ORDERED COMPACTIFICATIONS AND FAMILIES OF MAPS

D. M. LIU and D. C. KENT Department of Pure and Applied Mathematics Washington State University Pullman, WA 99163-3113, U.S.A.

(Received April 28, 1995 and in revised form June 2, 1995)

ABSTRACT. For a $T_{3.5}$ -ordered space, certain families of maps are designated as "defining families." For each such defining family we construct the smallest T_2 -ordered compactification such that each member of the family can be extended to the compactification space. Each defining family also generates a quasi-uniformity on the space whose bicompletion produces the same T_2 -ordered 'compactification.

KEY WORDS AND PHRASES. $T_{3.5}$ -ordered space, T_2 -ordered compactification, defining family of maps, quasi-uniform space, bicompletion. **1991 AMS SUBJECT CLASSIFICATION CODES: 54 F 05, 54 D 35**

INTRODUCTION.

Let X be a $T_{3.5}$ -ordered space, and let $CI^*(X)$ be the set of all increasing, continuous maps from X into [0,1]. A subset Φ of $CI^*(X)$ which induces both the weak order and weak topology on X is called a *defining family* for X. For each such defining family Φ , we construct the smallest T_2 -ordered compactification K_{Φ} with the property that each member of Φ can be extended to K_{Φ} . If Φ_1 and Φ_2 are two defining families for X such that $\Phi_1 \subseteq \Phi_2$, then $K_{\Phi_1} \leq K_{\Phi_2}$. For each defining family Φ , there is a largest defining family $\hat{\Phi}$ such that $K_{\Phi} = K_{\hat{\Phi}}$. Those defining families which are $\hat{\Phi}$ for some defining family Φ are called maximal defining families, and if Φ and Ψ are two maximal defining families, $K_{\Phi} \leq K_{\Psi}$ iff $\Phi = \Psi$. The largest defining family for X is $CI^*(X)$, and if $\Phi = CI^*(X)$ then K_{Φ} is the Nachbin (or Stone-Čech ordered) compactification [2].

Each defining family Φ also generates a quasi-uniformity \mathcal{V}_{Φ} on X (related to the "usual" quasiuniformity \mathcal{W} on [0,1]) which is T_0 and totally bounded. The bicompletion of (X, \mathcal{V}_{Φ}) (as defined in [1]) yields a uniform ordered space which, in turn, gives the compactification K_{Φ} . The maximal defining family $\hat{\Phi}$ is precisely the set of all quasi-uniformly continuous maps from (X, \mathcal{V}_{Φ}) into $([0,1], \mathcal{W})$.

1. PRELIMINARIES.

If X is a set, we denote by $\mathbf{F}(X)$ the set of all (proper) filters on X and by $\mathbf{UF}(X)$ the set of all ultrafilters on X. A non-empty collection \mathcal{G} of subsets of X is called a *grill* on X if: (1) $\emptyset \notin \mathcal{G}$; (2) $A \in \mathcal{G}$ and $A \subseteq B$ implies $B \in \mathcal{G}$; (3) $A \cup B \in \mathcal{G}$ implies $A \in \mathcal{G}$ or $B \in \mathcal{G}$. With every $\mathcal{F} \in \mathbf{F}(X)$, we associate the grill $\gamma(\mathcal{F}) = \{A \subseteq X : X \setminus A \notin \mathcal{F}\}$; equivalently, $\gamma(\mathcal{F})$ is the union of all ultrafilters finer than \mathcal{F} .

Let (X, \leq) be a poset; A subset $A \subseteq X$ is increasing (respectively, decreasing) if $x \in A$ and $x \leq y$ (respectively, $y \leq x$) implies $y \in A$. If (X, \leq) and (Y, \leq^*) are posets, then a mapping f:

 $(X, \leq) \rightarrow (Y, \leq^*)$ is increasing (respectively, decreasing) if $x \leq y$ implies $f(x) \leq^* f(y)$ (respectively, $f(y) \leq^* f(x)$).

An ordered space (X, τ, \leq) consists of a poset (X, \leq) and a topology τ on (X, \leq) which is convex (meaning that the collection of all τ -open sets which are either increasing or decreasing is a subbase for τ). Usually an ordered space (X, τ, \leq) will simply be denoted by X. The closed unit interval [0,1] with its usual order and topology is designated by I. For any ordered space X, let $CI^*(X)$ (respectively, $CD^*(X)$) be the set of all continuous increasing (respectively, decreasing) maps from X into I. More generally, for ordered spaces X and Y, CI(X, Y) represents the set of all continuous, increasing functions from X into Y.

