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Carry Value Transformation (CVT) is a model of discrete deterministic dynamical system. In the
present study, it has been proved that (1) the sum of any two nonnegative integers is the same as
the sum of their CVT and XOR values. (2) the number of iterations leading to either CVT = 0 or
XOR = 0 does not exceed the maximum of the lengths of the two addenda expressed as binary
strings. A similar process of addition of modified Carry Value Transformation (MCVT) and XOR
requires a maximum of two iterations for MCVT to be zero. (3) an equivalence relation is shown
to exist on Z × Z which divides the CV table into disjoint equivalence classes.

1. Introduction

The notion of transformation is very important in mathematics. Accordingly, in the
literature, one finds many kinds of transformations with interesting properties. Carry
Value Transformations (CVTs) and Modified Carry Value Transformations (MCVTs) are two
challenging transformations which currently have assumed much significance because of
their applications in fractal formation [1], designing new hardware circuits for arithmetic
operations [2], and so forth. Similar kind of transformations such as Extreme Value
Transformation (EVT) [3], 2-Variable Boolean Operation (2-VBO) [4], Integral Value
Transformation (IVT) [5] are also used to manipulate strings of bits and applicable in pattern
formations [3, 4], solving Round Rabin Tournaments problem [6], Collatz-like functions
[5], and so forth. All these applications in diversified domain motivated us to study the
mathematical properties of these kinds of transformations.

The hardware circuit for arithmetic operations as designed in [2] is based on a result
that after finite number of iterations, either CVT of the two nonnegative integers is equal
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Figure 1: Carry generated in ith column counted from LSB is saved in (i + 1)th column.

Carry:   

Augend:    1 0 1 1 1

Addend:    1 1 0 1 1

 0 1

1 0 0 1 1 0

XOR: 1 0 0

Figure 2: Carry generated in ith column is saved in (i + 1)th column for i = 0, 1, 2, . . . , n.

to 0 or their XOR value is equal to 0. But no mathematical proof regarding this result was
discussed in [2]. This important result has been proved in this paper. Section 2 provides the
basic concepts of CVT, MCVT, and XOR earlier defined in [1, 2]. In Section 3, it is proved
that addition of any two nonnegative integers expressed as binary numbers is the same as
addition of their CVT and their XOR values. This result is also shown to be true for any base
of the number system. In Section 4, it is proved that in a successive addition of CVT and XOR
of any two nonnegative integers, the maximum number of iterations required to get either
CVT = 0 or XOR = 0 is equal to the length of the bigger integer expressed as a binary string.
Further, in the same section, it is shown that MCVT of any two nonnegative integers = 0
requires a maximum of two iterations. In Section 5, an equivalence relation is defined using
the concept of CVT, and the equivalence classes obtained due to it are presented.

2. Definitions of CVT and MCVT in Binary Number System

Let “a” and “b” be decimal representations of the binary strings (an, an−1, . . . , a1)2 and
(bn, bn−1, . . . , b1)2, respectively, where each ai, bi ∈ B2 = {0, 1} for all i = 1, 2, . . . , n and Bn

2
be the set of all possible binary strings of length n on the set B2. In binary number system,
CVT as discussed in [1] is a mapping CVT : Bn

2 × Bn
2 → Bn

2 × {0} defined by CVT(a, b) =
(an ∧ bn, an−1 ∧ bn−1, . . . , a1 ∧ b1, 0)2, whereasMCVT in [1] is a mappingMCVT : Bn

2×Bn
2 → Bn

2
defined by MCVT(a, b) = (an ∧ bn, an−1 ∧ bn−1, . . . , a1 ∧ b1)2. That is, to find out CVT, we
perform the bit wise XOR operation of the operands to get a string of sum-bits (ignoring the
carry-in while performing the addition of a and b) and simultaneously the bit wise ANDing
of the operands to get a string of carry-bits, the latter string is paddedwith a “0” on the right is
called the CVT of these operands as shown in Figure 1, andMCVT is only the ANDing values
except the bit “0” padded on the right, and thus the relation between these two operation is
CVT(a, b) = 2 ×MCVT(a, b).

