 and δ ≥ (n + 2κ)/4. Then each longest
cycle in G is a dominating cycle.

Examples for sharpness: 3K2 +K2; 4K2 +K3; H(1, 2, κ + 1, κ).
The graph 4K2 + K3 shows that for κ = 3 the minimum degree bound (n + 2κ)/4 in

Theorem 4.3 cannot be replaced by (n + 2κ − 1)/4.
In 2008, the bound (n+2κ)/4 itself was essentially reduced to (n+κ+3)/4 by Yamashita

[22] without any additional limitations providing a best possible result for each κ ≥ 3.

Theorem 4.4 (Yamashita [22]). LetG be graph with κ ≥ 3 and δ ≥ (n+κ+3)/4. Then each longest
cycle in G is a dominating cycle.

Examples for sharpness: 3Kδ−1 +K2;H(2, n − 3δ + 3, δ − 1, κ); H(1, 2, κ + 1, κ).

5. CDλ-Cycles

In 1990, Jung [25] proved the exact analog of Theorems 3.2 and 4.1 concerning CD3-cycles.

Theorem 5.1 (Jung [25]). Let G be a graph with δ ≥ (n + 6)/4. If κ ≥ 3 then each longest cycle in
G is a CD3-cycle.

Examples for sharpness: λKλ+1+Kλ−1 (λ ≥ 2); (λ+1)Kδ−λ+1+Kλ (λ ≥ 1);H(λ−1, λ, λ+
2, λ + 1) (λ ≥ 2).

In 2009, the author was able to find a common generalization of Theorems 3.2, 4.1, and
5.1 by covering CDλ-cycles for all λ ≥ 1.

Theorem 5.2 (Nikoghosyan [10]). Let G be a graph, λ a positive integer, and δ ≥ (n+2)/(λ+1)+
λ − 2. If κ ≥ λ then each longest cycle in G is a CDmin{λ,δ−λ+1}-cycle.

Examples for sharpness: λKλ+1+Kλ−1 (λ ≥ 2); (λ+1)Kδ−λ+1+Kλ (λ ≥ 1);H(λ−1, λ, λ+
2, λ + 1) (λ ≥ 2).

An analogous generalization has been conjectured [10] in terms of PDλ-cycles.

Conjecture 5.3 (Nikoghosyan [10]). Let G be a graph, λ a positive integer, and δ ≥ (n + 2)/(λ +
1) + λ − 2. If κ ≥ λ then each longest cycle in G is a PDmin{λ−1,δ−λ}-cycle.

In view of Theorems 3.5 and 4.4, the next generalization seems reasonable.

Conjecture 5.4 (Yamashita [22]). Let G be graph and λ an integer. If κ ≥ λ ≥ 2 and δ ≥ (n + κ +
λ(λ − 2))/(λ + 1) then each longest cycle in G is a PDλ−2 and CDλ−1-cycle.

6. Long Cycles

The earliest and simplest hamiltonian result [13] links the circumference c and minimum
degree δ.

Theorem 6.1 (Dirac [13]). In every graph, c ≥ δ + 1.

Example for sharpness: Join two copies of Kδ+1 by an edge.
For C a longest cycle in a graph G, a lower bound for |C| was developed based on the

minimum degree δ and p—the length of a longest path in G \ C.
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Theorem 6.2 (Nikoghosyan [26]). Let G be a graph and C a longest cycle in G. Then |C| ≥ (p +
2)(δ − p).

Example for sharpness: (κ + 1)Kδ−κ+1 +Kκ.
The next bound is based on δ and c—the length of a longest cycle in G \ C.

Theorem 6.3 (Nikoghosyan [27]). Let G be a graph and C a longest cycle in G. Then |C| ≥ (c +
1)(δ − c + 1).

Example for sharpness: (κ + 1)Kδ−κ+1 +Kκ.
In 2000, the author was able to find an improvement of Theorem 6.3 involving

connectivity κ as a parameter combined with c and δ such that the bound grows as κ and
c grow.

