COMPUTATION OF HILBERT SEQUENCE FOR COMPOSITE QUADRATIC EXTENSIONS USING DIFFERENT TYPE OF PRIMES IN Q

M. HAGHIGHI and J. MILLER Department of Computer Science Bradley University Peoria, IL 61625 USA

(Received April 3, 1995 and in revised form July 3, 1995)

ABSTRACT. First, we will give all necessary definitions and theorems. Then the definition of a Hilbert sequence by using a Galois group is introduced. Then by using the Hilbert sequence, we will build tower fields for extension K/k, where $K = k(\sqrt{d_1}, \sqrt{d_2})$ and k = Q for different primes in Q.

KEY WORDS AND PHRASES: Composite quadratic extension, Hilbert sequence 1991 AMS SUBJECT CLASSIFICATION CODES: 12A65.

1. INTRODUCTION

Let K/k be an extension of degree n. We consider the tower of fields and a tower of integer rings for this extension

$$K \supseteq \dots \supseteq L \dots \supseteq k$$

$$O_K \supseteq \dots \supseteq O_L \dots \supseteq O_k$$
(1.1)

A prime ideal P in K determines a prime P_L in each field of the tower, where each P_L is divisible by P. Let p be a rational prime that is divisible by all these prime ideals P_L . Then we have:

$$P_L = P_k \cap O_L$$
, $p = P_L \cup Z$.

If the prime ideal p in k does not split into n distinct factors of P in K, how far can we go in terms of an intermediate field where splitting occurs? This will be answered later.

First we define what is meant by order and degree

DEFINITION 1.1.

- (a) Order $P/p = e = P^{e}|p, p^{e+1}|/P$
- (b) Degree $P/p = f = N_{k/k}P = p^f$

LEMMA 1.2. Both order and degree are multiplicative

Order P/p =order $P/P_L \cdot$ order P_L/p

Degree P/p = degree $P/P_L \cdot$ degree P_L/p

Let us assume here that K/k for [K; k] = n is a normal extension. This makes K/L normal for each L in the tower but not in L/k. Let p have factors $P_L^{(j)}$ in L for j = 1, 2, 3, ..., g,

$$p = \bigcap_{i=1}^{g} P_{L}^{(j)e}, N\left(P_{L}^{(j)}\right)^{f} = N(p)^{f}$$
(1.2a)

$$n = e.f.g. \tag{12b}$$

Let order K/kP = e and degree K/kP = f. Then for P = p, we have order p = degree p = 1 from k to k.

Thus from k to K the order has grown from 1 to e and the degree has grown from 1 to f and the number of factors in (1.2a) and (1.2b) has grown from 1 to g. We arrange the tower fields in 1.1 in such a way that will separate the growths for K/k normal.

Let K_Z be a maximal L in $\{L : K \supseteq L \supseteq k\}$. K_Z is called the "splitting" field of P in K/L and is such that.

degree
$$P_L/p = 1$$

order $P_L/p = 1$

Let us assume that K_T is a maximal L in $\{L: K \supseteq L \supseteq k\}$. K_T is called the "inertial" field of P in $K/_L$ and is such that

degree
$$P_L/p = f_L \ge 1$$

order $P_L/p = 1$.

This maximality process can be performed again for all L such that:

degree
$$P_L/p = f_L \ge 1$$

order $P_L/p = e_L$ for $(e_L, p) = 1$.

The maximal field here is called the "first ramification" field K_{v_1} .

For this field, $F_L = f$ and e_L is a part of *e* prime to *p*. This part is called "tame ramification" If order *e* is divisible by *p*, the ramification is called "wild." Thus we have the new tower fields for extension K/k:

$$K \supseteq \dots \supseteq K_{v_1} \supseteq K_T \supseteq K_Z \supseteq k \tag{1 2c}$$

It is easier to define 1.2c by the Galois group methods.

DEFINITION 1.2. Let K/k be a normal extension. The Hilbert sequence for an ideal P in K is given by the subgroups of G = Gal(K/k) as follows:

$$\begin{array}{l} K \supseteq \dots \supseteq K_{v_1} \supseteq K_T \supseteq K_Z \supseteq k \\ 1 \subseteq \dots \subseteq G_{v_1} \subseteq G_T \subseteq G_Z \subseteq G \end{array}$$

$$(1.3a)$$

$$k_Z \stackrel{G}{\leftrightarrow} \{ u \in G : P^u = P \text{ or } A \equiv 0 = A^u \equiv 0 \mod p \} = G_Z$$
(1.3b)

$$k_T \stackrel{G}{\leftrightarrow} \{u \in G : P^u \equiv A \mod p\} = (G_{v_0})$$
(1.3c)

$$k_{V_r} \stackrel{G}{\leftrightarrow} \left\{ u \in G : A^u \equiv A \mod p^{r+1} \right\} = G_{v_r}, \quad (r \ge 0).$$

$$(1.3d)$$

Where A is an arbitrary integer in O_k . Since G_Z fixes P, then G_T , G_v , and so on are invariant subgroups of G_Z . Since G_Z preserves P, it is one of g conjugates,

$$|G/G_Z| = g, \tag{1.3e}$$

also, since G_T preserves each residue class mod P,

1

$$G_Z/G_T| = |(O_K/P)/(O_k/P)| = |c(f)| = f,$$
 (1.3f)

which refer to the cyclic Galois group of an extension of a finite field. Furthermore

$$|G_T| = e. (1.3g)$$

If $r = e_0 p^w$, where $(e_0, p) = 1$, then there is a cyclic quotient,

$$G_T/G_{v_0}| = e_0 \tag{1.3h}$$

followed by future quotient groups of type $C(p) \times C(p) \times ... \times C(p)$, with

$$G_{v_r}/G_{v_{r+1}} = p^{w_r}(w_r \ge 0, \Sigma w_r = w).$$
(1.31)

