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4 Departamento de Matemáticas, División de Ciencias Exactas, Universidad de Sonora,
Boulevard Luis Encinas y Rosales s/n, Colonia Centro, 83000 Hermosillo, SON, Mexico

Correspondence should be addressed to Baltazar Aguirre-Hernández, bahe@xanum.uam.mx

Received 25 May 2012; Accepted 26 August 2012

Academic Editor: Irena Lasiecka

Copyright q 2012 Baltazar Aguirre-Hernández et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

The aim of this paper is to introduce the space of roots to study the topological properties of the
spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its
coefficients, we identify it with the set of its roots. Viète’s map gives a homeomorphism between
the space of roots and the space of coefficients and it gives an explicit formula to relate both
spaces. Using this viewpoint we establish that the space of monic (Schur or Hurwitz) aperiodic
polynomials is contractible. Additionally we obtain a Boundary Theorem.

1. Introduction

It is well known that for the stability of a linear system ẋ = Ax it is required that all the
roots of the corresponding characteristic polynomial p(t) have negative real part in other
words, p(t) is a Hurwitz (stable) polynomial. There are various approaches to decide if a
given polynomial is Hurwitz. Maybe themost popular of suchmethods is the Routh-Hurwitz
criterion. Other important approaches are Lienard-Chipart conditions and the Hermite-
Biehler Theorem (see Gantmacher [1], Lancaster and Tismenetsky, [2] and Bhattacharyya
et al. [3]). On the other hand, to have the stability of a discrete time linear system xn+1 = Axn
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it is necessary that all of the roots of the characteristic polynomial are strictly within the unit
disc. A polynomial with this property is named Schur polynomial. Maybe Jury’s test is the
most studied criterion for checking if a given polynomial is a Schur polynomial [4], but also
there exists the corresponding Hermite-Biehler Theorem for Schur polynomials [5] or we
can mention as well the Schur stability test [3]. In addition to the stability of polynomials
another important problem is the aperiodicity condition, which consists in obtaining from a
(continuous or discrete) stable system a response that has no oscillations or has only a finite
number of oscillations. Mathematically this requires that all the roots of the characteristic
polynomial p(t) are distinct and on the negative real axis, for the case of continuous systems;
and distinct and in the real interval (0, 1) for the discrete case. Criteria to decide if a system is
aperiodic are given for instance in [6–12]. An important reference where Hurwitz and Schur
stability and aperiodicity are studied is the book of Jury [13].

However, if a continuous or discrete system is modeling a physical phenomenon
then it is affected by disturbances. Consequently it is convenient to think that there are
uncertainties in the elements of the matrix A and then there are uncertainties in the
coefficients of the polynomial p(t); that is, we have a family of polynomials and we like to
know if all of the polynomials are Schur or Hurwitz polynomials (if the family is stable). The
study of the stability of various families of polynomials has attracted the attention of a lot
of researchers. The most famous result about families of polynomials is without doubt the
Kharitonov Theorem which gives conditions for Hurwitz stability of interval polynomials
[14]. There exists an analogous result to Kharitonov’s Theorem for Schur polynomials [15]
and also results about segments of Schur polynomials (see [16] or [3]). Results on balls of
Schur and Hurwitz polynomials can be found in [17]. In the case of Hurwitz polynomials,
the stability of segments of polynomials has been studied in [18–21]. The stability of rays
and cones of polynomials has been studied in [22, 23]. Other studied families are polytopes
of polynomials and here the most important result is the Edge Theorem [24] which says
that the stability of a polytope is determined by the stability of its edges. Good references
about families of Hurwitz and Schur polynomials are the books of Ackermann [25], Barmish
[26], and Bhattacharyya [3]. The problem of robustness for the aperiodicity condition has
been worked in [27–30]. About the specific case of intervals of aperiodic polynomials we can
mentioned the works of Foo and Soh [31] and Mori et al. [32].

To define and study these families, one uses the fact that a real polynomial p(t) =
a0 + a1t + · · · + ant

n can be identified with the vector of its coefficients (a0, a1, . . . , an). Then
the set of real polynomials up to degree n can be identified with R

n+1 and the sets of Schur
and Hurwitz polynomials can be seen as sets contained in R

n+1. Using this approach, several
topological and geometric properties of the spaces of Schur and Hurwitz polynomials have
been studied. For instance, it is known that the space of Schur polynomials is an open set [3,
Theorem 1.3]; it is not a convex set [16] and it is a contractible set [33]. On the other hand,
it is known that the space Hn of Hurwitz polynomials of degree n is an open set (see [3])
and it is not connected, since the coefficients of a Hurwitz polynomial have the same sign
([1]). However, the set of Hurwitz polynomials with positive coefficients, H+

n, is connected
([3, 34]) and it is a contractible space [35]. Furthermore it is known that Hn is not convex
([18, 19, 21, 23]).

The aim of this paper is to present a The aim of this paper is to present a different
viewpoint in the study of topological properties of the spaces of Schur and Hurwitz
(aperiodic) polynomials which is more natural since the definition of such polynomials is
in terms of their roots. Instead of identifying a monic complex polynomial p(t) = a0 + a1t +
· · · + an−1tn−1 + tn with the vector of its coefficients, we identify it with the set of its roots
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{z1, . . . , zn}, where zi ∈ C and p(zi) = 0 for i = 1, . . . , n. It is well known that the space of roots
is homeomorphic to the space of the coefficients and Viète’s map gives an explicit formula to
relate both spaces.