For example, suppose we want to find out the CVT of two numbers say 23 and 27. First
of all, we have to find out the binary representation of these numbers, that is, (23)10 ≡ (10111)2
and (27)10 ≡ (11011)2.

The carry value is computed as in Figure 2.
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Table 1: Shows the contributions in calculating the sum in different cases.

ak bk
Sum of

contributions of
ak and bk in a + b

ck = ak ∧ bk
Contribution

of ck in
CVT(a, b)

Contribution
of ak ⊕ bk in

(a ⊕ b)

Sum of
contributions of
ck and ak ⊕ bk in
CVT(a, b)+ (a⊕b)

0 1 2k−1 0 0 2k−1 2k−1

1 0 2k−1 0 0 2k−1 2k−1

0 0 0 0 0 0 0
1 1 2k 1 2k 0 2k

Thus, CVT(23, 27) = CVT(10111, 11011) = (1 ∧ 1, 0 ∧ 1, 1 ∧ 0, 1 ∧ 1, 1 ∧ 1, 0)2 (100110)2 =
(38)10, and MCVT(23, 27) = (19)10. It may be noted that in any number system, CVT and
MCVT are mapping from Z × Z to Z, where Z is set of nonnegative integers.

2.1. Extensions of CVT, MCVT, and XOR Operations for
Arbitrary Number System

For any number system in base β, CVT of any two nonnegative integers a = (an, an−1, . . . , a1)β
and b = (bn, bn−1, . . . , b1)β is defined by an integer c = (cncn−1 · · · c10)β, where ci =

{
1, if ai+bi≥β
0, if ai+bi<β

for i = 1, 2, 3, . . . , n. Similarly, MCVT of a and b in base β is the CVT value c = (c1c2 · · · cn)β
except the padding bit 0 in the least significant bit position. That is CVT(a, b) = β×MCVT(a, b)
and the definition of XOR operation in binary number system can be extended for any
number system in base β as a⊕b = ((an +bn) mod β, (an−1 +bn−1) mod β, . . . , (a1 +b1) mod β),
where + is the usual addition in decimal number system.

For example, in ternary number system, CVT(466, 458) = CVT(122021, 121222) =
(110110)3 = 336, MCVT(466, 458) = MCVT(122021, 121222) = (11011)3 = 112, XOR(466,
458) = XOR(122021, 121222) = (210210)3 = 588.

3. Properties of CVT and XOR

We have observed in the last example that CVT(23, 27) = 38 and XOR(23, 27) = 12. Now
23+ 27 = 38+ 12, that is, 23+ 27 = CVT(23, 27) + (23⊕ 27). In general, we prove the following.

Theorem 3.1. a + b = CVT(a, b) + (a ⊕ b), where a and b are any two nonnegative integers.

Proof. Suppose a = anan−1 ···ak−1akak+1 ···a2a1 and b = bnbn−1 ···bk−1bkbk+1 ···b2b1 are the binary
representations of a and b both expressed using n bits. Then, CVT(a, b) = cncn−1cn−2 · · · c10 for
i = 1, 2, . . . , n. We will prove that sum of the contribution of ak and bk in a + b is the same as
the sum of the contribution of ck and ak ⊕ bk in CVT(a, b) + (a ⊕ b), where k = 1, 2, 3, . . . , n.
The place values of ak and bk in a and b are ak × 2k−1 and bk × 2k−1, respectively. So the total
contributions of both ak and bk in a + b is (ak + bk)2k−1. The binary variable ak and bk can
have four choices, and their place values are shown in Table 1.

From third column and seventh column, it can be verified that the total contribution of
ak and bk in a+b is the same as the sum of the contribution of ck and ak⊕bk in CVT(a, b)+(a⊕b)
for k = 1, 2, . . . , n. Therefore, a + b = CVT(a, b) + (a ⊕ b).
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Table 2: Shows the contributions in calculating the sum for two possible cases.

