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When considering friction or resistance, many physical processes are mathematically simulated by
quadratic systems of ODEs or discrete quadratic dynamical systems. Probably the most important
problem when such systems are applied in engineering is the stability of critical points and
(non)chaotic dynamics. In this paper we consider homogeneous quadratic systems via the so-
called Markus approach. We use the one-to-one correspondence between homogeneous quadratic
dynamical systems and algebra which was originally introduced by Markus in (1960). We resume
some connections between the dynamics of the quadratic systems and (algebraic) properties of
the corresponding algebras. We consider some general connections and the influence of power-
associativity in the corresponding quadratic system.

1. Introduction

The stability of hyperbolic critical points in nonlinear systems of ODEs is well-known.
It is described by the stable manifold theorem and Hartman’s theorem. The critical (or
equilibrium or stationary or fixed) point of �x′ = f(�x) or �xk+1 = f(�xk) is defined to be
the solution of the following algebraic (system of) equation(s), f(�x0) = �0 or f(�x0) = �x0,
respectively. For the systems of ODEs, �x′ = f(�x), the critical point �x0 is said to be hyperbolic if
no eigenvalue of the corresponding Jacobianmatrix, Jf(�x0), of the (nonlinear vector) function
f has it is eigenvalue equal to zero (i.e., Re(λi)/= 0). In case of discrete system, �xk+1 = f(�xk),
the critical point �x0 is said to be hyperbolic if no eigenvalue of the Jacobian matrix has it is
eigenvalue equal to 1 (i.e., |λi|/= 1). Roughly speaking, if for a continuous system Re(λi) < 0
for every λi, the corresponding critical point is stable (it is unstable, if Re(λi) > 0 for some λi).
Similar, if for discrete systems |λi| < 1 for every λi, the corresponding critical point is stable (it
is unstable, if |λi| > 1 for some λi). Note that just one eigenvalue of the corresponding linear
approximation of �x′ = f(�x) or �xk+1 = f(�xk) for which Re(λi) = 0 or |λi| = 1, respectively,
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implies that the stability must be investigated separately in each particular case (because of
the significance of the higher order terms). Such articles where for the non-hyperbolic critical
points the classes of stable and unstable systems are considered are published constantly.
(The authors consider the influence of at least quadratic terms added to the linear ones.) The
most recent article on quadratic systems might be [1]. For homogeneous quadratic systems
the origin is an example of the so-called totally degenerated (i.e., non-hyperbolic) critical
point.

In this paper the algebraic approach to autonomous homogeneous quadratic
continuous systems of the form �x′ = Q(�x) and autonomous homogeneous quadratic discrete
dynamical systems of the form �xk+1 = Q(�xk) (where Q : IRn → IRn is homogeneous of
degree two in each component:Q(a�x) = a2Q(�x) for each (real) a) is considered, as suggested
byMarkus in [2]. Markus ideawas to define a unique algebramultiplication via the following
bilinear form B(�x, �y) = �x ∗ �y:

�x ∗ �y :=
Q
(
�x + �y

) −Q(�x) −Q
(
�y
)

2
(1.1)

in order to equip IRn with a structure of a (nonassociative in general) commutative algebra
(A, ∗). In the corresponding algebra (A, ∗) the square �x ∗ �x = �x2 of each vector �x is equal to

�x2 =
Q(2�x) − 2Q(�x)

2
=

22Q(�x) − 2Q(�x)
2

= Q(�x). (1.2)

Thus, the system �x′ = Q(�x) obviously becomes a Riccati equation �x′ = �x ∗ �x = �x2 and many
interesting relations follow.

In the sequel we consider the existence of some special algebraic elements (i.e.,
nilpotents of rank 2 and idempotents), as well as the reflection of algebra isomorphisms
in the corresponding homogeneous quadratic systems, which represents the basis for the
linear equivalence classification of homogeneous quadratic systems. It was already used by
the author in order to analyze the stability of the origin in the continuous case in IR2 and in
IR3 (the origin is namely a total degenerated critical point for �x′ = Q(�x) in any dimension n
[3]).