An ordered space X is said to be T_2 -ordered if the order " \leq " is closed in $X \times X$. A T_2 -ordered space X which has both the weak order (see Condition (W_o) below) and weak topology induced by $CI^*(X)$ is said to be $T_{3.5}$ -ordered (or completely regular ordered in the terminology of [2]). Some well-known characterizations of $T_{3.5}$ -ordered spaces are summarized in the following proposition.

PROPOSITION 1.1 The following statements about an ordered space X are equivalent.

(1) X is $T_{3.5}$ -ordered.

(2) X is a subspace of a compact, T_2 -ordered space.

(3) X satisfies the following conditions:

(i) If $x \in X$, A is a closed subset of X, and $x \notin A$, then there is $f \in CI^*(X)$ and

 $g \in CD^*(X)$ such that f(x) = g(x) = 0 and $f(y) \lor g(y) = 1$, for all $y \in A$;

(ii) If $x \leq y$ in X, there is $f \in CI^*(X)$ such that f(y) = 0 and f(x) = 1.

(4) The order and topology for X are induced by some quasi-uniformity W on X (i.e., $\cap W$ is the order for X and the topology of X is the uniform topology of the uniformity $W \vee W^{-1}$).

Every $T_{3.5}$ -ordered space X has a largest T_2 -ordered compactification $\beta_o X$ called the Nachbin compactification, which can be constructed by embedding X in the "ordered cube" $I^{CI^*(X)}$, with the product order and topology.

Let X be an ordered space. If Φ is any subset of $CI^*(X)$ such that X has the weak order and the weak topology determined by Φ , then Φ is called a *defining family* for X. More precisely, $\Phi \subseteq CI^*(X)$ is a defining family if the following conditions are satisfied:

 (W_{τ}) For any $\mathcal{F} \in \mathbf{UF}(X), \mathcal{F} \to x$ in X iff $f(\mathcal{F}) \to f(x)$ in I, for all $f \in \Phi$.

 (W_o) For any $(x, y) \in X \times X$, $x \leq y$ in X iff $f(x) \leq f(y)$ in I, for all $f \in \Phi$.

Some rather obvious remarks about defining families are summarized in the next proposition. **PROPOSITION 1.2** Let X be an ordered space.

- (1) X is $T_{3.5}$ -ordered iff X allows at least one defining family. In particular, $CI^{\bullet}(X)$ is a defining family for every $T_{3.5}$ -ordered space.
- (2) If $\Phi_1 \subseteq \Phi_2 \subseteq CI^*(X)$ and Φ_1 is a defining family for X, then Φ_2 is also a defining family for X.

2. THE COMPACTIFICATION K_{Φ} .

Let X be a $T_{3,5}$ -ordered space. If $\mathcal{F} \in \mathbf{UF}(X)$ and $f \in CI^*(X)$, there is a unique point $a_{\mathcal{F},f}$ in I such that $f(\mathcal{F}) \to a_{\mathcal{F},f}$. For any $a \in I$, let $\mathcal{V}(a)$ denote the neighborhood filter at a. If Φ is a defining family for X and $\mathcal{F} \in \mathbf{UF}(X)$, we define the filter $\mathcal{F}_{\Phi} = \bigvee \{f^{-1}(\mathcal{V}(a_{\mathcal{F},f})) : f \in \Phi\}$. Note that if $\mathcal{F} \to x$ in X, then $a_{\mathcal{F},f} = f(x)$ for all $f \in \Phi$, and in this case \mathcal{F}_{Φ} is simply the neighborhood filter at x.

Continuing with the assumptions of the preceding paragraph, let $X_{\Phi} = \{\gamma(\mathcal{F}_{\Phi}) : \mathcal{F} \in \mathbf{UF}(X)\}$ be the set of grills associated with the filters \mathcal{F}_{Φ} . If $\gamma \in X_{\Phi}$ and $\mathcal{F}, \mathcal{G} \in \mathbf{UF}(X)$ are such that $\mathcal{F} \subseteq \gamma$ and $\mathcal{G} \subseteq \gamma$, then $a_{\mathcal{F},f} = a_{\mathcal{G},f}$, for all $f \in \Phi$. It therefore follows that, for each $f \in \Phi$, the function $f_{\Phi}: X_{\Phi} \to I$, defined by $f_{\Phi}(\gamma) = a_{\mathcal{F},f}$, where \mathcal{F} any ultrafilter that is a subset of γ , is well-defined. If $i_{\Phi}: X \to X_{\Phi}$ is defined by $i_{\Phi}(x) = \gamma(\dot{x}_{\Phi})$, where \dot{x} is the fixed ultrafilter generated by $\{x\}$, then clearly i_{Φ} is an injection and the diagram below commutes for every $f \in \Phi$.