Using this viewpoint we give simple proofs of some known results about the topology
of the spaces of Schur and Hurwitz polynomials; for instance, we give a direct proof (see
Section 6) that the space of Hurwitz polynomials of degree n with positive (resp. negative)
coefficients is contractible. Additionally we prove that the space of monic (Schur or Hurwitz)
aperiodic polynomials is contractible andwe establish a Boundary Theorem; these results have
not been reported in control literature. We would like to emphasize that despite Viète’s map
and the space of roots are well known in Mathematics, they have not been used explicitly
(see Remark 7.2) to prove the aforementioned results and our contribution is to give simpler
proofs using them. Compare Theorem 4.3 with [33, Lemma 1] and Theorem 4.4 with [35,
Corrolary 4.1.28] and see Section 6 of the present paper.

One could also study a broad variety of families of polynomials directly in the space of
roots and via Viète’s map to get the corresponding results in the space of coefficients. In this
way we use a topological approach to study the spaces of polynomials. Other works where
topological and geometric ideas have been applied in control theory are the papers [36–44].
The rest of the paper is organized as follow: in Section 2 we introduce the concept of Hurwitz
or Schur (aperiodic) vector and we give some notation which will be useful in the proofs; in
Section 3 we write some known results; in Section 4 we define the space of roots, which is the
approach that we suggest in this paper; in Section 5 we establish the main results; in Section 6
some observations about the relation between Schur and Hurwitz polynomials are given; in
Section 7 two remarks are included to explain the relation of our paper with other previous
works; finally, some final conclusions are established in Section 8.

2. The Spaces of Schur, Hurwitz, and Aperiodic Polynomials

Let F be either the real or the complex numbers. Consider the set

PF

≤n = {a0 + a1t + · · · + ant
n | ai ∈ F} (2.1)

of polynomials in one variable, of degree less than or equal to n, with coefficients in F. The
set PF

≤n is a vector space and choosing the monomials {1, t, . . . , tn−1, tn} as a basis, we can give
explicitly an isomorphism betweenPF

≤n and F
n+1 identifying the polynomial a0+a1t+· · ·+ant

n

with the vector (a0, a1, . . . , an) in F
n+1. Clearly PF

≤n−1 ⊂ PF

≤n and under the isomorphism PF

≤n−1
corresponds to the hyperplane defined by the equation an = 0. Thus the set of polynomials of
degree nwith coefficients in F, denoted by PF

n , corresponds to the set {(a0, a1, . . . , an) ∈ F
n+1 |

an /= 0}. If we denote byMPF

n the set of monic polynomials of degree n, then it corresponds to
the hyperplane in F

n+1 defined by the equation an = 1, that is, vectors in F
n+1 of the form

(a0, a1, . . . , an−1, 1). Usually we will identify MPF

n directly with F
n, identifying the monic

polynomial a0 + a1t + · · · + an−1tn−1 + tn with the vector [a0, a1, . . . , an−1] ∈ F
n, we shall use

square brackets to avoid confusion with its corresponding vector

(a0, a1, . . . , an−1, 1) ∈ F
n+1. (2.2)

Using this isomorphism we can endow PC

≤n (respectively PR

≤n) with the Hermitian
(respectively Euclidean) inner product and its induced topology. Also we can think of the
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inclusion of the set of real polynomials PR

≤n in the set of complex polynomials PC

≤n as the
inclusion of R

n+1 in C
n+1.

A (real or complex) polynomial p(t) = a0 + a1t + · · · + ant
n is called a Schur polynomial

if all its roots are in the open unit disk D = {z ∈ C | ‖z‖ < 1}. The polynomial p(t) is called a
Schur aperiodic polynomial if all its roots are distinct, real, and in the interval (0, 1).

A (real or complex) polynomial p(t) = a0+a1t+· · ·+ant
n is called aHurwitz polynomial if

all its roots have negative real part. The polynomial p(t) is called aHurwitz aperiodic polynomial
if all its roots are distinct, real, and negative.

Following [34], we call a vector (a0, a1, . . . , an) ∈ F
n+1 Schur, Schur aperiodic, Hurwitz,

or Hurwitz aperiodic if it corresponds, respectively, to a Schur, Schur aperiodic, Hurwitz, or
Hurwitz aperiodic polynomial under the aforementioned isomorphism.