However, in the discrete case �xk+1 = Q(�xk) the origin is obviously a super stable critical
point, since the Jacobian evaluated at the origin is the zero matrix and consequently it is
eigenvalues are all zero. On the other hand the dynamics in discrete systems can readily
become chaotic in some special regions of the space even in 1D (cf. [4, Section 8]) and it is
well-known [5] that the dynamics on the unit circle (which contains the fixed point (1, 0) is
chaotic for

xk+1 = x2
k − y2

k,

yk+1 = 2xkyk.
(1.3)

Note that system (1.3) is a homogeneous quadratic (i.e., of the form �xk+1 = Q(�xk)) for

Q(�x) = Q
(
x, y

)
=
(
x2 − y2, 2xy

)
. (1.4)
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Table 1

∗ e1 e2
e1 e1 e2
e2 e2 −e1

Table 2

∗ 1 i

1 1 i

i i −1

Table 3

∗ e1 e2 e3
e1 e1 e2 e3
e2 e2 −e1 0
e3 e3 0 −e1

The interested reader is invited to consult, for example, [6–10] to obtain some further
informations.

Let us conclude the introduction with two examples in order to explain the one to
one connection defined by (1.1). Let us consider system (1.3) and it is continuous analogue:
x′ = x2 − y2, y′ = 2xy. Their corresponding quadratic form is Q(x, y) = (x2 − y2, 2xy). Using
(1.1) one obtains the following multiplication rule:

(
x, y

) ∗ (u, v) = (
xu − yv, xv + yu

)
. (1.5)

Thus, in the standard basis e1 = (1, 0) and e2 = (0, 1) the multiplication table for the
corresponding algebra is as illustrated in Table 1.

Applying the substitution (i.e., the algebra isomorphism) e1 → 1, e2 → i one obtains
as illustrated in Table 2 which is readily recognized as the algebra of complex numbers.

On the other hand, beginning, for example, with the algebra A = (IR3, ∗) given with
the multiplication table as illustrated in Table 3 the corresponding quadratic form is obtained
again by applying �x ∗ �x = �x2.

By denoting �x = (x, y, z) = xe1 + ye2 + ze3, we get

(
xe1 + ye2 + ze3

)2 = x2e21 + y2e22 + z2e23

+ 2xye1 ∗ e2 + 2xze1 ∗ e3 + 2yze2 ∗ e3
= x2e1 − y2e1 − z2e1 + 2xye2 + 2xze3

=
(
x2 − y2 − z2, 2xy, 2xz

)

= Q
(
x, y, z

)
.

(1.6)
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Thus, we obtain the following quadratic systems

xk+1 = x2
k − y2

k − z2k,

yk+1 = 2xkyk,

zk+1 = 2xkzk,

x′ = x2 − y2 − z2,

y′ = 2xy,

z′ = 2xz.

(1.7)

2. Some Connections between Systems and Their
Corresponding Algebras

First note that the algebra which corresponds to a system �x′ = Q(�x) or �xk+1 = Q(�xk) is always
commutative, since from (1.1), it follows

�x ∗ �y = �y ∗ �x; ∀�x, �y ∈ A. (2.1)

However, the corresponding algebra is generally not associative. For instance for algebra
A = (IR3, ∗) in the above example from Table 3 one can readily observe

0 = (e3 ∗ e2) ∗ e2 /= e3 ∗ (e2 ∗ e2) = −e3. (2.2)

Obviously, the correspondence (1.1) between system and algebra is unique. Note also that
there is a one-to-one correspondence between homogeneous systems of degree m and the
corresponding m-ary algebras. In this paper we stay within the domain m = 2, but the
interested reader is referred to [10, 11] for further informations (in case m > 2).

In order to achieve better understanding let us recall some definitions from the
dynamical systems and algebra theory. A subset W ⊆ A which is closed for algebraic
multiplication (i.e., for every pair w1, w2 ∈ W we have w1 ∗w2 ∈ W) is called a subalgebra.
For example, if the corresponding vector space is a direct sum of two (vector) subspaces (i.e.,
V = V1 ⊕ V2) and if A1 = (V1, ∗) and A2 = (V2, ∗), then A = A1 ⊕ A2 = (V1 ⊕ V2, ∗) contains
two nontrivial subalgebras A1 and A2. To every �x ∈ A∗ one can associate a subalgebra W�x,
defined by products �x, �x2 = �x ∗ �x, �x2 ∗ �x, �x ∗ �x2, (�x2 ∗ �x) ∗ �x, (�x ∗ �x2) ∗ �x, �x2 ∗ �x2, and so on
and their linear combinations, which is called the subalgebra generated by the element �x. A
subalgebra I ⊆ A is called (left and right) ideal of algebra A, if AI ⊆ I and IA ⊆ I (i.e., for
every i ∈ I and every �x ∈ A we have �x ∗ i ∈ I and i ∗ �x ∈ I). Every algebra A = (V, ∗) has at
lest two ideals, the trivial ideals V and {0}. Furthermore, the set A2 = A ∗ A defined as the
subspace of all linear combinations of products in A is obviously an ideal of A.

