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ABSTRACT. In this paper we study finite difference procedures for a class of parabolic equations

with non-local boundary condition. The semi-implicit and fully implicit backward Euler schemes

are studied. It is proved that both schemes preserve the maximum principle and monotonicity of

the solution of the original equation, and fully-implicit scheme also possesses strict monotonicity.

It is also proved that finite difference solutions approach to zero as t --, oo exponentially. The

numerical results of some examples are presented, which support our theoretical justifications.
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1. INTRODUCTION.

In this paper we study finite difference approximations to the solution of the following

parabolic equations with non-local boundary condition:

u Au 0 in

(.) (=,,0) (,), (=,) a,
u(z,y,t) f, K(z,y,f, rl)u(,l,t)dfdrl, on Of x [0,T),

where QT f} x (0,T), T > 0, ft (0,1) x (0,1), (=,y) 0 and K(=, y, f, r/) are known

functions. In addition, it is assumed that for some constant 0 < p < 1 the kernel K(x, y,f,

satisfies

(1.2)
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In [4, 5] Day considered the one-dimensional problem on (-L, L), Z, > 0, with the boundary

conditions

(1.3) u(-L, t) f (x)u(x, t)dz and
L

(L, ) ,()(,)d,
L

and showed that if

(1.4) [fl(x)idx < 1 and If2(x)ldx < 1,
L L

then, for the solution u,

(,5) v’()= m lu(z,)l

is decreasing in t. The solution u represents the entropy in a quasi-static theory of thermoelasticity

[5, 6], so that Day’s results shown that the maximum modulus of the entropy is decreasing in

time. In [8] Friedman extended Day’s results to a general parabolic equation in n-dimensions of

the ,form

with a(z,t) >_ 0 and with the initial and boundary conditions as given in (1.1). Moreover,
Friedman proved that there exists Co > 0 and A > 0 such that

(1.8) U(t) _< Coe-x’, ’t >_ O,

i.e., U(t) decays to zero exponentially as t --* oo. Problems similar to the above also arise from
the determination of the unknown source parameter [2, 9] and other related problems [10].

For physical applications of the problem (1.1), let us consider first the coupled partial
differential equations

aO== b= + OoBv==t, Av==== BO==

which describe the quasi-static flexure of a thermoelastic rod [5]. Here 0(z, t) is the temperature,

00 is a uniform reference temperature, v(x, t) is the transverse displacement, a is the conductivity,

b is the specific heat at the constant strain, the constant A is the flexure rigidity and the constant

B is a measure of the cross-coupling between thermal and mechanical effects. We assume that
the ends z -L, and z L, to be maintained at the reference temperture 00 and to be clamped,
that is

O(-L,t) (9(L,t) O,

,,(-Z, t) ,,,(-Z, t) ,,(Z;, t) ,,,(C, t) O.

Let

b,, (e-eo) +
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be the entropy, then after some mathematical manipulations [5] we obtain that u satisfies

B2

au,, (b + tTo-x- u,

with the boundary conditions

a(-L,t) OB (L-3x)u(x,t)dx,2bAL L

u(L,t) OoB /_c (L + 3)(,t)d2bAL2 L

and an appropariate initial condition.

For the second example we consider the equations [1, 3, 5]

00== hot + oC(3 + 2p)v=t

(, + 2,),== ,(3, + 2,)t=

which describe the behavior of a slab -L <_ z <_ L made of homogeneous and isotropic material.

Here $(z,t) is the temperature, v(x,t) is the displacement component in the direction of the

z-axis, 0 is a uniform reference temperature, ct is the coefficient of expansion, and A, # are the

elastic moduli. The boundary conditions are

0(-L, t) 0(L, t) Oo, (-L, t) (L, t) 0.

Let

b

o ( 0) + (3 +

be the entropy, one has [5] that u satisfies

auzz b*ut

with the boundary conditions

=(-L, t) =(L, t)
b*’b 1

u(x,t)dz,b 2L L

where

b* b + 8oaz (3,A + 2ft)2
A + 2/.t

For the detail derivations of the above equations we refer to [1, 3, 5].