Let SF

≤n be the sets of Schur vectors in F
n+1 and let SF

n denote the set of Schur vectors
which correspond to Schur polynomials of degree n. Then we have that

SF

≤n = SF

n ∪ SF

≤n−1. (2.3)

Analogously, letHF

≤n be the sets of Hurwitz vectors in F
n+1 and letHF

n denote the set of
Hurwitz vectors which correspond to Hurwitz polynomials of degree n. Then we have that

HF

≤n = HF

n ∪HF

≤n−1. (2.4)

In the same way, let SAF

≤n and HAF

≤n be, respectively, the sets of Schur aperiodic and
Hurwitz aperiodic polynomials. Then the previous decompositions restrict to the subsets of
aperiodic polynomials

SAF

≤n = SAF

n ∪ SAF

≤n−1,

HAF

≤n = HAF

n ∪HAF

≤n−1.
(2.5)

From the fact that if a ∈ F
n+1 the polynomials corresponding to a and λa have the same

roots for any λ ∈ F with λ/= 0, we have that if a ∈ SF

n (resp., a ∈ HF

n, a ∈ SAF

n , a ∈ HAF

n), then
λa ∈ SF

n (resp. λa ∈ HF

n, λa ∈ SAF

n , λa ∈ HAF

n) for any λ/= 0. Therefore, to study the space SF

n

(resp. HF

n, SAF

n , HAF

n) it is enough to study the space of monic Schur (resp. Hurwitz, Schur
aperiodic, Hurwitz aperiodic) polynomials of degree n with coefficients in F, which we will
denote by MSF

n (resp. MHF

n, MSAn, MHAn). In the case of MSAn and MHAn we drop
the superscript F since the coefficients of a monic (Schur or Hurwitz) aperiodic polynomial
are real, because all of its roots are real. If QF

n is any of SF

n ,HF

n, SAF

n , orHAF

n , andMQF

n is the
corresponding set of monic polynomials, we have that

QF

n is homeomorphic to MQF

n × F
∗, (2.6)

where F
∗ = F − {0}.

In the case of real polynomials we can say more. Since we are mainly interested in
real polynomials we shall denote HR

n simply by Hn, SR

n simply by Sn, and so forth. As
before, if Qn = QR

n is any of Sn, Hn, SAn, or HAn, and MQn is the corresponding set of
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monic polynomials, we have that the space Qn is homeomorphic to the disjoint union of two
cylinders over the space of corresponding real monic polynomials MQn, that is

Qn
∼= MQn × (−∞, 0) ∪MQn × (0,∞). (2.7)

For the case of real Hurwitz polynomials Hn we can give an explicit description of
each of such cylinders. The coefficients of a real Hurwitz polynomial have the same sign [1],
therefore we can express it as the union of two sets

Hn = H+
n ∪H−

n, (2.8)

whereH+
n andH−

n are, respectively, the set of real Hurwitz vectors with positive and negative
coefficients. If a = (a0, a1, . . . , an) ∈ H+

n, then −a ∈ H−
n, that is,H−

n = −H+
n. Hence, to study the

spaceHn it is enough to studyH+
n (compare with [34, Proposition 2.1]). In fact, topologically

the space H+
n is homeomorphic to one of the aforementioned cylinders over the space MHn,

that is,

H+
n
∼= MHn × (0,∞), (2.9)

geometrically it corresponds to a cone in R
n+1 over MHn with vertex at the origin (not

including the vertex). This is expressed by the following map which maps MHn × (0,∞)
diffeomorphically ontoH+

n in R
n+1

MHn × (0,∞) −→ R
n+1

([a0, a1, . . . , an−1], λ) �−→ (λa0, λa1, . . . , λan−1, λ),
(2.10)

where we identify a monic polynomial with a vector in R
n as before.

Hence we have that

H≤n = H+
n ∪H−

n ∪H≤n−1. (2.11)

Analogously,

HA≤n = HA+
n ∪HA−

n ∪HA≤n−1, (2.12)

and HA+
n
∼= MHAn × (0,∞).
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3. Symmetric Products, Configuration Spaces, and Viète’s Theorems

Let Σn be the symmetric or permutation group of the set {1, 2, . . . , n}. Let X be a topological
space and let Xn = X × · · · × X be its nth Cartesian product for n ≥ 1. Consider the action of
Σn on Xn given by permutation of coordinates

Σn ×Xn −→ Xn,

τ · (x1, . . . , xn) =
(
xτ(1), . . . , xτ(n)

)
.

(3.1)

The orbit space of this action

Symn(X) =
Xn

Σn
, (3.2)

endowedwith the quotient topology, is called the nth symmetric product ofX. The equivalence
class of the n-tuple (x1, . . . , xn) will be denoted by {x1, . . . , xn}. Notice that an element
{x1, . . . , xn} ∈ Symn(X) is a set of n elements of X without order.

Denote by F(X, n) the set of n-tuples of distinct points in X, that is,

F(X, n) =
{
(x1, . . . , xn) ∈ Xn | xi /= xj if i /= j

}
. (3.3)

By definition F(X, n) ⊂ Xn and clearly F(X, n) are invariant under the action of Σn, hence; the
orbit space

B(X, n) =
F(X, n)

Σn
, (3.4)

called the nth configuration space of X, consists of the sets of n distinct elements of X without
order. Also by definition we have that B(X, n) ⊂ Symn(X).

Consider the 2-sphere S2 as the Riemann sphere consisting of the complex numbers
together with the point at infinity, denoted by ∞. Also consider the complex projective space of
dimension n as the quotient space

CP
n =

C
n+1 − {0}

∼ , (3.5)

identifying (a0, . . . , an) with (λa0, . . . , λan) for nonzero λ ∈ C. We denote the equivalence
class of (a0, . . . , an) using homogeneous coordinates (a0 : · · · : an). If as before we identify
(a0, . . . , an) ∈ C

n+1 with a polynomial of degree less than or equal to n, then the class (a0 : · · · :
an) consists of all the polynomials which have the same roots as (a0, . . . , an). Since in every
class (a0 : · · · : an) there is a vector which represents a monic polynomial, we can think of
CP

n as the space of complex monic polynomials of degree less than or equal to n and we shall
denote it byMPC

≤n.
A point in Symn(S2) is an unordered n-tuple {z1, . . . , zn} of complex numbers or ∞.

