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Steady-state creep response in a rotating disc made of Al-SiC (particle) composite having linearly
varying thickness has been carried out using isotropic/anisotropic Hoffman yield criterion and
results are comparedwith those using vonMises yield criterion/Hill’s criterion ignoring difference
in yield stresses. The steady-state creep behavior has been described by Sherby’s creep law. The
material parameters characterizing difference in yield stresses have been used from the available
experimental results in literature. Stress and strain rate distributions developed due to rotation
have been calculated. It is concluded that the stress and strain distributions got affected from the
thermal residual stress in an isotropic/anisotropic rotating disc, although the effect of residual
stress on creep behavior in an anisotropic rotating disc is observed to be lower than those observed
in an isotropic disc. Thus, the presence of residual stress in composite rotating disc with varying
thickness needs attention for designing a disc.

1. Introduction

Residual stress significantly affects the engineering properties of materials and structural
components, notably fatigue life, distortion, dimensional, corrosion resistance, brittle
fracture, and so forth. For that reason, the residual stress analysis is an important stage in
the design of parts and structural elements. The thermal residual stresses induced due to
thermal mismatch between the metal matrix and the ceramic reinforcement in metal matrix
composite may impart plastic deformation to the matrix. Thermal mismatch strains also
may quite often crack the matrix resulting in a relaxation of the residual stresses. Presence
of thermal residual stresses can induce the asymmetry in the tensile and compressive yield
stresses of the composite. Residual stresses may be reduced or eliminated by annealing, by
plastic deformation, or just by letting the piece at room temperature enough time. Because
of its influence on the properties, the residual stress in composites has been the subject of
several studies, both experimentally and analytically. Bhatnagar et al. [1] have performed
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steady-state creep analysis of orthotropic rotating discs having constant thickness, linearly
varying thickness, and hyperbolically varying thickness. They have usedNorton’s power law
to describe creep behavior of the disc material and concluded that by selecting an optimum
profile for the disc, the stress and strain rate in the disc may be reduced. Arsenault and
Taya [2] investigated the magnitude of the thermal residual stresses by determining the
difference of the yield stresses between tension and compression resulting from the thermal
residual stresses. Mishra and Pandey [3] have claimed that Sherby’s constitutive creep
model works better than Norton’s creep law to describe the creep behavior of aluminum
matrix composites. Pandey et al. [4] have studied the steady-state creep behavior of Al-
SiCp composites under uniaxial loading condition in the temperature range between 623K
and 723K for different combinations of particle sizes (1.7μm, 14.5μm, and 45.9μm) and
with varying particle content (10 vol%, 20 vol%, and 30 vol%) and found that the composite
with finer particle size has better creep resistance than that containing coarser ones. Davis
and Allison [5] investigated that the mismatch in the coefficient of thermal expansion
between the SiC particle and the aluminum alloy metal matrix gave rise to a high density
of dislocation both at and near the reinforcement/matrix interface. The enhanced expansion
of the matrix induced plastic deformation during cooling with an associated increase in
the density of dislocations. Hu and Huang [6] proposed an analytical method to predict
the influence of residual stress on the elastic-plastic behavior of a general composite. The
model incorporates the microstructural parameters like fiber shape, orientation, distribution,
and volume fraction. The computed results show that the influence of residual stress
on the macroscopic properties depends closely on the microstructures of the composite.
Jahed and Shirazi [7] investigated loading and residual stresses and associated strains and
displacements in thermoplastic rotating discs at elevated temperatures. Orcan and Eraslan
[8] investigated the distribution of stress, displacement, and plastic strain in a rotating
elastic-plastic solid disc of variable thickness in a power function. The analysis is based
on Tresca’s yield condition. By employing a variable thickness disc the plastic limit angular
velocity increases and the magnitude of stresses and deformations in the disc reduces. Singh