The condition (1.2) implies for the first problem that 500B < 3hA and for the second
b --b

problem that
b

< 1 or 90c(3A- 2p) < ( + 2p)b.

In this article we study finite difference schemes for (1.1). The finite difference procedures

proposed below preserve monotonicity, the maximum principle and the exponential decay (if the
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kernel is non-negative) of the solution for equation (1.1); therefore, they are considered as good
numerical approximations.

Let h Az Ay 1/N for some integer N > 1, and let r > 0 be a small step-size in time

with t. nr, n 0,1,.... For a smooth function v(x, y) E C2() we assume that the following
numerical integration formula is valid:

N

K(x, y, , ?)v(f, ?)dfd7 w,.,,K(z, y, xm, y) v,,, + O(h2),

where w,,,, > 0 are weights and v,,, v(z,,,y) with x,, max, y IAy, rn, 0,1,...,N.
For any 0 < p" < 1, we restrict h to be so small, say for some h0 > 0, 0 < h _< h0, that

N

(1.10) _,
m,l=O

Here and throughout this paper we assume that h is small enough so that (1.10) is satisfied. In
fact (1.10) serves as a discrete version of (1.2). In order to obtain the numerical solution which

preserves as many properties of the solution as possible, (1.10) is a necessary and cannot be

considered as a constraint on space discretization. For example the weights can be chosen by
using trapezoidal rule,

AxAy,

w,,,t 1/4 AzAy,
m,l 1,2,...,N- 1;
rn, 6 {0,g};
otherwise.

Define the following shorthand notations

g. g.-I
O,g"

gi+l,j + gi-l,j " gi,j+ + gi,i- 4gi,jZl2gi,i h

We now define our first numerical scheme: Find {Ui } such that

(1.12)

0,U",j AU.". 0, i,j 1,2,.. N 1 n > 1I2 *,

U,i 4,i, i, j O, 1, 2, ., N,
U.". Ki,j ({U,,}) {i,j} {0, g} # }, n > 1

where

N

(1.13) K,,, ({U$.,}) w,n,,K(z,,yi,z,,,y, U,,,, {i,j} ’]{0, N} # , n _> 1.

It is clear that (1.12)-(1.13) is a fully-implicit scheme that requires a full-matrix to be

solved at each time level due to the boundary integration. For small h > 0, the matrix will be

diagonally-dominant and can be solved by Gaussian-elimination or any standard method.
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Since (1.12)-(1.13) results in an error O(h + r), we may propose the following numerically

economical semi-implicit scheme: Find {W,.} such that

(1.14)

n>_l,

n>l.

Clearly, (1.14) results in an error O(h +r) and is easy to implement numerically since only a pent-

diagonal matrix system needs to be solved at each time level. Therefore, it is a very economical

and fast algorithm. In addition, it is also unconditionally stable. Alternative methods, say ADI,
may also be used to solve (1.14).

2. STABILITY, MONONOTONICITY AND EXPONENTIAL DECAY.

In this section we prove some monotonicity, maximum principle and exponential decay
properties for our numerical solutions U.". and W.". Define

(2,) v"= ma IV,,l,
O_i,j_N

W" 0 <_ i,j _< N - max IW,l.

THEOREM 2.1 Assume that U.". is a solution of (1 12)-(1 13) and the initial approximationlJ
Ug. 0 for i, j 1, 2,..., N 1 then the following holds:t,.

(2.2) 0 < U" < U’-I Vn > 1

PROOF. We show that

(2.3) 0 < U" < U"-1, Vn _> 1.

We observe that U" >_ 0 for all n >_ 0. Consider the first two levels n 0 and n 1. Assume to

the contrary that U _< U1, then U > 0. If U IUio,j, Uo,j, > 0 the case Uo,j < 0 can be
treated in a similar way) for some (i0,j0), then it follows from the discrete maximum principle [7]
that this maximum is attained at the boundary. Thus (io,jo) can be selected to be a boundary
point. Then, we see from (1.10), (1.12) and (1.13) that

(2.4) U Ig,,jo ({U,,}) _< p’U

which is impossible unless U 0 since p < 1. This contradicts U > 0. By (1.12), U 0 will

lead to U.. 0 for i,j 1 2,..- N 1 which is a contradiction Thus, 0 < U < UI,

Now we consider the levels n 1 and n 2. By repeating the above argument with U..
s the initial data, we can show that 0 < U < gl. Thus, (2.8) is proved by repeating the above

argument for higher levels. Q.E.D.