Let X_{Φ} be equipped with the weak order and weak topology induced by $\{f_{\Phi} : f \in \Phi\}$. Then i_{Φ} is an ordered space embedding (i.e., i_{Φ} is topological embedding, and $x \leq y \Leftrightarrow i_{\Phi}(x) \leq i_{\Phi}(y)$, where \leq_{Φ} denotes the order of X_{Φ}).

THEOREM 2.1 Let X be a $T_{3.5}$ -ordered space and Φ a defining family for X. Then (X_{Φ}, i_{Φ}) is a T_2 -ordered compactification of X, and each $f \in \Phi$ has a unique, continuous, increasing extension to X_{Φ} such that the diagram below commutes.

PROOF. The family $\Phi^{\wedge} = \{f_{\Phi} : f \in \Phi\}$ separates points in X_{Φ} , and therefore X_{Φ} is $T_{3.5}$ -ordered; in particular, X_{Φ} is T_2 -ordered. In view of the paragraph preceding the theorem, it remains only to show that X_{Φ} is compact and $i_{\Phi}(X)$ is dense in X_{Φ} .

Let $\mathcal{A} \in \mathbf{UF}(X)$. For each $\gamma \in X_{\Phi}$, choose an ultrafilter \mathcal{F}_{γ} such that $\mathcal{F}_{\gamma} \subseteq \gamma$; in particular, if $\gamma = \gamma(\mathcal{F}_{\Phi})$ where $\mathcal{F} \to x$ in X, define $\mathcal{F}_{\gamma} = \dot{x}$. If $B \subseteq X$, let $B^* = \{\gamma \in X_{\Phi} : B \in \mathcal{F}_{\gamma}\}$. Then, define $\mathcal{F}_{\mathcal{A}} = \{A \subseteq X : A^* \in \mathcal{A}\}$; one easily verifies that $\mathcal{F}_{\mathcal{A}}$ is an ultrafilter. We shall show that $\mathcal{A} \to \gamma(\mathcal{F}_{\mathcal{A}})$ in X_{Φ} . For this purpose, it suffices to show that $f_{\Phi}(\mathcal{A}) \to f_{\Phi}(\gamma(\mathcal{F}_{\mathcal{A}})) = a_{\mathcal{F}_{\mathcal{A}},f}$, for all $f \in \Phi$. Given $f \in \Phi$, let U be a closed neighborhood of $a_{\mathcal{F}_{\mathcal{A}},f}$ in I. We first observe that $f(\mathcal{F}_{\mathcal{A}}) \to a_{\mathcal{F}_{\mathcal{A}},f}$, and hence $f^{-1}(U) \in \mathcal{F}_{\mathcal{A}}$, which implies $(f^{-1}(U))^* \in \mathcal{A}$. Then note that $f(\mathcal{F}_{\mathcal{A}}) \to a_{\mathcal{F}_{\mathcal{A}},f}$; consequently $f_{\Phi}^{-1}(U) \in \mathcal{A}$, and $f_{\Phi}(\mathcal{A}) \to a_{\mathcal{F}_{\mathcal{A}},f}$. Thus X_{Φ} is compact.

Finally, let $\gamma \in X_{\Phi}$ and, for $B \subseteq X$, let B^* be defined as in the preceding paragraph. If $\mathcal{F} \in \mathbf{UF}(X)$ and $\mathcal{F} \subseteq \gamma$, let \mathcal{F}^* be the filter on X_{Φ} generated by $\{F^* : F \in \mathcal{F}\}$. One easily shows that $\mathcal{F}^* \to \gamma$ in X_{Φ} . Since $i_{\Phi}(\mathcal{F}) \geq \mathcal{F}^*$, it follows that $i_{\Phi}(X)$ is dense in X_{Φ} .

The compactification (X_{Φ}, i_{Φ}) of X determined by a defining family Φ will be denoted by K_{Φ} . By the preceding theorem, each $f \in \Phi$ has a unique extension $f_{\Phi} \in CI^{*}(X_{\Phi})$. If Y is any compact, T_{2} -ordered space, we define $CI_{\Phi}(X,Y) = \{f \in CI(X,Y) : h \circ f \in \Phi$, for all $h \in CI^{*}(Y)\}$. The next theorem establishes that each $f \in CI_{\Phi}(X,Y)$ can be "lifted" relative to K_{Φ} .