Cases Conditions
Sum of

contributions of
ak and bk in a + b

ck
Contribution

of ck in
CVT(a, b)

Contribution of
ak ⊕ bk in (a ⊕ b)

Sum of
contributions of
ck and ak ⊕ bk in
CVT(a, b)+ (a⊕b)

Case 1 ak + bk < β (ak + bk)βk−1 0 0 (ak + bk)βk−1 (ak + bk)βk−1

Case 2 ak + bk ≥ β (ak + bk)βk−1 1 βk (ak + bk)βk−1 − βk (ak + bk)βk−1

Table 3: Generated sequences of CVT and XOR values.

Initial guess (x0, y0) Generated sequences (xn+1, yn+1)
(1, 8) (0, 9)
(12, 10) (16, 6), (0, 22)
(17, 11) (2, 26), (4, 24), (0, 28)
(1, 23) (2, 22), (4, 20), (8, 16), (0, 24)
(1, 15) (2, 14), (4, 12), (8, 8), (16, 0), (0, 16)
(27, 5) (2, 30), (4, 28), (8, 24), (16, 16), (32, 0), (0, 32)
(127, 65) (130, 62), (4, 188), (8, 184), (16, 176), (32, 160), (64, 128), (0, 192)

(A) General Proof for an Arbitrary Number System

Let a =
∑n

k=1 ak × βk−1 and b =
∑n

k=1 bk × βk−1 be two numbers from a number system with
base β, and let CVT(a, b) = cncn−1 · · · c10. We will prove that sum of the contribution of ak and
bk in a + b is the same as the sum of the contribution of ck and ak ⊕ bk in CVT(a, b) + (a ⊕ b)
for k = 1, 2, 3, . . . , n.

Note that the individual place values of ak and bk in a and b are ak ×βk−1 and bk ×βk−1,
respectively. So the total contributions for both ak and bk in a + b is (ak + bk)βk−1. Two cases
arise: case 1, ak + bk < β and case 2, ak + bk ≥ β. In both cases, the contributions from ak and
bk in a+ b remain (ak + bk)βk−1, whereas in a⊕ b they differ; for the first case it is (ak + bk)βk−1

and for the second case it is (ak + bk)βk−1 −βk. The value of ck is zero in the first case, whereas
in the second case it is 1 so that the respective contributions of ck in CVT(a, b) are 0 and βk. It
can be summarised in a table as shown in Table 2.

From third column and last column of Table 2, it can be seen that sum of the
contribution of ak and bk in a + b is the same as the sum of the contribution of ck and ak ⊕ bk
in CVT(a, b) + (a ⊕ b) for k = 1, 2, 3, . . . , n. Therefore, a + b = CVT(a, b) + (a ⊕ b).

4. Convergence Behavior of CVT and MCVT

4.1. Convergence of CVT

Let f : Z × Z → Z × Z be defined as f(a, b) = (CVT(a, b), (a ⊕ b)) for all (a, b) ∈ Z × Z.
Consider the iterative scheme (xn+1, yn+1) = f(xn, yn), n = 0, 1, 2, 3, . . .. In this section, we will
prove an important theoremwhich states that the sequence generated by the iterative scheme
(xn+1, yn+1) = f(xn, yn), n = 0, 1, 2, 3, . . . converges to (0, x0 +y0). The convergence behavior of
CVT and XOR values of different order pairs are shown in Table 3.

The sequences generated from the ordered pair (127, 65) in Table 3 may be interpreted
as 127 + 65 = 130 + 62 = 4 + 188 = 8 + 184 = 16 + 176 = 32 + 160 = 64 + 128 = 0 + 192. These
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Figure 3: Showing the state transition diagrams (STDs) of three order pairs (1, 23), (1, 15), and (17, 11) as
shown in Table 3.

generated sequences are named as the orbit of the order pair (127, 65). Figure 3 shows the
state transition diagrams (STDs) of some of the points and their orbits.