There exists a nonzero polynomial, unique up to a nonzero complex factor, of degree less
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than or equal to nwhose roots are precisely {z1, . . . , zn}, where we consider ∞ to be a root of
the polynomial if its degree is less than n. Considering the coefficients of this polynomial as
homogeneous coordinates on CP

n we get a map from Symn(S2) to CP
n called Viète’s projective

map. This map can be written explicitly as follows.
Let σn

k
, k = 1, . . . , n be the elementary symmetric polynomials in n variables σn

k
: C

n → C

which are defined as follows:

σn
0 (z1, . . . , zn) = 1,

σn
k (z1, . . . , zn) =

∑

1≤j1<j2<···<jk≤n
zj1zj2 · · · zjk , 1 ≤ k ≤ n.

(3.6)

Let τ ∈ Σn, then we have that

σn
k (τ · (z1, . . . , zn)) = σn

k

(
zτ(1), . . . , zτ(n)

)
= σn

k (z1, . . . , zn), (3.7)

so the polynomials σn
k

descend to the nth symmetric product Sn(C) giving continuous
functions

σn
k : Symn(C) −→ C. (3.8)

Viète’s projective map assigns to {z1, . . . , zn} ∈ Symn(S2) the class in CP
n corresponding to all

the complex polynomials with roots {z1, . . . , zn}. To simplify notation we omit the argument
of the polynomials σl

k since the superindex l means to evaluate in the l finite roots:

ν : Symn
(
S2

)
−→ CP

n,

{z1, . . . , zn} �−→ (
(−1)nσn

n : · · · : −σn
1 : σn

0

)
,

{z1, . . . , zn−1,∞} �−→
(
(−1)n−1σn−1

n−1 : · · · : σn−1
0 : 0

)
,

{z1, . . . , zn−2,∞,∞} �−→
(
(−1)n−2σn−2

n−2 : · · · : σn−2
0 : 0 : 0

)
,

...

{∞, . . . ,∞} �−→ (1 : 0 : 0 : · · · : 0).

(3.9)

We have the following known theorem; see, for instance, [45, Bei. 3.2], [46, Exa. 5.2.4] or [47,
Section 10.2 and App. A].

Theorem 3.1. Viète’s projective map is a homeomorphism between Symn(S2) and CP
n.

Proof (Sketch). Viète’s projective map ν is a continuous bijection from a compact space to a
Hausdorff space and therefore a homeomorphism.

Clearly Symn(C) is contained in Symn(S2) as the n-tuples {z1, . . . , zn} which consist
only of complex numbers, without ∞’s. We have that under the Viète’s projective map the
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image of Symn(C) consists of the classes in CP
n which corresponds to polynomials of degree

exactly n, that is, classes of the form (a0 : · · · : an−1 : 1). Since each class has a monic
polynomial as a representative, we can identify the image of Symn(C) with the space MPC

n

of monic polynomials of degree n, which we know is homeomorphic to C
n.

The restriction ν : Symn(C) → C
n of Viète’s projective map to Symn(C) is given by

ν : Symn(C) −→ C
n,

{z1, . . . , zn} �−→ [
(−1)nσn

n , . . . , σ
n
2 ,−σn

1

]
,

(3.10)

where the vector in C
n corresponds to the monic complex polynomial with roots {z1, . . . , zn}.

We denote it also by ν and we call it Viète’s map.
Hence, as a corollary of Theorem 3.1 we get the classical Viète’s Theorem

Theorem 3.2. Viète’s map is a homeomorphism between Symn(C) and C
n.

There are results related to Viète’s Theorems which are consequence of a classical
theorem by Maxwell [48]; see [49] or [47, Section 10.2 and App. A].

4. The Space of Roots

Let Rn denote the nth symmetric product Symn(C). We call Rn the space of roots of complex
polynomials of degree n. Notice as before, that an element ofRn is a set of n complex numbers
{z1, . . . , zn}without order.

What Theorem 3.2 says is that to study the topological properties of a subspace of
monic complex polynomials, it is equivalent to parametrize them in terms of their coefficients
or in terms of their roots.

We define the following subspaces of Rn.

(i) The space of roots of real polynomials:

RR

n =
{
{z1, . . . , zn} ∈ Rn | z2j = z2j−1, j = 1, . . . , k with 2k ≤ n,

zl ∈ R, 2k + 1 ≤ l ≤ n.

}
. (4.1)

Clearly its image under Viète’s map is R
n which is homeomorphic to the space

MPR

n of monic real polynomials.

(ii) The space of roots of complex Schur polynomials:

SRC

n = {{z1, . . . , zn} ∈ Rn | zi ∈ D, i = 1, . . . , n}. (4.2)

Its image under Viète’s map is the set of monic complex Schur polynomials MSC

n .