THEOREM 2.2. Assume that W..". is a solution of (1.14) and the initial approximation
0 for i,j 1, 2,.., N 1, then the following holds:

(2.5) 0 < W" < W"-I, Vn >_ 1.
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PPOOF. We show first that W > 0. If on the contrary V 0, we will get l/V/,i 0 for

i, 1,2,... ,N- 1 by (1.14). This contradiction proves W > 0. By (1.10), we get

Iw:, l _< :w < w, {i,i} [’]{0,N} # o.

According to the discrete maximum priciple [7],

(2.7) W maxtid} CI{O,N}#gIWil,jl < WO.

The remainder of the proof follows from an argument similar to the above and mathematical

induction.

Q.E.D.

REMARK. Theorem 2.1 and Theorem 2.2 imply the unconditionally stability of numerical

solutions U.n
.,,j and W..n.,,J, even though W..n.,, is the solution of semi-implicit finite difference scheme.

In [8] b’Yiedman proved that V(t) decays exponentially when (1.2) is satisfied. We have

proved that both {U’} and {W’} possess the strict monotonicity. In fact numerically there
exists , > 0, as suggested in the examples of section 5, Figure 6 and Figure 7, such that

Un+l
(2.8) log U"

,,-AAt as n --, oo,

and same is true for Wn. This motivates the justifications of the exponential decay of U and
W when the kernel is non-negative.

THEOREM 2.3 Under the assumption that U.n. is the solution of (1 12)-(1.13) and thet,.I

kernel K(x, y, , r/) _> 0, there exists a positive constant A > 0 such that for U maxi,j [U0.’JI,

(2.9) U" _< U0e-xt" for all n _> 0.

PROOF. Let V(z, y, t) e-xt(2U (z2 + V2)) where e and are two positive constants
to be chosen below. It follows easily that there exists e0 > 0 such that

e y U0V(x,y,O)=2UO--(x+ )> on f if 0<e<eo.

Also, since Ki,j({ l }) _< p" < l, we find

Kj({2U }) _< p*2U < 2U

and then, there exists a positive constant el > 0 small enough such that for all 0 <

Vn" Ki,.i({,,, > Vn,t}) {i,j} N{O,N} # O, n >_ 1.

Thus, we choose e rain{e0, ea }. It follows from a simple calculation that

,,, e-at"+’ e-/eX(2U i(z + y) i,j 1,2,...,N 1.
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where f E (O,r). As Aer -- 0 when A -* O, we have for some o Ao() > 0 or A0
min{1/v,/(2eU)}) such that for all 0 < A _< A0,

i,j 1,2,-..,N- I.

Now letting Z.n. V..".- U.n. with A A0 and e chosen above, we see from (1.12) and the analysis
1,3 ,3

above that

We now show that Z.n. > 0. Assume that no is the first level that Z.n. may take the negative
s,3 ,

values, then we have (io, jo) such that

11o norain Zi,j < O.ZiJ ij

It follows from the discrete maximum principle [5] that (i0,j0) must be the boundary point,

otherwise OtZjo A2Z.n. < 0 which is not possible. Thus we have from the positivity of
SO .0

kernel K and (2.10) that

-Z,:,j < Kij ({-Z,,}) S

nowhich implies that Zio,j 0, a contradiction. Hence, we have proved that U.n.,J _< V..".,,. Using a

similar argument by treating -U.. it cm be shown that U.. > -V..’. This completes the proof.
s,$ s,$ s,$

.E..

THEOREM 2.4. Assume that W.. is the solution of (1.14), then there exists a positive

constant A > 0 such that W maxij

(2.11) W" _< We-" for all n _> 0.