The map φ : A → B is homomorphism from algebra (A, ∗) into algebra (B, ◦), if
and only if, for every pair of vectors �x, �y from algebra A we have: φ(�x ∗ �y) = φ(�x) ◦ φ(�y).
If there is a homomorphism from algebra A to algebra B they are called homomorphic. A
bijective homomorphism is called an isomorphism and the corresponding algebras are called
isomorphic (in this case m = n). By S∗ and S◦ let us denote the corresponding quadratic



International Journal of Mathematics and Mathematical Sciences 5

(continuous or discrete) systems. The map h : IRn → IRn preserves solutions from system
�x′ = �x∗ �x into system �y′ = �y◦ �y if and only if it takes parametrized solutions of the first system
into parametrized solutions of the second one (i.e., �y(t) = h(�x(t)) is a solution of system S◦,
whenever �x(t) is a solution of S∗. In discrete systems the solutions, �xk; k = 0, 1, 2, . . . are called
orbits. By preserving of orbits we mean that h(�xk); k = 0, 1, 2, . . . is an orbit of system S◦,
whenever �xk; k = 0, 1, 2, . . . is an orbit of system S∗.

Element �a of algebra (A, ∗) is said to be a nilpotent of rank 2, if �a ∗ �a = �0 and it is
said to be an idempotent, if �a ∗ �a = �a. If for some point �x0 the algebraic equation Q(�x0) = �0
or Q(�x0) = �x0 is fulfilled, it is called critical point of system �x′ = Q(�x) or �xk+1 = Q(�xk),
respectively. The solution �x(t) is a ray solution of �x′ = Q(�x) if for every time t vector �x(t)
remains on the line IR�x(t).

2.1. Algebraic Isomorphism and Linear Equivalence

The basic correspondence (1.1) between quadratic systems and algebras is the same for �x′ =
Q(�x) as well for �xk+1 = Q(�xk). The basic property concerning the linear equivalence between
quadratic systems is also very similar as shown in the following two Propositions.

Proposition 2.1. Let φ : IRn → IRm be linear. Then φ preserves solutions from system S∗ : �x′ =
�x ∗ �x; �x ∈ IRn into system S◦ : �y′ = �y ∗ �y; �y ∈ IRm if and only if φ is a homomorphism from algebra
A∗ = (IRn, ∗) into algebra A◦ = (IRm, ◦).

Proof. Let φ be some linear map which preserves solutions from S∗ into S◦. And let A∗ =
(IRn, ∗) andA◦ = (IRm, ◦) be the corresponding algebras. Let �x(t) be the solution of S∗ and let
�y(t) be the solution of S◦. Thus �y = φ(�x) and �x′ = �x∗�x and from �y′ = �y◦�y one obtains (φ(�x))′ =
φ(�x) ◦ φ(�x). Since φ is linear it is Jacobian is equal to φ in every point of the space (i.e.,
φ′ = φ). Therefore φ(�x) = φ(�x) ◦ φ(�x) for every �x ∈ IRn. Substituting �x = �X + �Y and applying
commutativity and bilinearity of multiplications ◦ and ∗, we obtain φ( �X ∗ �Y ) = φ( �X) ◦ φ(�Y ),
for all �X, �Y ∈ IRn. Since φ is linear by assumption, this yields that φ is a homomorphism from
A∗ = (IRn, ∗) into A◦ = (IRm, ◦).

Conversely, let φ be homomorphism from A∗ = (IRn, ∗) into A◦ = (IRm, ◦). Thus, for
all �X, �Y ∈ IRn we have φ( �X ∗ �Y ) = φ( �X) ◦ φ(�Y ). For �X = �Y we readily obtain: φ( �X ∗ �X) =
φ( �X) ◦ φ( �X). Using again φ′ = φ, we obtain

φ′
(
�X ∗ �X

)
= φ

(
�X
)
◦ φ

(
�X
)
. (2.3)

Let �X(t) be a solution of S∗. We want to prove that φ( �X) is a solution of S◦. Using �X′ = �X ∗ �X

and (2.3) and the chain rule for the derivative one obtains φ′( �X′) = φ′( �X) · �X′ = (φ( �X))
′
=

φ( �X) ◦ φ( �X), which means that φ( �X) is a solution of S◦. This completes the proof.