Observations:

(1) in any number system, CVT = 0 in any iteration ⇔ in its previous iteration the
sum of the corresponding bits of CVT and XOR is always less than the base of that
number system;

(2) if two numbers expressed in binary are complement to each other, then their CVT =
0. But the converse is not true;

(3) if XOR value is 0 in any iteration, then CVT = 0 in the next iteration;

(4) the points in a single orbit are collinear as shown in Figure 3.

According to the definition of CVT for any two n-bit numbers, CVT will be of at most
(n + 1) bits. It seems that the recursive procedure of the CVT + XOR of two nonnegative
integers always increases the length of the CVT by 1 in each iteration but it is not true, which
is clear from the next proof.

Lemma 4.1. If the maximum length of two nonnegative integers in binary representation is n then the
CVT and XOR values in each iteration expressed in binary strings must be of length at most (n + 1).
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Proof. Let a and b be two nonnegative integers with length at most n in their binary
representations. Let c and d be two numbers to be added in kth iteration while performing
the repeated sum of CVT and XOR. Suppose the number of (valid) bits in CVT(c, d) ≥ n + 2
(rejecting the zeros in the left of the first nonzero bit) in an iteration. The smallest numberwith
valid (n+ 2) bits is 100 · · · 0 = 1× 2n+1 = 2n+1. So, CVT(c, d) ≥ 2n+1 ⇒ CVT(c, d) + (c⊕d) ≥ 2n+1.

Since CVT(c, d) + (c ⊕ d) = c + d (from Theorem 3.1), c + d ≥ 2n+1. Since c + d = a + b,
so

a + b ≥ 2n+1. (4.1)

The maximum number with n+2 bits is 111· · ·11 = 1×2n−1+1×2n−2+ · · ·+1×21+1×20 =
1 + 2 + 4 + 8 + · · · + 2n−2 + 2n−1.

Maximum value of a + b is 2(1 + 2 + 4 + · · · + 2n−2 + 2n−1) = 2(2n − 1)/(2 − 1) = 2n+1 − 2:

⇒ a + b ≤ 2n+1 − 2. (4.2)

From (4.1) and (4.2), we get 2n+1 ≤ a + b ≤ 2n+1 − 2 which is absurd. Thus, our
assumption was wrong, and hence all CVTs will be of at most (n + 1) bits in every iteration.

Same logic can be applied to XOR operation also, that is, if we write CVT in place of
XOR in above proof, we also get an absurd result for XOR. Therefore, all XOR operations are
of at most (n + 1) bits in every iteration.

Lemma 4.2. In any iteration if there is a “0” in CVT at kth position (counted from right), then there
must be a “0” in (k + 1)th position in the next iteration while forming the subsequent CVTs. The
number of zeros in the CVT increases by at least one in each iteration.

Proof. Suppose a CVT contains 0 at kth position in any iteration. In the next iteration, this
0 will be added to either 0 or 1 of XOR value obtained in the previous iteration. When we
form CVT, (k + 1)th position of CVT will be either 0 ∧ 1 = 0 or 0 ∧ 0 = 0. Thus, we get a
0 in the (k + 1)th position of the newly formed CVT. Thus, once a “0” appears in a CVT in
any iteration, then “0” appears in all subsequent CVT’s in all subsequent iterations, but the
position will be shifted by one in each iteration. By definition of CVT, one additional zero is
added to the rightmost position in each iteration. So number of zero increases by at least one
in a CVT in each iteration.

Lemma 4.3. If a and b are of maximum n binary bits, then the number of iterations required to get
CVT = 0 is at most (n + 1).

Proof. By Lemma 4.1, all CVTs will be of at most (n + 1) bits in all iterations.
By Lemma 4.2, once a “0” appears in a CVT in any iteration, then this zero will appear

in all the subsequent CVT’s in all subsequent iterations, but the position will be shifted by
one in each iteration.

Also the number of zero in CVT increases by at least one in each iteration, the (n+1) bits
in CVT will be converted to (n + 1) zeros in at most (n + 1)-iterations.