PROOF. The proof consists of an argument similar to that given in the proof of Theorem

2.3, we therefore only give the outline.

Let V(z, y, t) e-t(2W 2 y(z + )) and as before, let e0 be chosen so small that

V(z, y, O) > W for 0 < e _< e0. Because the numerical integration uses the data on the previous

level for the boundary condition, we need to first select a ,k0 > 0 such that 0 < A _< A0,

e-r > p* i.e. e-’"2W > p*2W

Since e-r -- 1 when , 0, the existence of such a )o is not a problem. With eo and Ao chosen

as above, we then select el > 0 so small that for 0 < e _< el
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Using e min{e0, el } and the A0 selected above, we select A1 > such that for 0 < A < A,

,n > O, i,j=l,2,...,N-1.

We take A min{A0, A }. We omit the reminder of the proof which is the same as that given in

the proof of Theorem 2.1 with the e and A as chosen here. Q.E.D.

3. CONVERGENCE AND ERROR ESTIMATES.

In this section we study the convergence and error estaimes of the numerical procedures

proposed in section 1. First, we show the following result.

THEOREM 3.1. Assume that in addition to (1.2), the kernel K in problem (1.1) satisfies

K e C2(Ofl x fl) and

K(,,,V) > 0, V (z,,,V) e on x n.

If the solutions u of (1.1) is known apriori to be smooth enough, u 6 C4’2(,T), then there exists

a positive constant C C(llullc,,, Ilgllv, > 0 such that the solution U". of (1 12) satisfies

(3.2) .max IU2,% =(=,#,-)1 < C(h + ").

PROOF. Let e. U.. -u(xi yj,t,) for all i, j, n then we see from (1.10) and (1.12)
that e.n satisfies1,3

(3.3)

O$e9 A2e.n .r.n.
s,$ 1,3

ei,y O,

eg.=Ki,j({" }) .n.

i,j l,2,...,N-1, nkl,
i,j 0,1,2,. -,g,

{i,j} l{0,g} # $, n > 1.

Here r.. and ..,,3 ,,3 are the truncation errors induced by the diseretization of differential equation
and numerical integration respectively. Then there exists L0 > 0 such. that

(3.4) m.ax Ir,l -< o(h= + r), .m I,,#1 _< Lo(h + "r).

We now define an auxiliary function 0(z, y) by

(3.5) 0(z, u)
z v
4

L(h + r)

then it is easy to verify that

(3.6) -A2Oij Lo(h2 + r) and L00 Oi,j - (h2 +

Let g.n e.n. 0ij for all i, j, n, we find from (3.3) and (3.6) that
1,3

(3.7)

8Z,i A Z..,,, _< 0,
Zg.= -0ij < 0,1,3

Z"n" Kid (1Za,, }) + Ki,j ({0m,t }) Oi,j + e9"

i,j=l,2,...,N-1,

i,j 0,1,2,. .,N,

{,j} fl{0,N} ,
n>l,

n>l.
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We now show that there exists C > 0 such that Z.". < C(h2 + r) for all i,,n. If Z" has a

positive maximum, then according to the discrete’ maximum principle then it must be attained

at a boundary point. Assume that jr Z70i0 > 0 with no _> 1, is the positive maximum. From
the boundary condition in (3.7) we see that

M < p’M + (,o" + l)ma.x 1o,l +m ,,
p" + 3

Lo(h + r),<p’M+
2

which implies

p" + 3
Lo(h2 + r).(3.9) M <

2(1 p*)

Hence, we have proved that

p*+3(3.10) ei,j < 0ij + 2(1 p*) L(h + r).

If instead Z.. eg.
,n ,n +Oid, then a similar argument gives

(3.11) p’+3
2(1 P’i Z’(h:z + ’r).

Therefore, we find from (3.10)-(3.11) that

(3.12)
p*+3

lei,jl < le,,l + 2(1 p.) L(h2 + r)

< 3Lo
1 p"--(h +

which is (3.1). The proof is complete. Q.E.D.