Proposition 2.2. Let φ : IRn → IRm be linear. Then φ preserves orbits from system S∗ : �xk+1 =
�xk ∗ �xk; �x ∈ IRn into system S◦ : �yk+1 = �yk ∗ �yk; �y ∈ IRm if and only if φ is a homomorphism from
algebra A∗ = (IRn, ∗) into algebra A◦ = (IRm, ◦).

The proof is very similar to the proof of Proposition 2.1 and will be omitted here.
The use of Propositions 2.1 and 2.2 is quite similar. In the following Example the use

of Proposition 2.1 is considered.
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Figure 1: The particular solution to S(X,Y ).

Example 2.3. Systems

S(x,y) :
x′ = x2 − y2

y′ = 2xy,

S(X,Y ) :
X′ = −62X2 − 100XY − 40Y 2

Y ′ = 85X2 + 136XY + 54Y 2

(2.4)

are isomorphic. The corresponding isomorphism from (x, y) into (X,Y ) is

Φ =

⎡

⎣
2 −1

−5
2

3
2

⎤

⎦

−1

. (2.5)

Note that system S(x,y) is much easier to treat than S(X,Y ). The only idempotent of S(x,y) is
(x = 1, y = 0), while the only idempotent of S(X,Y ) is (X = 2, Y = −5/2). It is obtained as the
solution to algebraic system of equations

X = −62X2 − 100XY − 40Y 2

Y = 85X2 + 136XY + 54Y 2.
(2.6)

The particular solutions with the initial conditions near idempotent (the black line) in both
cases yield the solution curves (the red line) shown in Figures 1 and 2. Figures 1, 2, 3, and 4
are clearly indicating that the dynamics of system S(x,y) is much easier to understand. Note
that in the Markus theory system S(x,y) is a kind of normal form (i.e., the class representative)
of it is class (i.e., of all isomorphic systems). For the entire list of “normal forms” in 2D please
refer to [2, Theorems 6, 7, and 8].

The immediate corollary is that systems S∗ and S◦ are linearly equivalent if and only
if their corresponding algebras A∗ and A◦ are isomorphic.
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Figure 2: The particular solution to S(x,y).
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Figure 3: The phase diagram basis for S(x,y).

2.2. Algebraic Structure and Reductions of the System

The above-mentioned corollary and the so-called Kaplan-Yorke theorem is a basement of
algebraic treatment of homogeneous quadratic systems using algebraic classification of the
commutative algebras. The following algebraic result due by Kaplan and Yorke [12] affects
strongly on the dynamics of homogeneous quadratic systems.

Theorem 2.4 (Kaplan-Yorke). Every real finite dimensional algebraA∗ = (IRm, ∗) contains at least
one nonzero idempotent or a nonzero nilpotent of rank two.

For proof please refer to the original paper [12].
Concerning the existence of a subalgebra, we have the following result.

Proposition 2.5. A homogeneous quadratic system S∗ has an invariant r-dimensional linear subspace
Er if and only if the corresponding algebra has an r-dimensional subalgebra.

Remark 2.6. We present just the proof for discrete case (i.e., when S∗ : �xk+1 = �xk ∗ �xk; �x ∈ IRn.
The proof for continuous system S∗ : �x′ = �x ∗ �x; �x ∈ IRn can be found, for example, in Markus
[2].



8 International Journal of Mathematics and Mathematical Sciences

−5 −4 −3 −2 −1 0 1 2 3 4 5
X

−5
−4
−3
−2
−1
0
1

2

3

4

5
Y

Figure 4: The phase diagram basis for S(X,Y ).

Proof. Let Er = span(e1, e2, . . . , er) be an invariant r-dimensional linear subspace of a n-
dimensional vector space V , n > r. Then for every �x ∈ Er the orbit {�x, �x2 = �x ∗ �x, �x2 ∗ �x, �x ∗
�x2, �x2 ∗ �x2, (�x2 ∗ �x) ∗ �x, (�x ∗ �x2) ∗ �x, . . .} is contained in Er . We will prove that (Er, ∗) is the
r-dimensional subalgebra (i.e., the subspace Er is closed for multiplication ∗). Setting �x = ei
we have ei ∗ ei ∈ Er for every 1 ≤ i ≤ r. Now we want to prove that ei ∗ ej ∈ Er for all 1 ≤ i,
j ≤ r. In order to prove this, let us set �x = ei+ej ∈ Er and compute �x2 using the commutativity
rule in algebra