(iii) The space of roots of real Schur polynomials:

SRn = SRR

n = RR

n ∩ SRC

n . (4.3)

Its image under Viète’s map is the set of monic real Schur polynomials MSn.
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(iv) The space of roots of Schur aperiodic polynomials: let J = (0, 1),

SARn = B(J, n). (4.4)

Its image under Viète’s map is the set of monic Schur aperiodic polynomialsMSAn.

(v) The space of roots of complex Hurwitz polynomials:

HRC

n = {{z1, . . . , zn} ∈ Rn | �(zi) < 0, i = 1, . . . , n}. (4.5)

Its image under Viète’s map is the set of monic complex Hurwitz polynomials
MHC

n .

(vi) The space of roots of real Hurwitz polynomials:

HRn = HRR

n = RR

n ∩HRC

n . (4.6)

Its image under Viète’s map is the set of monic real Hurwitz polynomials MHn.

(vii) The space of roots of Hurwitz aperiodic polynomials: denote by R
− the negative real

axis,

HARn = B
(
R

−, n
)
. (4.7)

Its image under Viète’s map is the set of monic Hurwitz aperiodic polynomials
MHAn.

As an example of the use of the space of roots Rn we get simple proofs of some known
results about the topology of the spaces MSF

n and MHF

n.

Proposition 4.1. The spacesMSF

n and MHF

n are open in F
n.

Proof. It is clear from the definition of the spaces SRC

n and HRC

n that they are open subset of
Rn; therefore under Viète’s homeomorphism MSC

n and MHC

n are open in C
n. On the other

hand, SRn and HRn are open in RR

n and therefore MSn andMHn are open in R
n.

Proposition 4.2. The boundary ∂MSF

n consists of all coefficient vectors in F
n which correspond to

polynomials with all their roots in D and which have at least one root on ∂D.
The boundary ∂MHF

n consists of all coefficient vectors in F
n which correspond to polynomials

with all their roots in C− and which have at least one root on ∂C− = iR.
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Proof. By the definition of the spaces SRC

n , SRn, HRC

n , and HRn, their boundaries are given
by

∂SRC

n =
{
{z1, . . . , zn} ∈ Rn | zi ∈ D, i = 1, . . . , n, and at least one is in ∂D

}
,

∂SRn = ∂SRC

n ∩ RR

n ,

∂HRC

n =
{
{z1, . . . , zn} ∈ Rn | zi ∈ C−, i = 1, . . . , n, and at least one is in iR

}
,

∂HRn = ∂HRC

n ∩ RR

n .

(4.8)

Using the homeomorphism given by Viète’s map we get the proposition.

Let I = [0, 1], a topological spaceX is contractible if there exists a homotopy F : X×I →
X that starts with the identity and ends with the constant map c(x) = x0, for some x0 ∈ X.
Such a homotopy is called a contraction.

The following theorem is proved in [33, Lemma 1] (see Remark 7.2).

Theorem 4.3. The spaces SRC

n and SRn are contractible. Therefore the spaces MSC

n and MSn are
contractible.

Proof. The following homotopy gives a contraction of Rn to the point {0, . . . , 0}

G : Rn × I −→ Rn,

G({z1, . . . , zn}, r) = {(1 − r)z1, . . . , (1 − r)zn}.
(4.9)

If {z1, . . . , zn} ∈ SRC

n , by definition we have that ‖zi‖ < 1, i = 1, . . . , n and since (1 − r) < 1, we
have that ‖(1 − r)zi‖ < 1 for all r ∈ I and therefore the contraction G restricts to a contraction
G : SRC

n × I → SRC

n proving that SRC

n is contractible.
For the case {z1, . . . , zn} ∈ SRn we just need to check that if we have a pair of conjugate

roots, say z2j = z2j−1, they stay a conjugate pair through all the homotopy, but clearly (1 −
r)z2j = (1 − r)z2j−1 for all r ∈ I. Therefore the contraction F restricts to a contraction F :
SRn × I → SRn proving that SRn is contractible.

The following Theorem is indicated in [35, Corrolary 1.4.28, Ex. 13] (see Section 6).

Theorem 4.4. The spacesHRC

n andHRn are contractible. Therefore the spacesMHC

n andMHn are
contractible.

Proof. The following homotopy is a contraction of Rn to the point {−1, . . . ,−1}:

F : Rn × I −→ Rn,

F({z1, . . . , zn}, r) = {(z1 + 1)(1 − r) − 1, . . . , (zn + 1)(1 − r) − 1}.
(4.10)
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If {z1, . . . , zn} ∈ HRC

n , by definition we have that

zk = −ak + ibk, ak, bk ∈ R, ak > 0, k = 1, . . . , n. (4.11)

Hence

(zk + 1)(1 − r) − 1 = −[ak(1 − r) + r] + ibk(1 − r), k = 1, . . . , n, (4.12)

which has negative real part for all r ∈ I. Therefore the contraction F restricts to a contraction
F : HRC

n × I → HRC

n proving that HRC

n is contractible.
For the case when {z1, . . . , zn} ∈ HRn we just need to check that if we have a pair of

conjugate roots, say z2j−1 = −a + ib and z2j = −a − ib, they stay a conjugate pair through all
the homotopy. From (4.12) we have that

(
z2j−1 + 1

)
(1 − r) − 1 = −[a(1 − r) + r] + ib(1 − r),

(
z2j + 1

)
(1 − r) − 1 = −[a(1 − r) + r] − ib(1 − r),

(4.13)

which are conjugate for all r ∈ I. Therefore the contraction F restricts to a contraction F :
HRn × I → HRn proving that HRn is contractible.