and Ray [9] proposed a new yield criterion for residual stress, which at appropriate limits
reduces to Hill anisotropic and Hoffman anisotropic yield criterion, and carried out analysis
of steady-state creep in a rotating disc made of Al-SiCw composite using this criterion and
compared the results obtained using Hill anisotropic yield criterion ignoring difference in
yield stresses. Singh and Ray [10] studied the effect of thermal residual stress on the steady-
state creep behavior of a rotating disc made of composite using isotropic Hoffman yield
criterion while describing the creep by Norton’s power law. They concluded that the tensile
residual stress significantly affects the strain rates in the disc when compared with the
strain rate in the disc without residual stress. Gupta et al. [11] have analyzed steady-state
creep in isotropic aluminum silicon carbide particulate rotating disc. The creep behavior
has been described by Sherby’s law. The authors concluded that the tangential as well as
radial stress distribution in the disc does not vary significantly for various combinations of
material parameters and operating temperatures. Moreover the tangential as well as radial
strain rates in the disc reduce significantly with reducing particle size, increasing particle
content, and decreasing operating temperature. Jahed et al. [12] observed that the use of
variable thickness disc helps in minimizing the weight of disc in aerospace applications.
There are numerous applications for gas turbine discs in the aerospace industry such as
in turbojet engines. These discs normally work under high temperatures while subjected
to high angular velocities. Sayman [13] investigated elastic-plastic and residual stresses in
thermoplastic composite laminated plates under linear thermal loading and also carried
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out an elastic-plastic, thermal stress analyses on thermoplastic composite disc reinforced
with steel fibers under uniform temperature distribution and concluded that plastic yielding
expands both around inner and outer surfaces and that plastic flow is highest at the inner
surface. Singh [14] has performed creep analysis in an anisotropic composite disc rotating at
15,000 rpm and undergoing steady-state creep at 561K following Norton’s power law. The
presence of anisotropy leads to significant reduction in the tangential and radial strain rates
over the entire disc and helps in restraining creep response both in the tangential and in the
radial directions. Xuan et al. [15] have studied the time-dependent deformation and fracture
performance of multimaterial system and structures at elevated temperature. He developed
a microregion deformation measuring technique which allows the direct measurement of the
full creep strain fields of multimaterial system at higher temperature. Chamoli et al. [16] have
studied the effect of anisotropy on the stress and strain rates and concluded the anisotropy
of the material has a significant effect on the creep of a rotating disc. The creep behavior is
described by Sherby’s law. Singh and Rattan [17] have investigated the stress distributions
and the resulting creep deformation in isotropic rotating disc having constant thickness and
made of silicon carbide particulate reinforced aluminium base composite in presence of
thermal residual stress. It is concluded that the presence of the tensile residual stress affects
the distribution of stresses and strain in the disc with constant thickness. Chen et al. [18] have
investigated the effects of material gradients on the creep stress and strain of a pressurized
tank, which is assumed to be made of functionally graded materials. They have concluded
that the magnitude of the creep strain is influenced by the elastic modulus distribution as
well as the creep property distribution inside the functionally graded materials and achieved
some fundamental knowledge of the materials distribution to reduce the maximum creep
stress/strain level inside the functionally graded materials tank. Gupta and Singh [19] have
studied the effect of anisotropy on the stress and strain rates in composite disc made of
anisotropic material (6061Al-30% vol SiCp) and concluded that the anisotropy of the material
has a significant effect on the creep of a rotating disc with varying thickness.

In this paper, the steady-state creep has been investigated for composite rotating disc
made of material 6061Al base alloy containing 20 vol% of SiC (particle). The analysis has
been done with/without thermal residual stresses for isotropic/anisotropic disc of linearly
varying thickness. The creep behavior has been described by Sherby’s constitutive model.