THEOREM 3.2. Under the same assumptions of Theorem 3.1 16t W.. be the solution of

(1.14). Then for some positive constant C > 0, independent of h and r, we have

W,"n" -tt(zi, f-)l < C(h2 + "r).(3.13) max ,, I/#,

PROOF. It follows by a similar argument to that given in the proof of Theorem 3.1. Q.E.D.

REMARK. The error estimates in (3.2) and (3.13) are uniform for all 0 < t < oo if T oo,

which is guaranteed by the the condition (1.2).

4. GENERAL SMOOTH KERNEL K(x, y, f, r/).

In this section we consider the effect on the original problem (1.1) when the kernel condition

(1.2) is replaced by:

(4.1) 0 < K(x,V,,y) < Ko, (z,V,,y) E On x
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In general if the condition (1.2) is not satisfied, then the numerical procedure of (1.12) or

(1.14) may not be stable uniformly for 0 < t < oo. This will be demonstrated in both theoretically

and through numerical examples below. For these kernels, the stability will depend upon K0 and

T > 0. Here we consider a class of kernels which satisfy (4.1) but not (1.2).

We first consider the continuous problem. Let w(x, y) be an auxiliary function defined by

(4.2) 1 _< w(x,y) 1 + M ((x- 1/2)d + (y- 1/2)d), d > 0,

where M and d (even) are two positive constants to be chosen. Clearly, we have

min(4.3)
(,,u)eon

Let u(x,y t) be a solution of (1.t) with K satisfying (4.1) and set Let v(x y,t) (,,y,0 and(,)
find that v satisfies

in QT,

(, ) e
(x,0 e o,

where

(,)(,,,) K(,, ,) W(,)

Thus, we have from (4.1) that

1 + M(1/2)-1 w(f,r/)dfdr/.

A simple calculation shows that if d is an even integer,

f
(4.7) / w(, 7)d&7 1 + M d+l

Then it follows that

(4.8) IR(x,y,,,1)ldd,z _< Ko
1 4- M(1/2)d-1 "* d 4- 1

Hence, taking d 2K0 and M M(Ko) > 0 large enough, we can achieve

Ko 2Ko(4.9) IR(x, y, , 7)ld&7 <_
d +"’i -< 2Ko 1

< 1, v (,)e0.

For w(x,y) chosen in this way, we have for some K K(Ko) > 0 that I,’X/l K1.

Now consider the transformation v(x,y,t) =’ eXtY(:r., y,t) with A _> KI, we find that Y
satisfies

(4.10)

in QT,

(x, ) e n
(x,t)eOn, t>o.
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REMARK. We now see from [5] that Y possesses the maximum principle, monotonicity and

exponential decay properties, which in turn results in monotonic and stable numerical schemes if

it is discretized as (1.12) or (1.14) in an appropriate way.

Ikrning to numerical approximations for (1.1) with condition (4.1), we let " T/Nz where

Nz is a positive integer. Numerical solutions to the problem, ,,j
or ,,j, are defined as in (1.12)

or(1.14). We cannot expect that these two schemes have the monotonic properties as described

in Theorem 2.1 and Theorem 2.2 when (1.2) is not satisfied. However, we have the following local

stability estimates.

THEOREM 4.1 Assume that U.". is defined as in (1.12) or (1.14) for the problem (1.1)
with/t >_ 0 and (4.1) satisfied. If the solution u of (1.1) is known apriori to be smooth enough,

u E C4’2(T), then there is some constant C* C*(]]ullc,.2, ]]/tl[c2,/to, T) > 0 such that

PROOF The proof is similar to that given in section 3, so is outlined as below For (4.11),
we let U.". _xt,. vn,, wi,j,i,j, where A and w(x,y) are defined as above. Thus, it follows from a

simple calculation that Y..". satisfies a difference equation which is the discrete version of the

equation (4.10). Thus it follows from Theorem 3.1 and Theorem 3.2 (The proof needs only

minor modifications from that given in Section 3, we therefore omit.) that there exists a positive

constant C > 0 such that

(4.12) max i,j Y(zi, t,frt)l < C’(h2 +
i,j,n

where C is indepedent of K0 and T > 0, and then, we obtain that

(4.13) IU"’- wid //, + r),,,a u(zi,/j,t.)l < ex’" IU,-.(=i, t.)l < C*(h2

which completes the proof. Q.E.D.