�x2 =
(
ei + ej

) ∗ (ei + ej
)

= ei ∗ ei + 2ei ∗ ej + ej ∗ ej .
(2.7)

Since �x2 ∈ Er , ei ∗ei ∈ Er , and ej ∗ej ∈ Er it follows also ei ∗ej ∈ Er which means that for every
pair �x, �y ∈ Er the product �x∗�y is contained in Er , as stated. The converse follows directly from
the fact that for every �x, �y ∈ Er , since Er is a subalgebra, we have �x∗ �y ∈ Er . Setting �y = �x = �x0

we immediately obtain that �x0∗ �x0 ∈ Er . Setting �y = �x = �x0∗ �x0 one obtains (�x0∗ �x0)∗(�x0∗ �x0) ∈
Er , and so on. Thus the orbit {�x, �x2 = �x ∗ �x, �x2 ∗ �x, �x ∗ �x2, �x2 ∗ �x2, (�x2 ∗ �x) ∗ �x, (�x ∗ �x2) ∗ �x, . . .} is
contained in Er , which means that Er is invariant, as stated.

Concerning the existence of a subalgebra and an ideal in the corresponding algebra let
us mention the following result, (for proof please refer to [10]).

Proposition 2.7. Let I be an ideal of algebra A∗ and W a subagebra such that V = I ⊕W . Then the
solution of the initial value problem of the corresponding quadratic system �x′ = �x ∗ �x with the initial
value problem �x(0) = �x0 = w0 + i0 can be solved by successive solution of

w′ = w ∗w; w(0) = w0 in W,

i′ = i ∗ i + 2w(t) ∗ i; i(0) = i0 in I,
(2.8)

where w(t) is a solution of the first subsystem inW .
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Corollary 2.8. A system �x′ = �x ∗ �x with the initial condition �x(0) = �x0 splits into two separated
subsystems

w′ = w ∗w; w(0) = w0 in W,

i′ = i ∗ i; i(0) = i0 in I,
(2.9)

if and only if the corresponding algebra can be written as a direct sum of two nontrivial ideals

A = I1 ⊕ I2. (2.10)

Proof. Apply I = I1 and W = I2 in the previous result and take into consideration that I1, I2
are both ideals which means that 2w(t) ∗ i = 0 in the second equation of Proposition 2.7. This
finishes the proof.

The last two results are further examples where exactly analogous results can be
formulated for the discrete case. Note that the reduction and/or splitting of the system is
of great importance when exact solutions are needed.

2.3. Special Algebraic Elements and (In)Stability

However, some connections between the system and corresponding algebra (A, ∗) differs
in the continuous and discrete case. For example the correspondence between ray solu-
tions/fixed points and idempotents/nilpotents. Let us first recall the Lyapunov definition
of stability.

Definition 2.9. Critical point �x0 of system �x′ = �x ∗ �x is said to be stable if and only if for every
ε > 0 there is a δ > 0 such that for every initial condition �x0 for which ‖�x0‖ < δ and for every
time t > 0 for which the solution �x(�x0, t) with the initial condition �x0 is defined, we have

‖�x(�x0, t)‖ < ε. (2.11)

In the next theorem the well-known necessary conditions for the stability of the origin in
�x′ = �x ∗ �x are given.

Theorem 2.10. If an algebra A∗ contains an idempotent �p ∗ �p = �p, then the origin in the
corresponding system �x′ = �x ∗ �x is unstable critical point.

Proof. First note that IR · �p is always a subalgebra of A∗. Thus (by Proposition 2.5), the flow
f(t)�p is invariant. Since �p2 = �p from �x′ = �x ∗ �x (when inserting �x(t) = f(t)�p) one obtains
1-dimensional ODE f ′(t) = f2(t). Next observe that ε�p is in every neighborhood of the origin.
Therefore the solution with the initial condition �x0 = ε�p (i.e., f(0) = ε) is

�x(t) =
ε

1 − εt
· �p; for t ∈

[
0,

1
ε

)
. (2.12)

Finally observe that limt→ 1/ε‖�x(t)‖ = ∞which completes the proof.
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Note that the immediate corollary of Theorem 2.10 and the Kaplan-Yorke theorem is
that systems �x′ = �x ∗ �x with the stable origin always contain some nilpotents of rank two. In
the continuous case the ray-solutions are as proven in Theorem 2.10 related with the existence
of the idempotent. However, in the discrete case the existence of idempotent simply means
the existence of the fixed point.