Recall that a topological space X is said simply connected if it is path connected and for
some base point x0 ∈ X the fundamental group π1(X, x0) is trivial (see [46, Section 2.5] for
the definition of fundamental group).

Corollary 4.5. The spaces SRF

n,MSF

n , HRF

n, and MHF

n are connected and simply connected.

Proof. The spaceSRF

n is connected because the contractionG in the proof of Theorem 4.3 gives
a path contained in SRF

n from any set of Schur roots {z1, . . . , zn} in SRF

n to the set {0, . . . , 0}.
All the homotopy groups of a contractible space are trivial [46, Theorem 3.5.8 (g)],

in particular the fundamental group, therefore SRF

n is simply connected. Since MSF

n is
homeomorphic to SRF

n, it is also connected and simply connected.
The proof for the spaces HRF

n and MHF

n is analogous using the contraction F in the
proof of Theorem 4.4 and the set {−1, . . . ,−1}.

Corollary 4.5 for the spaceMHn is proved in the article [34, Lemma A1, Theorem 2.1]
but there is a mistake in the part of the simply connectedness (see Remark 7.1).

Corollary 4.6. The spaces SC

n and HC

n are homotopically equivalent to a circle S1.

Proof. Let QC

n be SC

n or HC

n . By (2.6) we have that QC

n is homeomorphic to MQC

n × C
∗ which

is homotopically equivalent to a circle S1, since by Theorem 4.3, MQC

n is contractible and
C

∗ = C − {0} is homotopically equivalent to a circle S1.

Corollary 4.7. The spaces Sn and Hn consist of two contractible connected components. For Hn

these contractible connected components areH+
n and H−

n.

Proof. Let Qn be Sn or Hn. By (2.7) we have that Qn
∼= MQn × (−∞, 0) ∪ MQn × (0,∞); by

Corollary 4.5, MQn is connected and therefore MQn × (−∞, 0) and MQn × (0,∞) are the



12 International Journal of Mathematics and Mathematical Sciences

connected components of Qn, with each of them being contractible, since by Theorems 4.3
and 4.4, MQn is contractible, and the product of two contractible spaces is contractible. By
(2.8) and (2.9),H±

n are the connected components of Hn.

5. The Topology of the Spaces of Aperiodic Polynomials

In this section we shall study the topology of the spaces of Schur and Hurwitz aperiodic
polynomials SAF

n and HAF

n . As we saw at the end of Section 3, it is enough to study the
spaces of monic polynomialsMSAn andMHAn; these in turn, by Theorem 3.2 and Section 4
are, respectively, homeomorphic to the spaces of roots of Schur aperiodic polynomials SARn

and roots of Hurwitz aperiodic polynomials HARn. Recall that

SARn = B(J, n), HARn = B
(
R

−, n
)
, (5.1)

where B(X, n) is the nth configuration space of X, J = (0, 1), and R
− is the negative real axis.

Theorem 5.1. The spaces SARn and HARn are contractible. Therefore the spaces MSAn and
MHAn are contractible.

Proof. Since the spaces (0, 1) and R
− are homeomorphic, and these in turn are homeomorphic

to the real line R, we have that

SARn
∼= HARn

∼= B(R, n), (5.2)

therefore, it is enough to prove that the space B(R, n) is contractible.
The space F(R, n) is precisely R

n minus all the hyperplanes of the form xi = xj with
i /= j, which consists of n! connected components all of them contractible, since they are convex
subspaces of R

n. When we take the quotient of F(R, n) by the action of the symmetric group Σn

to get B(R, n), all the n! connected components are identified in single contractible connected
component.

The fact that the space B(R, n) is contractible is a very well-known result in topology
but its identification with the space ofmonic aperiodic polynomials, we believe, is new in control
theory.

The proofs of the following corollaries are analogous to the proofs of Corollaries 4.5,
4.6, and 4.7, respectively.

Corollary 5.2. The spaces SARn,HARn,MSAn, and MHAn are simply connected.

Corollary 5.3. The spaces SAC

n and HAC

n are homotopically equivalent to a circle S1.

Corollary 5.4. The spaces SAn and HAn consist of two contractible connected components. For
HAn these contractible connected components areHA+

n and HA−
n .

If Qn is any of Sn, H±
n, SAn, or HA±

n , as a consequence of Corollaries 4.7 and 5.4, all
the homotopy groups of Qn are trivial (see [46, Theorem 3.5.8 (g)]). In other words, we have
the following theorem (see [46, Lemma 3.1.5]).
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Theorem 5.5 (Boundary Theorem). If S ⊂ Qn is the image of anm-sphere under a continuous map
f : Sm → Qn, for any m ∈ N, then f can be extended to a continuous map F : Dm+1 → Qn, where
Dm+1 is a closed ball of dimension m + 1 and Sm = ∂Dm+1.