REMARK. The constant C" above can be very large if/to and T > 0 are very large. This

can be seen from the choices of d and Kz in the above analysis, and also is demonstrated in the

examphs in section 5. In another words although h and r are small, the error could be very big,
even approaching oo as n --* oo.

5. NUMERICAL EXAMPLES.
We shall report several numerical examples which support our theoretical justifications in

the previous sections, i.e., stability, monotonieity and exponential decay as --, co. Both semi-

implicit and fully explicit schemes using trapezoidal rule for numerical integration are used in our

computations.

EXAMPLE 1. In order to demonstrate the error analysis and stability, we select f

[0,2r] [0,2r], (z,Z/) sin(z)sin(y) and K(z,Z/,,7) -. Thus, for any real constant k > 0,

u(z,Z/,t) sin(z)sin(z/)e-2t is the solution with fn IK(z,Z/,,r)ldrl k. Figure 1 and Figure
2 show by using semi-implicit scheme that the error distributions of u the maximum error on

each level via the time) with the various parameter k from 0.1 to 4. Clearly, for k 0.1, 0.3, 0.5
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and/ 0.8, even/ 1.0, the errors are under control as predicted by Theorem 3.1 On the other

hand, for k 1.5, 2.5, 3 and k 4, it is seen that the errors are under control only for a short

period of time, and then divergent to oo as n --, oo. This is the exact same result as predicted by
Theorem 4.1, i.e., the numerical schemes are stable locally depednent upon K0 > 0 and T > 0.

Figure 3 shows the error distribution of u by using fully implicit scheme. For 0 </ < 1 the error

distributions of u in this example are almost identical to the case of/ 1. Also we noticed that

the fully implicit scheme is more stable than the semi-implicit scheme.

EXAMPLE 2. We now take a simple model problem with the same spatial domain and

kernel as in example 1, $(z,V) ,in(zv) and/ 0.8. Figure 4 and Figure 5, by using semi-

implicit and fully implicit schemes respectively, shows the distribution of U" via the time t, which
decrease to zero exponentially as f -- oo. If we assume roughly that for some A(), G() such that

u(,) c(,).(’)’ .. , - oo,

then A(f) can be calculated by the following formula

Figure 6 and Figure 7, by using semi-implicit and fully implicit schemes respectively, show the
distributions of A(t) proposed above, and it is seen that A approaches to a negative constant as

expected. For semi-explicit scheme we find An -0.145, and fully explicit An -0.1336, thus
the difference is 1.2 x 10-2 which is within the rate of the truncation error of the discretization.

With A calculated above we then can compute C(t) by

Figure 8 shows the distribution of C(t) computed by semi-implicit scheme according the above
assumption. In this example we see that C(t) also approaches to a constant. Figure 9 and Figure
10 are the numerical solutions of u at t 0.5 and t 1.0 with h r/20 and r 0.01.

EXAMPLE 3. Taking the same model problem as in example 2 except that the initial data
$(z, V) (r z)(r V) and k 0.4. Figure 11, Figure 12 and Figure 13 show the distributions
of U(t), A(t) and C(t) using the semi-implicit scheme. It is noticed that U(t) goes exponentially
to zero very rapidly as t --, oo compared to that in example 2, this is due to that C(t) also
approaches to zero, not a fixed constant as in example 2.

Prom these examples We have a rough idea how U(f) will behave as the time advances, i.e.,
we can at least by using numerical methods, semi-implicit or fully implicit scheme, to estimate

the parameter A mentioned in Section 1.
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Figure 6: The semi-implicit scheme
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Figure 11: The semi-implicit scheme

o

"< -1
’:" / /

.." I’ /
/* /"

-2

-3

-4

1 =2n/80, ’=0.01

1-5

o , ;o ’ o
Time

Figure 12: The semi-implicit scheme
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Figure 13: The semi-implicit scheme
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