On the other hand, the existence of a nilpotent �n of rank two implies the existence of
line of critical points IR ·�n in the continuous case, since from �n∗�n = �0 one obtains (α�n)∗(α�n) =
α2�0 = �0 for every realα. However, in the discrete case the above property yields the existence
of the ray-solution, since from �xk = α�n one readily obtains that �xk+1 = (α�n) ∗ (α�n) = α2�0 = �0
for every real α.

3. Conclusions

For the stability analysis of the origin in systems �x′ = �x ∗ �x some new results are needed, for
example, results obtained Markus approach in [13, 14]. Using Markus original classification
one can obtain that only (up to linear equivalence) three (families of) systems admit stable
origin in 2D. These systems are (cf. [13]):

x′ = 0, x′ = −y2, x′ = ky2, k < −1/8,

y′ = 0, y′ = 2xy, y′ = 2xy + y2.
(3.1)

In order to obtain similar result(s) in IR3 and/or in IRn for n > 3 a partial algebraic
classification (of systems/algebras with a plane of critical points) similar toMarkus was done
in (cf. [14]). Roughly speaking (cf. [13]), the existence of complex idempotents overlapping
with the existence of the so-called essential nilpotents (i.e., nilpotents which are not contained
in the linear span of all complex idempotents) seem to define (algebraically) the stability of
the origin. The conjecture was confirmed by examining the complexification

C∗ := A∗ + iA∗ (3.2)

of real algebras A∗ corresponding to the systems with a plane of critical points as well as on
the so-called homogenized systems in IR3 (cf. [15]). It seems that [13] the spectral analysis of
linear operator L�n defined by L�n(�a) := �a ∗ �n (i.e., multiplication by essential nilpotent �n) is
playing an important role in stability of the origin in systems �x′ = �x ∗ �x.

However, algebraic approach is recently used (cf. [8, 9]) also in order to consider
planar homogeneous discrete systems in the sense of (non)chaotic dynamics. The results are
showing that the dynamics of systems whose corresponding algebras are containing some
nilpotents of rank 2 cannot be chaotic [9]. Furthermore, system (1.3) is one of the simplest
systems with chaotic dynamics and the corresponding algebra A(2) is power-associative.
Note that every orbit of system �xk+1 = �xk ∗ �xk which corresponds to a power-associative
algebra can be obtained in terms of an orbit of a corresponding linear system. Namely, given
an initial point �x0 the orbit of �xk+1 = �xk ∗ �xk can be obtained in terms of �xk+1 = L�x0(�xk),
since in the power-associative algebras the powers of every �x0 are well defined (i.e., �xn+1

0 =
�x0 ∗ �xn

0 = �x2
0 ∗ �xn−1

0 = · · · ). In case of system (1.3) the left multiplication matrix of �x = (x, y) (by
�X = (X,Y )) is obtained from �x ∗ �X = (xX − yY, xY + yX) =

[ x −y
y x

][
X
Y

]
.
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In the chaotic region where ‖�x‖ = 1, the corresponding multiplication matrix has the
form

L(cosφ,sinφ) =

[
cosφ − sinφ

sinφ cosφ

]

. (3.3)

Readily, if φ = kπ where k is a rational number, then the point (cosφ, sinφ) is periodic. On
the other hand, if φ = Kπ where K is irrational, the orbit of (cosφ, sinφ) is dense on the unit
circle ‖�x‖ = 1 but not periodic. Furthermore, the points (cosφ, sinφ) (where φ = kπ and k is
a rational number) are dense in ‖�x‖ = 1, as well. Thus there is chaos on ‖�x‖ = 1. The question
is whether the other power-associative algebras also correspond to the systems with chaotic
dynamics.

Finally, note that in the continuous case one can observe the following: the solution to
�x′ = �x ∗ �x with the initial condition �x(0) = �x0 can be expressed explicitly by the following
formula:

�x(t) = (I − tL�x0(�x0))
−1(�x0), (3.4)

where I is the identity matrix and L�x0 is the linear operator defined by the (left)multiplication
by �x0. The proof of the above explicit formula is a direct computation and can be found in
[7], where (3.4) is used to prove that in power-associative algebras the corresponding system
�x′ = �x ∗ �x cannot have periodic solutions. Another interesting question (when considering
power-associativity together with continuous quadratic systems) is whether one can use (3.4)
in order to obtain some results on stability of the origin in IRn (n ≥ 2).
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