2. Mathematical Formulation

Consider a thin orthotropic composite disc of 6061 Al-SiCp of density ρ and rotating at a
constant angular speed ω radian/sec. The thickness of the disc is assumed to be h and a and
b be inner and outer radii of the disc, respectively. Let I and I0 be the moment of inertia of
the disc at inner radius a and outer radius r and b, respectively. A and A0 are the area of
cross-section of disc at inner radius a and outer radius r and b, respectively. Then

I =
∫ r

a

h r2dr, I0 =
∫b

a

h r2dr,

A =
∫ r

a

h dr, A0 =
∫b

a

h dr,

(2.1)

σθavg =
1
A0

∫b

a

hσθdr. (2.2)
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For the purpose of analysis of the disc the following assumptions are made.

(1) Material of disc is orthotropic and incompressible.

(2) Elastic deformations are small for the disc and therefore they can be neglected as
compared to creep deformation.

(3) Axial stress in the disc may be assumed to be zero as thickness of disc is assumed
to be very small compared to its diameter.

(4) The composite shows a steady-state creep behavior, which may be described by
following Sherby’s law [20]:

ε̇ = (M(σ − σ0))n, (2.3)

where M = E−1(A Dλλ
3/|br |5)1/n, where ε̇, σ, n, σ0, A,Dλ, λ, b, E be the effective strain rate,

effective stress, the stress exponent, threshold stress, a constant, lattice diffusivity, the
subgrain size, the magnitude of burgers vector, Young’s modulus. The values of creep
parameters m and σ0 are described by the following regression equations as a function of
the particle size (P) and the percentage of dispersed particles (V ) apart from the temperature
(T), which extracted from the available experimental results of Panday et al. [4]:

m = e−35.38P 0.2077T4.98V −0.622,

σ0 = −0.03507P + 0.01057T + 1.00536V − 2.11916.
(2.4)

The different material combinations in the composite are conceptually replaced by an
equivalent monolithic material that has the yielding and creep behavior similar to those
displayed by the composite. Taking reference frame along the principal directions of r, θ
and z, the generalized constitutive equations for an anisotropic disc under multiaxial stress
condition are given as

ε̇r =
ε̇

2σ
{
(G +H)σr −Hσθ −Gσz +

(
fc − ft

)}
, (2.5)

ε̇θ =
ε̇

2σ
{
(H + F)σθ − Fσz −Hσr +

(
fc − ft

)}
, (2.6)

ε̇z =
ε̇

2σ
{
(F +G)σz −Gσr − Fσθ +

(
fc − ft

)}
, (2.7)

where the effective stress, σ, is given by

σ =
{

1
(G +H)

[
F(σθ − σz)2 +G(σz − σr)2 +H(σr − σθ)2

]}1/2

, (2.8)

where F, G, and H are anisotropic constants of the material. ε̇r , ε̇θ, ε̇z and σr , σθ, σz are the
strain rates and the stresses, respectively, in the direction r, θ and z. ε̇ is the effective strain
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rate, σ is the effective stress, and fc, ft are uniaxial compression and tensile yield stresses,
respectively. For biaxial state of stress (σr, σθ), the effective stress is

σ =
{

1
(G +H)

{
Fσθ

2 +Gσr2 +H(σr − σθ)2
}}1/2

. (2.9)

Using (2.5) and (2.9), (2.5) can be rewritten as

ε̇r =
du̇r
dr

=

√
F(G +H)

[
((G/F) + (H/F))x − (H/F) +

((
fc − ft

)
/σθ

)]
[M(σ − σ0)]n

2[((G/F) + (H/F))x2 − 2(H/F)x + ((G/F) + (H/F))]1/2
.

(2.10)

Similarly from (2.6)

ε̇θ =
u̇r
r

=

√
F(G +H)

[
(1 + (H/F)) − (H/F)x +

((
fc − ft

)
/σθ

)]
[M(σ − σ0)]n

2[((G/F) + (H/F))x2 − 2(H/F)x + (1 + (H/F))]1/2
. (2.11)

From the material’s incompressibility assumption, it follows that

ε̇z = −(ε̇r + ε̇θ), (2.12)

where x(r) = σr/σθ is the ratio of radial and tangential stresses and u̇r = du/dt is the radial
deformation rate.