Theorem 6.4 (Nikoghosyan [28]). Let G be a graph with κ ≥ 2 and C a longest cycle in G. If c ≥ κ
then |C| ≥ ((c + 1)κ/(c + κ + 1))(δ + 2). Otherwise, |C| ≥ ((c + 1)c/2(c + 1))(δ + 2).

Example for sharpness: (κ + 1)Kδ−κ+1 +Kκ.
In view of Theorem 6.4, the following seems reasonable for PDλ-cycles.

Conjecture 6.5 (Nikoghosyan [10]). Let G be a graph with κ ≥ 2 and C a longest cycle in G. If
p ≥ κ − 1 then |C| ≥ ((p + 2)κ/(p + κ + 2))(δ + 2). Otherwise, |C| ≥ ((p + 2)p/(2p + 2))(δ + 2).

7. Hamilton Cycles and Long Cycles

The following direct generalization includes Theorem 3.2 as a special case.

Theorem 7.1 (Alon [29]). Let G be a graph and λ a positive integer. If δ ≥ n/(λ + 1) then c ≥ n/λ.

Examples for sharpness: (λ + 1)Kλ +K1; λKλ+1.
Dirac’s well-known paper [13] includes the third earliest hamiltonian relationship

between minimum degree δ, circumference c, and Hamilton cycles.

Theorem 7.2 (Dirac [13]). Let G be a graph with κ ≥ 2. Then c ≥ min{n, 2δ}.

Examples for sharpness: (λ+1)Kλ+1+Kλ (λ ≥ 1); (λ+3)Kλ−1+Kλ+2 (λ ≥ 2); (λ+2)Kλ+
Kλ+1 (λ ≥ 1).

For 1-tough graphs the bound 2δ in Theorem 7.2 was slightly enlarged.

Theorem 7.3 (Bauer and Schmeichel [30]). LetG be a graph with τ ≥ 1. Then c ≥ min{n, 2δ+2}.

Examples for sharpness: Kδ,δ+1; L2.
The first essential improvement of Theorem 7.2 was achieved by incorporating

connectivity κ into the relation without any essential limitation.

Theorem 7.4 (Nikoghosyan [16]). Let G be a graph with κ ≥ 3. Then c ≥ min{n, 3δ − κ}.

Examples for sharpness: 3Kδ−1 +K2;H(1, δ − κ + 1, δ, κ).
A simple proof of Theorem 7.4 was given in [31].
In [32], it was proved that the bound min{n, 2δ} in Theorem 7.2 can be essentially

enlarged under additional condition δ ≥ α combined with κ ≥ 3.
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Theorem 7.5 (Voss and Zuluaga [32]). LetG be a graph with κ ≥ 3. If δ ≥ α then c ≥ min{n, 3δ−
3}.

Examples for sharpness: (λ + 2)Kλ+2 +Kλ+1; (λ + 4)Kλ +Kλ+3; (λ + 3)Kλ+1 +Kλ+2.
This theorem itself has been directly generalized by the following way.

Theorem 7.6 (Nikoghosyan [10]). Let G be a graph and λ a positive integer. If κ ≥ λ + 2 and
δ ≥ α + λ − 1 then c ≥ min{n, (λ + 2)(δ − λ)}.

Examples for sharpness: (λ + 2)Kλ+2 +Kλ+1; (λ + 4)Kλ +Kλ+3; (λ + 3)Kλ+1 +Kλ+2.
The bound 3δ − κ in Theorem 7.4 was enlarged to 4δ − 2κ under additional condition

δ ≥ α combined with κ ≥ 4.

Theorem 7.7 (Nikoghosyan [33]). Let G be a graph with κ ≥ 4 and δ ≥ α. Then c ≥ min{n, 4δ −
2κ}.

Examples for sharpness: 4K2 +K3;H(1, n − 2δ, δ, κ); 5K2 +K4.
The bound 4δ − 2κ in Theorem 7.7 is sharp for κ = 4.
Furthermore, the bound 4δ − 2κ in Theorem 7.7 was essentially improved to 4δ − κ − 4

without any additional limitations providing a best possible result for each κ ≥ 4.