6. The Relation between Schur and Hurwitz Polynomials

Theorem 4.3 was proved by Fam andMeditch in [33, Lemma 1] giving an explicit contraction
in the space of monic Schur vectors. Their result is stated only for the space of real monic
Schur polynomials MSn although their contraction also works for the space of complex monic
Schur polynomials MSC

n . If we compose the contraction G of Theorem 4.3 with Viète’s map
we obtain the contraction G′ given by Fam and Meditch (actually the reversed contraction,
interchanging r by 1 − r; also compare with [35, Proposition 4.1.25]).

Theorem 4.4 is set as an exercise in [35, Corrolary 1.4.28, Ex. 13]; it is only stated for real
monic Hurwitz polynomials but it can also be proved for complex monic Hurwitz polynomials. The
proof indicated is an indirect one since it is based on the contractibility of the spaceMSF

n and
the following transformation to relate Schur and Hurwitz polynomials. Consider the Möbius
transformation

m : S2 −→ S2,

m(z) =
z + 1
z − 1

.
(6.1)

It is a biholomorphism from the Riemann sphere onto itself which transforms the open left
half plane C− onto the open unit disk D and vice versa, since m−1 = m. In particular we have
that m(0) = −1, m(1) = ∞. It is also important to notice that if z ∈ R ⊂ S2, with z/= 1, then
m(z) ∈ R and if z2 = z1 then m(z2) = m(z1).

Let p(t) = a0 + a1t + · · · + ant
n ∈ PC

≤n and suppose it has roots {z1, . . . , zn}. Define the
Möbius transform

˜ : PC

≤n −→ PC

≤n,

p �−→ p̃.
(6.2)

By

p̃(s) = (s − 1)np
(
s + 1
s − 1

)

=
n∑

i=0

ai(z + 1)i(z − 1)n−i

=
n∑

k=0

n−k∑

j=0

k+j∑

i=j

ai

(
i
j

)(
n − i

n − k − j

)
sk.

(6.3)

This is a linear isomorphism; it is involutive modulo a non-zero constant, that is, ˜̃p = 2np, and
one of its main properties is that if p ∈ PC

n of degree n with p(1)/= 0, p is a Schur polynomial
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if and only if p̃ is a Hurwitz polynomial of degree n; moreover p̃ has roots {m(z1), . . . , m(zn)}
(see [35, Lemma 3.4.81] for further properties).

From the fact that if z ∈ R then m(z) ∈ R and if z2 = z1 then m(z2) = m(z1) we
have that if p is a real polynomial then its Möbius transform p̃ is again a real polynomial.
However from (6.3)we can see that the Möbius transform of a monic polynomial p in general
is not a monic polynomial since the leading coefficient of p̃ in this case (an = 1) is given by
ãn = 1 +

∑n−1
i=0 ai. Therefore we cannot use directly the Möbius transform to relate MSF

n with
MHF

n. To avoid this problem one defines the normalized Möbius transform p̆ of p by

p̆(s) =

(

1 +
n−1∑

l=0

al

)−1
p̃(s). (6.4)

In this way we get a continuous map

˘ : MPC

≤n −→ MPC

≤n. (6.5)

By the aforementioned property of p̃ we have that restricting to MHF

n we get the home-
omorphism

˘ : MHF

n −→ MSF

n,

p �−→ p̆,
(6.6)

which is its own inverse, that is, ˘̆p = p.
Nowwe can use the normalized Möbius transform to prove thatMHF

n is contractible. Let
G′ : MSF

n × I → MSF

n be the contraction of MSF

n given by the image of the contraction G in
the proof of Theorem 4.3 under Viète’s map.

Define the contraction H : MHF

n × I → MHF

n by H(p, r) = Ğ′(p̆, r), that is, following
the diagram.

MHF

n × I
˘×Id

H

MSF

n × I

G′

MHF

n MSF

n

˘

(6.7)

The contraction G′ contracts the space MSF

n to the Schur vector [0, . . . , 0] ∈ R
n, which

corresponds to the polynomial tn, then the contraction H contracts the space MHF

n to the
Hurwitz vector [( n

n ), (
n

n−1 ), . . . , (
n
1 )] which corresponds to the polynomial (s + 1)n, since the

normalized Möbius transform of tn is (s + 1)n.
Using the space of roots we can give a simpler proof of the homeomorphism between

the space of degree n monic Hurwitz polynomials MHF

n and the space of degree n monic
Schur polynomials MSF

n . The proof is simpler in the sense that one does not need any of
the properties of the Möbius transform given in [35, Lemma 3.4.81] but only the fact that the
Möbius transformation (6.1) is a homeomorphism which transforms C− into D. The Möbius
transformation m given in (6.1) induces a homeomorphism from the nth Cartesian product
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S2×· · ·S2 of the Riemann sphere onto itself. This homeomorphism is equivariant with respect
to the action of Σn and therefore it induces a homeomorphism on the nth symmetric product
of S2

m̃ : Symn
(
S2

)
−→ Symn

(
S2

)
,

{z1, . . . , zn} �−→ {m(z1), . . . , m(zn)},
(6.8)

such that m̃−1 = m̃. Since m maps homeomorphically the open left half plane C− onto the
open unit disk D, it is clear that m̃ maps the space of Hurwitz roots HRF

n homeomorphically
onto the space of Schur roots SRF

n. The space HRF

n is homeomorphic to the space MHF

n and
the space SRF

n is homeomorphic to the spaceMSF

n via Viète’s map. ThereforeMHF

n andMSF

n

are homeomorphic.
Remember that CP

n can be thought as the space of complex monic polynomials
of degree less than or equal to n, denoted by MPC