Dividing (2.10) by (2.11)

φ(r) =
((G/F) + (H/F))x − (H/F) +

((
fc − ft

)
/σθ

)
(1 + (H/F)) − (H/F)x +

((
fc − ft

)
/σθ

) , (2.13)

where

φ(r) =
du̇r
dr

· u̇r
r

=⇒ du̇r
u̇r

=
φ(r)
r

dr. (2.14)

Integrating and taking limit a to r on both sides

u̇r = u̇ri exp
∫ r

a

φ(r)
r

dr, (2.15)

where u̇ri is the radial deformation rate at the inner radius. Dividing (2.15) by r and equated
to (2.11)

σ − σ0 =
(u̇ri)

1/n

M
ψ(r), (2.16)
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where

ψ(r) =

⎧⎨
⎩

2
r
·

[
((H/F) + (G/F))x2 − (2Hx/F) + (1 + (H/F))

]1/2
√
F(G +H)

[
(1 + (H/F)) − (H/F)x +

((
fc − ft

)
/σθ

)] exp ·
∫ r

a

φ(r)dr
r

⎫⎬
⎭

1/n

.

(2.17)

Substituting σ from (2.9) to (2.16), it gives

{
(F/(G + F))

[
((G/F) + (H/F))x2 − 2(H/F)x + ((H/F) + 1)

]}1/2
σθ − σ0 =

(u̇ri)
1/n

M
ψ(r)

=⇒ σθ =
(u̇ri)

1/n

M
ψ1(r) + ψ2(r),

(2.18)

where

ψ1(r) =
ψ(r)

{(F/(G +H))[((G/F) + (H/F))x2 − 2(H/F)x + (1 + (H/F))]}1/2
, (2.19)

ψ2(r) =
σ0

{(F/(G +H))[((G/F) + (H/F))x2 − 2(H/F)x + (1 + (H/F))]}1/2
. (2.20)

The equation of equilibrium for a rotating disc with varying thickness can be written as

d

dr
(r hσr) − hσθ + ρω2r2h = 0. (2.21)

Integrating (2.21)within limits a to b and using (2.1) and (2.2)

σθavg =
1
A0

ρω2I0. (2.22)

Substituting σθ from (2.18) into (2.2)

(u̇ri)
1/n

M
=
A0σθavg −

∫b
a ψ2(r) · hdr∫b

a ψ1(r) · hdr
. (2.23)

Using (2.22) and (2.23), (2.18) becomes

σθ =
ψ1(r)

[
ρω2I0 −

∫b
a ψ2(r) · hdr

]
∫b
a ψ1(r) · hdr

+ ψ2(r). (2.24)
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Integrating (2.21)within limits a to r and using (2.1)

σr =
1

r · h
[∫ r

a

σθ · hdr − ρω2I

]
. (2.25)

Thus the tangential stress σθ and radial stress σr are determined by (2.24) and (2.25). Then
strain rates ε̇r , ε̇θ and ε̇z are calculated from (2.10), (2.11), and (2.12).

3. Solution Procedure

The stress distribution is evaluated from the previous analysis by iterative numerical scheme
of computation (Figure 1). In the first iteration, it is assumed that σθ = σθavg over the entire
disc radii. Substituting σθavg for σθ in (2.25) the first approximation value of σr , that is, [σr]1,
is obtained. The first approximation of stress ratio, that is, [x]1, is obtained by dividing [σr]1
by σθ which can be substituted in (2.13) to calculate first approximation of φ(r), that is,
[φ(r)]1. Now one carries out the numerical integration of [φ(r)]1 from limits of a to r and
uses this value in (2.17) to obtain first approximation of ψ(r), that is, [ψ(r)]1. Using this
[ψ(r)]1 and σ0 in (2.19) and (2.20), respectively, [ψ1(r)]1 and [ψ2(r)]1 are found, which are
used in (2.18) to find second approximation of σθ, that is, [σθ]2. Using [σθ]2 for σθ in (2.25),
second approximation of σr , that is, [σr]2, is found and then the second approximation of x,
that is, [x]2, is obtained. The iteration is continued till the process converges and gives the
values of stresses at different points of the radius grid.