THEOREM 2.2 Let X be a $T_{3.5}$ -ordered space, Φ a defining family for X, and Y a compact, T_2 -ordered space. If $g \in CI_{\Phi}(X, Y)$, then there is a unique $g_{\Phi} \in CI(X_{\Phi}, Y)$ such that the diagram below commutes.

PROOF. Let $g \in CI_{\Phi}(X, Y)$ and $\gamma \in X_{\Phi}$; assume \mathcal{F} is an ultrafilter and $\mathcal{F} \subseteq \gamma$. Define $g_{\bullet} : X_{\Phi} \to Y$ as following: $g_{\bullet}(\gamma) = y_{\mathcal{F},g}$, where $y_{\mathcal{F},g}$ is the unique limit of $g(\mathcal{F})$ in Y. Using the facts that $g \in CI_{\Phi}(X, Y)$ and $CI^{*}(Y)$ separates points in Y, we see that $g_{\bullet}(\gamma)$ is independent of the ultrafilter \mathcal{F} which represents γ , so g_{\bullet} is well defined.

If $h \in CI^{*}(Y)$, let $h' = h \circ g$. Then we observe that the preceding definition of g_{\bullet} makes the following diagram commutes:

If $\gamma \leq \delta$ in X_{Φ} , then $h'_{\Phi}(\gamma) \leq h'_{\Phi}(\delta), \forall h \in CI^{\bullet}(Y)$, which implies $h(g_{\bullet}(\gamma)) \leq h(g_{\bullet}(\delta))$ holds for all $h \in CI^{\bullet}(Y)$. Since Y has the weak order induced by $CI^{\bullet}(Y), g_{\bullet}(\gamma) \leq g_{\bullet}(\delta)$. Thus g_{\bullet} is increasing. A similar argument, based on Y having the weak topology induced by $CI^{\bullet}(Y)$, shows that g_{\bullet} is continuous. The uniqueness of g_{\bullet} is obvious because all spaces involved are Hausdorff.

We omit the simple proof of the next proposition.

PROPOSITION 2.3 If Φ is a defining family for a $T_{3.5}$ -ordered space X, then $\Phi' = \{f_{\Phi} : f \in CI^*(X)\}$ is a defining family for X_{Φ} .

Starting with a $T_{3.5}$ -ordered space X and a defining family Φ for X, it follows that Φ' and $CI^{*}(X_{\Phi})$ are both defining families for X_{Φ} , and it is clear that $\Phi' \subseteq CI^{*}(X_{\Phi})$. Let $\hat{\Phi} = \{f \in CI^{*}(X) :$ there is $g \in CI^{*}(X_{\Phi})$ such that $f = g \circ i_{\Phi}\}$; in other words, $\hat{\Phi}$ consists of all members of $CI^{*}(X)$ which have a continuous, increasing extension in $CI^{*}(X_{\Phi})$. Clearly $\Phi \subseteq \hat{\Phi}$, and so $\hat{\Phi}$ is a defining family for X. Note that $(\hat{\Phi})' = CI^{*}(X_{\Phi})$, and since $(\hat{\Phi})'$ is, by Proposition 2.3, a defining family for $X_{\hat{\Phi}}$, it follows that $X_{\hat{\Phi}} = X_{\Phi}$. These observations yield the following result.

PROPOSITION 2.4 If Φ is a defining family for a $T_{3.5}$ -ordered space X, then $\hat{\Phi} = \{f \in CI^*(X) : \text{there is } g \in CI^*(X_{\Phi}) \text{ such that } f = g \circ i_{\Phi} \}$ is the largest defining family for X such that $K_{\Phi} = K_{\hat{\Phi}}$.

THEOREM 2.5 Let Φ , Ψ be defining families for a $T_{3.5}$ -ordered space.

- (a) If $\Phi \subseteq \Psi$, then $K_{\Phi} \leq K_{\Psi}$.
- (b) $K_{\Phi} \leq K_{\Psi}$ iff $\hat{\Phi} \subseteq \hat{\Psi}$.

PROOF. (a) $\Phi \subseteq \Psi$ implies $\hat{\Phi} \subseteq \hat{\Psi}$. Considering the diagram

and applying Theorem 2.2, we see that $(i_{\hat{\Phi}})_{\hat{\Psi}}$ is increasing and continuus. Thus $K_{\Phi} = K_{\hat{\Phi}} \leq K_{\hat{\Psi}} = K_{\Psi}$.