≤n, and that Viète’s projective map is
a homeomorphism ν : Symn(S2) → MPC

≤n. Combining Viète’s projective map with the
homeomorphism m̃, we get a natural homeomorphism h from MPC

≤n to itself given by the
following diagram:

MPC

≤n
h

ν−1

MPC

≤n

Symn(S2)
m̃

Symn(S2)

ν (6.9)

given explicitly as follows. Let p ∈ MPC

≤n and suppose it has roots {z1, . . . , zn}, that is, p(t) =∏n
i=1(t − zi), then

h
(
p
)
(s) =

n∏

i=1

(s −m(zi)), (6.10)

the monic polynomial with roots {m(z1), . . . , m(zn)}. Remember that we consider ∞ to be
a root of the polynomial if its degree is less than n. Therefore the homeomorphism h is
precisely the normalized Möbius transform ·̆; to see this, compare (6.10) with (70) in the proof
of Lemma 3.4.81 in [35]when p is monic of degree n.

7. Two Remarks

We have the following two remarks about previous works.

Remark 7.1. The proof of Theorem 2.1 in [34] that the spaceMHn (Hn
1+ in notation of [34]) is

simply connected is not correct. In Lemma A3 the space

R
n+1
1+ =

{
(a0, . . . , an−1, 1) ∈ R

n+1 | ai > 0, i = 0, . . . , n − 1
}
, (7.1)
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which is homeomorphic to R
n, is expressed as the union of two open connected subsets Hn

1+
and Un

1+ with common boundary Bn
1+, that is,

R
n+1
1+ = Hn

1+ ∪ Bn
1+ ∪Un

1+. (7.2)

Then the argument is that if Hn
1+ is not simply connected, then Un

1+ is not connected and
this contradicts the connectivity of Un

1+. This argument is valid only in dimension 2 (i.e., in
R

3
1+

∼= R
2) but it is not true in higher dimensions. One counterexample is to consider the

subset of R
3 given by a closed solid torus

T =

{
(
x, y, z

) ∈ R
3 |

(√(
x2 + y2

) − 2
)2

+ z2 ≤ 1

}

, (7.3)

which is the solid obtained rotating the 2-disk D2 in the plane xz with center in (2, 0, 0),
that is, D2 = {(x, 0, z) ∈ R

3 | (x − 2)2 + z2 ≤ 1}, around the z-axis, giving the shape of a
“doughnut.” The space T is homeomorphic toD2 × S1. Denote byH the interior of the torus,
by B its boundary, and byU the complement of T in R

3. Then R
3 = H ∪B ∪U, withH andU

being open and connected with common boundary B. The space H is not simply connected
because it is homotopically equivalent to a circle S1. Also in R

3, even if B was homeomorphic
to a 2-sphere S2, the unbounded component of R

3 −B is not necessarily simply connected; an
example of this is the famous Alexander Horned Sphere (see [50, Example 2B.2]).

A counterexample in dimension n > 2 is similar taking T = Dn−1×S1. The samemistake
is also made in [51, Theorem 3.2].

Now with the proof that H+
n is contractible (Corollary 4.7), in particular simply

connected, the Edge and Boundary Theorems of [34], which use as a main ingredient the simple
connectivity of H+

n, remain valid.

Remark 7.2. The approach of using the roots space Rn has been used implicitly in previous
studies of spaces of polynomials. For instance, in [33, Lemma 1] to prove the contractibility
of the space of real monic Schur polynomials MSn, implicitly they proved the contractibility
of the space of roots which are in the open disk in the complex plane. Also in [34, Lemma A1]
to prove that Hn

1+ is connected, they implicitly constructed a path in the space of roots.

8. Conclusions

Viète’s map gives an explicit homeomorphism between the space of roots Rn and the space
of monic complex polynomials MPC

n . Restricting this homeomorphism to the spaces of
Schur and Hurwitz (aperiodic) roots one can study in a more natural way some topological
properties of the spaces of Schur and Hurwitz (aperiodic) polynomials. Using this viewpoint
we give simple proofs of some topological properties of the spaces of Schur and Hurwitz
polynomials; in particular we prove that the spaces H+

n and H−
n of Hurwitz polynomials of

degree n with positive and negative coefficients, respectively, are contractible and therefore
simply connected. As a new result we prove that the spaces of monic Schur aperiodic
polynomials MSAn and of monic Hurwitz aperiodic polynomials MHAn are contractible. As
a consequence of the contractibility of the spaces Sn, H±

n, SAn, or HA±
n , we get the Boundary

Theorem given in Theorem 5.5.
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Also using the space of roots and Viète’s projective map we see that the normalized
Möbius transform is a natural transformation from the spaceMPC

≤n of complex monic polynomials
of degree less than or equal to n to itself, instead of just being seen as a “correction” to the
Möbius transform to get monic polynomials. It gives a homeomorphism between the space
of monic (complex or real) Schur polynomials and the space of (complex or real) Hurwitz
polynomials.
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