Note. If a and b are of maximum n binary bits and Hamming distance between a and b is
n, then CVT = 0 in one iteration. Otherwise, if Hamming distance between two selected
numbers is k for k < n, then number of iterations required to get CVT = 0 is at most (k + 2).
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Table 4: Showing calculation of MCVT.

ai bi ai ∧ bi ai ⊕ bi (ai ∧ bi) ∧ (ai ⊕ bi)

1 1 1 0 0

1 0 0 1 0

0 1 0 1 0

0 0 0 0 0

Lemma 4.4. If a and b are of maximum n binary digits and CVT = 0 in (n + 1)th iteration, then
XOR = 0 in the nth iteration.

Proof. Let us assume that CVT = 0 in the (n + 1)th iteration and suppose XOR/= 0 in the nth
iteration. Then at least, one bit of the XOR in nth iteration must be “1”. It is sure that in the
kth iteration (where k = 1, 2, 3, . . . or (n − 1)) of successive addition, XOR bit must be 1, and
the corresponding carry bit must be 1 which is impossible. So our assumption was wrong.
Thus, XOR = 0 in the nth iteration. Hence proved.

Combining Lemmas 4.3 and 4.4, we have proved the following theorem.

Theorem 4.5. Let f : Z × Z → Z × Z be defined as f(a, b) = (CVT(a, b), (a ⊕ b)). Then, the
iterative scheme (xn+1, yn+1) = f(xn, yn), n = 0, 1, 2, 3, . . . converges to (0, x0 + y0) for any initial
choice (x0, y0) ∈ Z × Z. Further, for any nonnegative integers “x0” and “y0” (where x0 ≥ y0), the
number of iterations required to get either CVT = 0 or XOR = 0 is at most the length of “x0” when
expressed as a binary string.

4.2. Convergence of MCVT

The following theorem gives the number of iterations required for MCVT = 0.

Theorem 4.6. The procedure of calculating the MCVT and XOR values of any two nonnegative
integers requires a maximum of two iterations to get their MCVT = 0.

Proof. Let a = anan−1 · · · a1 and b = bnbn−1 · · · b1 be two n-bits number. In the first iteration, we
get MCVT(a, b) and a ⊕ b.

Let x = MCVT(a, b) = (an ∧ bn, an−1 ∧ bn−1, . . . , a1 ∧ b1) and y = a ⊕ b = (an ⊕ bn, an−1 ⊕
bn−1, . . . , a1 ⊕ b1). Then in the second iteration, we get MCVT(x, y) and (x ⊕ y). We will show
that MCVT(x, y) = 0.

From Table 4, it can be verified that:

MCVT
(
x, y

)
= ((an ∧ bn) ∧ (an ⊕ bn), (an−1 ∧ bn−1) ∧ (an−1 ⊕ bn−1), . . . , (a1 ∧ b1) ∧ (a1 ⊕ b1))

= (0, 0, 0, 0, . . . , 0) = 0.
(4.3)

If ai ∧ bi /= 1 for all i, then MCVT(a, b) = 0 in one iteration. Hence proved.
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Figure 4: Showing the number of iterations required for either CVT = 0 or XOR = 0.

5. An Equivalence Relation is Defined Using the Notion of CVT

Let A = {0, 1, 2, 3, . . . , 2n − 1} be a finite subset of Z for some nonnegative integer n, and let R
be a relation on A × A defined as (a, b)R(c, d) ⇔ (a, b) and (c, d) requiring equal number of
iterations for their CVT = 0 or XOR = 0.

It can be easily verified that the relation R is reflexive, symmetric, and transitive on the
set A ×A. Therefore, R is an equivalence relation on A ×A.

We have calculated the number of iterations required for the set of ordered pair in
A × A, where A = {0, 1, 2, . . . , 31} and constructed Figure 4 using a two-step procedure as
follows.