Here there is only a finite number $w_r > 0$, indeed $p^w | n$ More general details of the above can be found in [1], [2], [3], [4], [5], [6], [7]

2. COMPUTING HILBERT SEQUENCE FOR $K = k(\sqrt{d1}, \sqrt{d2})$, FOR k = Q.

Computing Hilbert sequence for $K = k(\sqrt{d})$, k = Q, is contained in [1, p 89]. So we process to $K \supseteq k_i = Q(\sqrt{d_i})$ for i = 1, 2, 3. Let $d_3 = d_1 \cdot d_2/t^2$ which means d_3 is square factor free, where d_i is the discriminant of k_i .

Let $G = \{1, u_1, u_2, u_3\}$, where $u_i : \sqrt{d_i} \to \sqrt{d_i}, \sqrt{d_j} \to -\sqrt{d_j}$ for $i \neq j$, then we have $k_i = Q(\sqrt{d_i}) \stackrel{G}{\Leftrightarrow} G_i = \{1, u_i\}$.

Here we will build a tower of fields $K \supseteq ... \supseteq K_{v_1} \supseteq K_T \supseteq K_Z \supseteq Q$ by using the Hilbert sequence in Definition 1.2 for different types of primes p in Q.

a Let $p = P_1 P_2 P_3 P_4$ (unramified) where the P_i 's are primes in K for $(d_1/p) = (d_2/p) = (d_3/p) = 1$ where:

 $(a/p) = \begin{cases} 1 \text{ if } x^2 = a \mod p \text{ solvable for } x \text{ integer, } a|p \\ -1 \text{ if } x^2 \neq a \mod p \text{ for } x \text{ integer, } a|p \\ 0 \text{ if } a|p. \end{cases}$

Here f = e = 1 then g = 4 by 1.1. From $|G/G_Z| = g = 4$ in (1.3e) we get that, $|K_Z/k| = 4$ and $K_Z = K$ and from $|G_Z/G_T| = f = 1$ in (1.3f), $|K_T/K_Z| = 1$ and so $K_T = K$. Since $|G_T| = e = 1$ in (1.3g), and from $|G_T/G_{v_0}| = e_0 = 1$ in (1.3h) and (1.3i) for r = 0, 1, 2, 3 then $|G_{v_r}/G_{v_{r+1}}| = |K_{v_r+1}/K_{v_r}| = 1$

$$K_{v_1} = K_{v_2} = K_{v_3} = K_{v_4} = K$$

Thus, we have the following field tower for K/k:

$$k=Q\subseteq K_Z\subseteq K_T\subseteq K_{v_1}\subseteq K_{v_2}\subseteq K_{v_3}\subseteq K_{v_4}\subseteq K$$

$$Q \subseteq K = K = K = K = K = K = K$$

b Let $p = P_1P_2$ (unramified) for $-(d_1/p) = -(d_2/p) = (d_3/p) = 1$. Here $e_1 = e_2 = 1$, $f_1 = f_2 = 2$ and g = 2. Again from $|G/G_Z| = g = 2$, we have: $|K_Z/k| = 2$ and by (1.3b) $K_Z = k_3 = Q(\sqrt{d_3})$. From $|G_Z/G_T| = f = 1$ then $|K_Z/K_T| = 2$ and then $K_T = K$ Using the same proof as above: $K_{v_1} = K_{v_2} = K_{v_3} = K_{v_4} = K$. This produces the following tower fields for K/k:

$$k = Q \subseteq K_Z \subseteq K_T \subseteq K_{v_1} \subseteq K_{v_2} \subseteq K_{v_3} \subseteq K_{v_4} \subseteq K$$

$$Q \subseteq k_3 \subseteq K = K = K = K = K = K$$

c $p = P_1^2 \cdot P_2^2$, where p is odd and $p|d_1, p|d_2, p|d_3$ and $(d_3/p) = 1$. Here $e_1 = e_2 = 2$ and $f_1 = f_2 = 1$ and so g = 2 Since again $|G/G_Z| = g = 2$ then $|K_Z/k| = 2$ and by (1 3b) $K_Z = k_3 = Q(\sqrt{d_3})$. From $|G_Z/G_T| = f = 1$ then $K_T = K_Z = k_3 = Q(\sqrt{d_3})$ From $|G_T| = e = 2 = e_0 \cdot p^w = 1 \cdot 2^1$ then by (1.3i) $|G_{v_r}/G_{v_{r+1}}| = p^w r = 2^1$ and from here for r = 0:

 $|G_{v_0}/G_{v_1}| = |K_{v_1}/K_T| = 2 \text{ and thus } K_{v_1} = K \text{ and also} \quad K_{v_2} = K_{v_3} = K_{v_4} = K, \text{ because}$ $|G_{v_r}/G_{v_{r+1}}| = |K_{v_{r+1}}/k_{v_r}| = 2^0 = 1 \text{ which produces the following tower fields for } K/k$ $k = Q \subseteq k_Z \subseteq k_T \subseteq k_{v_1} \subseteq k_{v_2} \subseteq k_{v_3} \subseteq k_{v_4} \subseteq K$

 $Q \subseteq K_3 = k_3 \subseteq K = K = K = K = K.$

d. $p = P_1^2$ for p odd, $p|d_1$, $p|d_2$, $p|d_3$, $(d_3/p) = -1$ with the same proof as above, the following tower fields are produced.

$$K_Z = Q, K_T = k_3$$
, and $K_{v_1} = K_{v_2} = K_{v_3} = K_{v_4} = K$.

e. $P = p_1^2 p_2^2$, and $d_1 \equiv d_2 \equiv 1^2 \pmod{16}$, $d_3 \equiv 1 \pmod{8}$ produces the tower $k = Q \subseteq k_Z \subseteq k_T \subseteq K_{v_1} \subseteq K_{v_2} \subseteq K_{v_3} \subseteq K_{v_4} \subseteq K_{v_4}$

$$Q = Q \subseteq k_3 \subseteq K = K = K = K = K$$

f. $p = p_1^2$ for $d_1 \equiv d_2 \equiv 12 \pmod{16}$, $d_3 \equiv 5 \pmod{8}$. Here e = 2 and g = 1 then f = 2. From $|G/G_Z| = g = |K_Z/Q| = 1$, $K_Z = Q$ and by $|G_Z/G_T| = f = |K_T/K_Z| = 2$, K_T is a quadratic extension over Q, then by (1.3c) $K_T = k_3$, $e = 2 = e^0 \cdot p^w = 1.2^w$ and $|G_{v_r}/G_{v_{r+1}}| = 2^{w_r}$ where Σ $w_r = w$ and $w_r \ge 0$. From $|G_{v_0}/G_{v_1}| = |K_{v_1}/K_T| = 2^0 = 1$, $K_{v_1} = k_3$. $|G_{v_2}/G_{v_1}| = 2^1$ $= |K_{v_2}/G_{v_1}| = 2$, then $K_{v_2} = K$, and with some proof $K_{v_2} = K_{v_3} = K_{v_4} = K$ producing $k = Q \subseteq K_Z \subseteq K_T \subseteq K_{v_1} \subseteq K_{v_2} \subseteq K_{v_3} \subseteq K_{v_4} \subseteq K$

$$Q = Q \subseteq k_3 = k_3 \subseteq K = K = K = K.$$

- g. $p = p_1^2 p_2^2$ for $d_1 \equiv d_2 \equiv 8 \pmod{16}$, $d_3 \equiv 1 \pmod{8}$ has the same tower fields as e.
- h. $p = p_1^2$, for $d_1 \equiv d_2 \equiv 8 \pmod{16}$, $d_3 \equiv 5 \pmod{8}$ also has the same Hilbert sequence as f.
- i. $p = p_1^4$ for $d_1 \equiv d_2 \equiv 8 \pmod{16}$, $d_3 \equiv 12 \pmod{8}$ has the following tower fields

 $k = Q \subseteq k_Z \subseteq K_T \subseteq K_{v_1} \subseteq K_{v_2} \subseteq K_{v_3} \subseteq K_{v_4} \subseteq K$

$$Q = Q = Q = Q \subseteq k_3 = k_3 \subseteq K = K.$$

We showed in the above cases, if the prime ideal p of k does not split into n distinct prime factors of K,

how we can build intermediate fields K_Z , K_T , K_{v_0} , ... where splitting of prime p occurs.

ACKNOWLEDGMENT. Thanks to the referees for many valuable suggestions for improving the content of the paper.

REFERENCES

- [1] COHN, H., Introduction to the Construction of Class Fields, Cambridge University Press, 1985
- [2] HILBERT, D., Die theorie der algebraischen Zahlkörper, Jahrsber. Deutsch. Math. 4 (1897), 173-546.
- [3] HILBERT, D., Über die theorie des relativ quadratischen Zahlkörpers, Math. Ann. 51 (1899), 1-27.
- [4] HECKE, E., Vorlesungenüber die theorie der algebraischen, Zahlem. Leipzig: Teubner, 1923.
- [5] HASSE, H., Klassenkörper theorie, Original Lecture Notes, Marbug, 1933.
- [6] HAGHIGHI, M., Relative Integral Bases for Algebraic Number Fields, Ph.D. Dissertation, Dept of Mathematics, CUNY, 1982.
- [7] McCARTHY, P. J., Algebraic Extensions of Fields, Blaisedell Publishing Company, 1966.