(b) If $K_{\Phi} \leq K_{\Psi}$, then there is an increasing, continuous map σ making the diagram

commute. Each member of $\hat{\Phi}$ has the form $f \circ i_{\Phi}$ for some $f \in CI^*(X_{\Phi})$. But $f \circ i_{\Phi} = f \circ \sigma \circ i_{\Psi}$ is also in $\hat{\Psi}$. Thus $\hat{\Phi} \subseteq \hat{\Psi}$. The converse follows from (a).

If X is a $T_{3.5}$ -ordered space, let $\mathbf{DF}(X)$ be the poset of all defining families, ordered by inclusion. Two defining families Φ and Ψ in $\mathbf{DF}(X)$ are equivalent if $K_{\Phi} = K_{\Psi}$ (i.e., if K_{Φ} and K_{Ψ} are equivalent compactifications of X in the usual sense). Thus $\mathbf{DF}(X)$ is partitioned into equivalent classes, and each equivalent class $\langle \Phi \rangle$ contains a largest member $\hat{\Phi}$ which we call a maximal defining family.

COROLLARY 2.6 Let X be a $T_{3.5}$ -ordered space, $K = (X', \phi)$ a T_2 -ordered compactification of X, and $\Phi \in \mathbf{DF}(X)$ such that each $f \in \Phi$ has an extension $f' \in CI^*(X')$. Then $K_{\Phi} \leq K$.

COROLLARY 2.7 For a $T_{3.5}$ -ordered space, the correspondence $\Phi \longleftrightarrow K_{\Phi}$ is bijective and order-preserving between the maximal defining families for X and the T_2 -ordered compactifications of X.

3. DEFINING FAMILIES AND QUASI-UNIFORMITIES.

This concluding section is based on the results of Fletcher and Lindgren [1], and to some extent we borrow their notation.

Let (X, \mathcal{V}) be a quasi-uniform space; the associated uniformity $\mathcal{V} \vee \mathcal{V}^{-1}$ will be denoted by \mathcal{V}^* . Recall that (X, \mathcal{V}) is T_0 iff $\cap \mathcal{V}$ is a partial order (or, equivalently, (X, \mathcal{V}^*) is T_2), and totally bounded iff, for each $U \in \mathcal{V}$, there is a finite cover $\{A_1, \dots, A_n\}$ of X such that $A_i \times A_i \subseteq U$, for $i = 1, \dots, n$. Note that \mathcal{V} is totally bounded iff \mathcal{V}^* is totally bounded.

Every T_0 , quasi-uniform space (X, \mathcal{V}) induces a uniform ordered space (X, \mathcal{U}, \leq) , where $\mathcal{U} = \mathcal{V}^*$ and " \leq " = $\cap \mathcal{V}$; also associated with (X, \mathcal{V}) is the $T_{3.5}$ -ordered space (X, τ, \leq) , where $\tau = \tau_{\mathcal{V}^*}$ and " \leq " is again $\cap \mathcal{V}$. Furthermore, for every compact, T_2 -ordered space (X, τ, \leq) , there is a unique quasi-uniformity \mathcal{V} on X such that $\tau = \tau_{\mathcal{V}^*}$ and " \leq " = $\cap \mathcal{V}$ (Theorem 4.21, [1]). In particular, for the compact, T_2 -ordered space I, the unique compatible quasi-uniformity, denoted here by \mathcal{W} , has a base of sets of the form $W_{\epsilon} = \{(x, y) \in I \times I : x - y \leq \epsilon\}$, where $\epsilon > 0$.

For a quasi-uniform space (X, \mathcal{V}) , let $QUC(X, \mathcal{V})$ be the set of all quasi-uniformly continous maps from (X, \mathcal{V}) into (I, \mathcal{W}) . If $X = (X, \tau, \leq)$ is the $T_{3.5}$ -ordered space associated with (X, \mathcal{V}) , it is clear that $QUC(X, \mathcal{V}) \subseteq CI^*(X)$. It is shown in Theorems 3.29 and 3.33 of [1] that every T_0 , quasiuniform space (X, \mathcal{V}) has a *bicompletion* $((\tilde{X}, \tilde{\mathcal{V}}), j)$ such that $((\tilde{X}, (\tilde{\mathcal{V}})^*), j)$ is the unique uniform space completion of (X, \mathcal{V}^*) , and each $f \in QUC(X, \mathcal{V})$ has a unique extension in $QUC(\tilde{X}, \tilde{\mathcal{V}})$. These observations lead to the following proposition.