Step 1. Write all the integers 0, 1, 2, 3, . . . , 31 in ascending order in both, uppermost row and
leftmost column of Figure 4.
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Step 2. Compute number of iterations required for any ordered pair (a, b) to get either CVT =
0 or XOR = 0 and store it in the position (a, b).

From Figure 4, we have observed that:

(1) the matrix is symmetric;

(2) if we consider Figure 4 as 4 quadrants, each quadrant is a symmetric matrix. Again
if each quadrant is divided further into 4 smaller quadrants, then also the 1st
quadrant is the same as the 3rd quadrant. Hence a self-similar fractal behaviour
is noticed in Figure 4;

(3) in a block of size (2n − 1) × (2n − 1), there are no ordered pairs in the 2nd quadrant
which transform into CVT = 0 or XOR = 0 in n-iterations.

In Figure 4 R divides the set {0, 1, 2, 3, . . . , 2n − 1} × {0, 1, 2, 3, . . . , 2n − 1} into n disjoint
equivalence classes.

For n = 1, there is one equivalence class [(0, 0)] = {(0, 0), (0, 1), (1, 0), (1, 1)} and
|[0, 0]| = 4.

For n = 2, there are two equivalence classes [(0, 0)], [(1, 3)], where

[(0, 0)] = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0),
(2, 1), (2, 2), (3, 0), (3, 3)},

(5.1)

[(1, 3)] = {(1, 3), (2, 3), (3, 1), (3, 2)}. (5.2)

Here, |[0, 0]| = 12, |[1, 3]| = 4.
For n = 3, there are three equivalence classes [(0, 0)], [(1, 3)], and [(1, 7)]:

|[0, 0]| = 34, |[1, 3]| = 18, |[1, 7]| = 12. (5.3)

For n = 4, there are four equivalence classes [(0, 0)], [(1, 3)], [(1, 7)], and [(1, 15)]:

|[0, 0]| = 96, |[1, 3]| = 78, |[1, 7]| = 58, |[1, 15]| = 24. (5.4)

For n = 5, there are five equivalence classes [(0, 0)], [(1, 3)], [(1, 7)], [(1, 15)], and
[(1, 31)]:

|[0, 0]| = 274, |[1, 3]| = 306, |[1, 7]| = 263, |[1, 15]| = 133, |[(1, 31)]| = 48. (5.5)

From above, we conclude that if we take a block of size (2n − 1) × (2n − 1), then

(1) number of ordered pairs for which CVT = 0 or XOR = 0 in one iterations is 3n +
(2n − 1) for n = 1, 2, 3, 4, . . .;

(2) number of ordered pairs for which CVT = 0 or XOR = 0 in n iterations is 3× 2n−1 for
n = 3, 4, 5, . . ..
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6. Conclusion and Future Research Work

In the present paper, we have proved some important results on Carry Value Transformation
(CVT) and Modified Carry Value Transformation (MCVT). Firstly, it has been proved that
for any base of the number system, the sum of any two nonnegative integers is the same
as the sum of their CVT and XOR values. This result is actually the correctness proof of the
algorithm based on which the adder circuit is designed in [2]. Our second result, that is, “the
number of iterations leading to either CVT = 0 or XOR = 0 does not exceed the maximum of
the lengths of the two addenda expressed as binary strings” is about the efficiency at which
the hardware circuit designed in [2] will produce the addition result. The state transition
diagrams (STDs) and certain observations on CVT and MCVT are found out. Our third
result such as addition of Modified Carry Value Transformation (MCVT) and XOR requires
a maximum of two iterations for MCVT to be zero, is an interesting result for MCVT. A new
equivalence relation is obtained on the set Z × Z which divides the CV Figure 4 into disjoint
equivalence classes.

In future we propose to study the following aspects:

(1) investigating into the state transition diagrams (STDs) of different IVTs;

(2) extending the domain of CVT from nonnegative integers to real numbers and
complex numbers;

(3) exploring the behaviour of hybrid IVTs and their applications;

(4) explaining the relationship of IVTs with cellular automata.
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