For rapid convergence 75 percent of the value of σθ obtained in the current iteration
has been mixed with 25 percent of the value of σθ obtained in the last iteration for use in the
next iteration, that is, σθnext = .25σθprevious + .75σθcurrent.

The strain rates are then calculated from (2.10), (2.11), and (2.12).

4. Numerical Computations and Discussions

For the sake of computation of a rotating disc made of SiCp reinforced 6061Al matrix
composite (Figure 2), we assume that the disc is subjected to an angular velocity of
15,000 rpm andwe choose particle size P = 1.7μm, particle content V = 20%, and temperature
T = 616K. For the anisotropic material G/F = 1.34, H/F = 1.64 and isotropic material
G/F = 1,H/F = 1, creep parameters have been carried out as reported in Gupta and Singh
[19]. The creep behavior of the material is described by threshold stress-based creep law by
assuming a stress exponent (n) of 8. The inner radii a and the outer radii b of all the discs are
taken as 31.75mm and 152.4mm, respectively. A computer program based on the analysis
presented in this paper has been developed to obtain the steady-state creep response of the
composite discs with linearly varying thickness in presence of residual stress and obtained
results are compared to the disc without residual stress to analyze the importance of residual
stress. For the analysis, the tensile residual stress (Δσy) is taken as 32MPa, as observed by
Singh and Rattan [17].
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Figure 1: Numerical scheme of computation.
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Figure 2: A rotating disc of linearly varying thickness.

For the isotropic/anisotropic discs, linearly varying thickness, that is, (ha = 1.44, hb =
0.75), has been taken, where h is the thickness of disc (mm) and the thickness h is assumed
to be of the form h = hb + 2c(b − r) and ha = hb + 2c(b − a), where c = (ha − hb)/2(b − a) is the
slope of a disc.

Using this expression for thickness, (2.1) becomes

A = (r − a)[hb + c(2b − r − a)]
A0 = (b − a)[hb + c(b − a)]

I =
hb
3

(
r3 − a3

)
+
2c b
3

(
r3 − a3

)
− c

2

(
r4 − a4

)

I0 =
hb
3

(
b3 − a3

)
+
2c b
3

(
b3 − a3

)
− c

2

(
b4 − a4

)
.

(4.1)

The creep analysis in a rotating disc made of Al-SiC (particle) composite having linearly
varying thickness has been carried using isotropic/anisotropic Hoffman yield criterion of
yielding and results are compared with those using von Mises yield criterion/Hill’s criterion
of yielding ignoring difference in yield stresses, that is, (Δσy = 0).

Figure 3 shows the tangential stress in an isotropic/anisotropic rotating disc with
linearly varying thickness in presence of residual stress and the results are compared with
those for without residual stress. It is concluded that in the isotropic/anisotropic discs,
the tangential stress is a little lower in region near the inner radius and slightly higher
in region near the outer radius in the presence of residual stress as compared to the disc
without residual stress. It is also noted that the effect of residual stress on tangential stress
distribution is lesser in an anisotropic rotating disc of linearly varying thickness compared
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Figure 3: Variation of tangential stress along the radial distance in the isotropic/anisotropic discs rotating
with an angular velocity 15000 rpm at 616K.

to an isotropic disc of linearly varying thickness. Also the tangential stress becomes more
uniform in the presence/absence of residual stress in an anisotropic disc compared to an
isotropic disc.

Figure 4 shows the variation of radial stresses along the radius of the isotrop-
ic/anisotropic rotating disc in presence/absence of residual stress. It is observed that in
presence of residual stress, the radial stress developing due to rotation is slightly lesser than
the radial stress of an isotropic/anisotropic disc without residual stress, although the change
in the magnitude of radial stress distribution is very small in the isotropic/anisotropic discs
with linearly varying thickness due to presence of residual stress. As one moves from the
inner radius to the outer radius of the disc, the radial stress increases from zero and reaches a
maximum near the middle region of the disc with linearly varying thickness and then starts
decreasing towards the outer region.