Theorem 7.8 (M. Zh. Nikoghosyan and Zh. G. Nikoghosyan [34]). Let G be a graph with κ ≥ 4
and δ ≥ α. Then c ≥ min{n, 4δ − κ − 4}.

Examples for sharpness: 4Kδ−2 +K3;H(1, 2, κ + 1, κ); H(2, n − 3δ + 3, δ − 1, κ).
The next theorem provides a lower bound for the circumference in terms of n, δ, α

under the hypothesis of Theorem 4.1.

Theorem 7.9 (Bauer et al. [35]). Let G be a graph with κ ≥ 2. If δ ≥ (n+2)/3 then c ≥ min{n, n+
δ − α}.

Examples for sharpness: 2Kδ +K1; 3Kδ−1 +K2; K2δ−2,δ.
Theorem 7.9 was improved by the same way.

Theorem 7.10 (Bauer et al. [36]). Let G be a graph with τ ≥ 1 and δ ≥ n/3. Then c ≥ min{n, n +
δ − α + 1}.

Examples for sharpness: Kδ,δ+1; Lδ; G∗
n.

8. Dominating Cycles and Long Cycles

In 1977, Voss and Zuluaga [32] proved the exact analog of Theorem 7.2 for dominating cycles.

Theorem 8.1 (Voss and Zuluaga [32]). Let G be a graph with κ ≥ 3. Then either c ≥ 3δ− 3 or each
longest cycle in G is a dominating cycle.

Examples for sharpness: (λ+1)Kλ+1+Kλ (λ ≥ 1); (λ+3)Kλ−1+Kλ+2 (λ ≥ 2); (λ+2)Kλ+
Kλ+1 (λ ≥ 1).

The bound 3δ−3 in Theorem 8.1 was enlarged to 4δ−2κ by incorporating connectivity
κ into the bound.
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Theorem 8.2 (Nikoghosyan [37]). Let G be a graph with κ ≥ 4. Then either c ≥ 4δ − 2κ or G has
a dominating cycle.

Examples for sharpness: 4K2 +K3; 5K2 +K4; H(1, n − 2δ, δ, κ).
Theorem 8.2 is sharp only for κ = 4 as can be seen from 5K2 +K4.
Further, the bound 4δ−2κ in Theorem 8.2 was essentially improved to 4δ−κ−4without

any limitation providing a sharp bound for each κ ≥ 4.

Theorem 8.3 (M. Zh. Nikoghosyan and Zh. G. Nikoghosyan [34]). LetG be a graph with κ ≥ 4.
Then either c ≥ 4δ − κ − 4 or each longest cycle in G is a dominating cycle.

Examples for sharpness: 4Kδ−2 +K3;H(2, δ − κ + 1, δ − 1, κ); H(1, 2, κ + 1, κ).

9. CDλ-Cycles and Long Cycles

The following common generalization covers CDλ-cycles for all λ ≥ 1 including Hamilton
and dominating cycles (see Theorems 7.2 and 8.1) as special cases.

Theorem 9.1 (Nikoghosyan [10]). LetG be a graph and λ a positive integer. If κ ≥ λ+1 then either
c ≥ (λ + 1)(δ − λ + 1) or each longest cycle in G is a CDmin{λ,δ−λ}-cycle.

Examples for sharpness: (λ+1)Kλ+1+Kλ (λ ≥ 1); (λ+3)Kλ−1+Kλ+2 (λ ≥ 2); (λ+2)Kλ+
Kλ+1 (λ ≥ 1).

Another version of Theorem 9.1 was conjectured [10] in terms of PDλ-cycles.

Conjecture 9.2 (Nikoghosyan [10]). Let G be a graph and λ a positive integer. If κ ≥ λ + 1 then
either c ≥ (λ + 1)(δ − λ + 1) or each longest cycle in G is a PDmin{λ−1,δ−λ−1}-cycle.

In view of Theorems 7.4 and 8.3, the following conjecture seems reasonable.

Conjecture 9.3. Let G be a graph and λ ≥ 2 an integer. If κ ≥ λ + 1 then either c ≥ (λ + 1)δ − κ −
(λ + 1)(λ − 2) or each longest cycle in G is a PDλ−2 and CDλ−1-cycle.
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