PROPOSITION 3.1 Let (X, \mathcal{V}) be a T_0 , totally bounded quasi-uniform space with associated $T_{3.5}$ -ordered space (X, τ, \leq) , and let $((\tilde{X}, \tilde{\mathcal{V}}), j)$ be the bicompletion of (X, \mathcal{V}) . If $(\tilde{X}, \tilde{\tau}, \tilde{\leq})$ is the $T_{3.5}$ -ordered space associated with $(\tilde{X}, \tilde{\mathcal{V}})$, then $\tilde{K} = ((\tilde{X}, \tilde{\tau}, \tilde{\leq}), j)$ is a T_2 -ordered compactification of (X, τ, \leq) .

THEOREM 3.2 Let X be a $T_{3.5}$ -ordered space and $\Phi \in \mathbf{DF}(X)$. Let \mathcal{V}_{Φ} be the weak uniformity on X induced by Φ relative to (I, \mathcal{W}) . Let $((\tilde{X}_{\Phi}, \tilde{\mathcal{V}}_{\Phi}), \jmath)$ be the bicompletion of (X, \mathcal{V}_{Φ}) , and $\tilde{K}_{\Phi} = ((\tilde{X}_{\Phi}, \tilde{\tau}_{\Phi}, \tilde{\leq}), \jmath)$ be the T_2 -ordered compactification of X induced by the bicompletion. Then $\tilde{K}_{\Phi} = K_{\Phi}$.

PROOF. Let \mathcal{V} be the unique, T_0 totally bounded quasi-uniformity on X_{Φ} whose associated $T_{3.5}$ -ordered space is the compactification $((X_{\Phi}, \tau_{\Phi}, \leq_{\Phi}), i_{\Phi})$ derived from Φ . The latter space has the weak order and topology induced by Φ' (see Proposition 2.3) relative to I, and hence \mathcal{V} is the weak quasi-uniformity on X_{Φ} induced by Φ' relative to (I, \mathcal{W}) . If $\mathcal{U} = (i_{\Phi})^{-1}(\mathcal{V})$ is the restriction of \mathcal{V} to X, then \mathcal{U} is the weak quasi-uniformity on X induced by Φ relative to (I, \mathcal{W}) . In other words, $\mathcal{U} = \mathcal{V}_{\Phi}$. Since the T_2 -ordered compactification associated with a T_0 , totally bounded quasi-uniformity is unique (up to equivalence), $\tilde{K}_{\Phi} = K_{\Phi}$.

COROLLARY 3.3 Let X be a $T_{3.5}$ -ordered space and $\Phi \in \mathbf{DF}(X)$. Then $\dot{\Phi} = QUC(X, \mathcal{V}_{\Phi})$. **PROOF.** By Theorem 3.29, [1], each $f \in QUC(X, \mathcal{V}_{\Phi})$ can be extended to the compactification $\tilde{K}_{\Phi} = K_{\Phi}$; thus $QUC(X, \mathcal{V}_{\Phi}) \subseteq \hat{\Phi}$. Conversely, each $f \in \hat{\Phi}$ has a unique, increasing, continuous extension to $K_{\Phi} = \tilde{K}_{\Phi}$, and this extension of f is quasi-uniformly continuous from $(\tilde{X}_{\Phi}, \tilde{\mathcal{V}}_{\Phi})$ into (I, \mathcal{W}) . Thus $f \in QUC(X, \mathcal{V}_{\Phi})$.

COROLLARY 3.4 Let (X, \mathcal{V}) be a T_0 , totally bounded quasi-uniform space with associated compact, T_2 -ordered space $X = (X, \tau, \leq)$. Then $\Phi = QUC(X, \mathcal{V})$ is a maximal defining family for X and $\mathcal{V} = \mathcal{V}_{\Phi}$.

COROLLARY 3.5 Let X be a $T_{3.5}$ -ordered space. Then $\mathcal{V} \longleftrightarrow QUC(X, \mathcal{V})$ is bijective and order-preserving between the T_0 , totally bounded quasi-uniformities which induce X and the maximal defining families for X.

REFERENCES

- P. Fletcher and W. Lindgren, *Quasi-Uniform Spaces*, Lecture Notes in Pure and Applied Mathematics, Vol. 77, Marcel Dekker, New York (1982).
- [2] L. Nachbin, Topology and Order, Van Nostrand Math. Studies No. 4, Princeton (1965).