Figure 5 shows that in presence of tensile residual stress, the tangential strain rates
enhance significantly in both the isotropic/anisotropic discs compared to the discs without
residual stress. Also the difference in the tangential strain rate caused due to presence and
absence of residual stresses (i.e., the residual effect) goes on increasing with radial distance
and the extent of increase in difference is maximum in the region near the outer radius in both
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Figure 4: Variation of radial stress along the radial distance in isotropic/anisotropic discs rotating with an
angular velocity 15000 rpm at 616K.

the isotropic/anisotropic discs having linearly varying thickness. Secondly, it is also noticed
that variation in magnitude due to residual stress in an anisotropic disc is smaller compared
to that for an isotropic disc. In an isotropic/anisotropic disc with/without residual stress,
the tangential strain rates are highest at the inner radius and then decrease continuously,
when one moves towards the outer radius of the disc. The trend of variation of tensile
strain rate in tangential direction remains the same in an isotropic/anisotropic disc in the
presence/absence of residual stress, but the magnitude can be reduced in an anisotropic
disc.

Figure 6 shows that in the presence of residual stress, the radial strain rate in an
isotropic/anisotropic rotating disc with linearly varying thickness and results are compared
with those for without residual stress. By seeing both the discs of isotropic/anisotropic
material, it is concluded that in the absence of residual stress, the nature of the radial strain
rate which was compressive becomes tensile at the middle of the disc in the presence of
residual stress. It is also noticed that the difference in strain rate caused due to the presence
and absence of residual stresses is smaller in an anisotropic disc as compared to that for an
isotropic disc. Another point to be observed is that the magnitude of radial strain rate firstly
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Figure 5: Variation of tangential strain rate along the radial distance in isotropic/anisotropic discs rotating
with an angular velocity 15000 rpm at 616K.

increases rapidly with radial distance and then starts decreasing. It reaches a minimum
before increasing again towards the outer radius in both the isotropic/anisotropic discs with
residual/without residual stress.

From previous discussion, it can be concluded that residual stress may cause signif-
icant distortion in an isotropic/anisotropic rotating disc having linearly varying thickness,
but the magnitude of distortion can be reduced by selecting anisotropic disc.

5. Conclusion

The previous results and discussion conclude the following.

(1) The presence of the thermal residual stress developing due to rotation does not
significantly affect the distribution of stress in the isotropic/anisotropic disc having
linearly varying thickness, but it affects the strain rates significantly.

(2) The magnitude of variation of tangential stress and the radial stress obtained in the
anisotropic disc with/without residual stress are relatively smaller as compared to
that for isotropic rotating disc.
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Figure 6:Variation of radial strain rate along the radial distance in isotropic/anisotropic discs rotating with
an angular velocity 15000 rpm at 616K.

(3) In the isotropic/anisotropic disc, the tangential strain rate is more in presence of
thermal residual stress. Also, the extent of difference in creep caused due to the
presence/absence of the residual stress increases as one moves towards the outer
radius of the disc, although themagnitude of this difference is smaller in anisotropic
disc compared to that in isotropic disc.

(4) In the presence of residual stress in the isotropic/anisotropic disc, the nature of
radial strain rate changes from compressive to tensile, particularly in the middle
region of the disc with linearly varying thickness as compared to the disc without
residual stresses. Further, the magnitude of residual’s effect in the anisotropic disc
is significantly lower as compared to those for the isotropic disc.

(5) For designing a rotating disc with linearly varying thickness operating at elevated
temperature, the presence of residual stress needs attention from the point of view
of steady-state creep rate. However, the effect of residual stress on the steady-state
creep rate in the anisotropic disc is observed to be significantly lower than that
observed in the isotropic disc.
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