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ABSTRACT. For a T3.s-ordered space, certain families of maps are designated as "defining fami-

lies." For each such defining family we construct the smallest T=-ordered compactification such that

each member of the family can be extended to the compactification space. Each defining family

also generates a quasi-uniformity on the space whose bicompletion produces the same T=-ordered
’compactification.
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INTRODUCTION.
Let X be a Ta.s-ordered space, and let CI’(X) be the set of all increasing, continuous maps

from X into [0, 1]. A subset of CI*(X) which induces both the weak order and weak topology

on X is called a defining family for X. For each such defining family , we construct the smallest

T-ordered compactification K with the property that each member of can be extended to

If 1 and 2 are two defining families for X such that C_ 2, then K,, _< K. For each defining

family , there is a largest defining family such that K K. Those defining families which

are for some defining family are called mazimal defining families, and if and are two

maximal defining families, K, _< K, iff q. The largest defining family for X is CI’(X), and

if CI*(X) then K is the Nachbin (or Stone-ech ordered) compactification [2].
Each defining family also generates a quasi-uniformity ), on X (related to the "usual" quasi-

uniformity kV on [0, 1]) which is To and totally bounded. The bicompletion of (X, re) (as defined

in [1]) yields a uniform ordered space which, in turn, gives the compactification K,. The maximal

defining family is precisely the set of all quasi-uniformly continuous maps from (X, ’) into

([0, ], W).
1. PRELIMINARIES.

If X is a set, we denote by F(X) the set of all (proper) filters on X and by UF(X) the set of all

ultrafilters on X. A non-empty collection of subsets of X is called a grill on X if: (1) G; (2)
A fi and A C_ B implies B fi 9; (3) At2B 6 implies A fi or B . With every 9v F(X), we

associate the grill 7(-) {A C_ X" X \ m ’}; equivalently, 7(’) is the union of all ultrafilters

finer than

Let (X, <) be a poset; A subset A C_ X is increa.ing (respectively, decreasing) if z A and

x _< y (respectively, y _< x) implies y A. If (X, _<) and (Y, _<’) are posets, then a mapping f"
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(X, <) (Y, _<*)is i,tcrcasing (respectively, decreasing) if x < y implies f(x) <" f(y) (respectively,
f(y) <_" f(x)).

An ordered space (X, , <) consists of a poset (X, <) and a topology 7" on (X, <) which is convex

(meaning that the collection of all r-open sets which are either increasing or decreasing is a subbase

for r). Usually an ordered space (X, r, <) will simply be denoted by X. The closed unit interval

[0, 1] with its usual order and topology is designated by I. For any ordered space X, let CI’(X)
(respectively, CD’(X)) be the set of all continuous increasing (respectively, decreasing) maps from

X into I. More generally, for ordered spaces X and Y, CI(X, Y) represents the set of all continuous,

increasing functions from X into Y.
An ordered space X is said to be Tz-ordercd if the order "<" is closed in X X. A T-ordered

space X which has both tile weak order (see Condition (Wo) below) and weak topology induced by

CI*(X) is said to be T3.s-ordered (or completely regular ordered in the terminology of [2]). Some
well-known characterizations of T3.s-ordered spaces are summarized in the following proposition.

PROPOSITION 1.1 The following statements about an ordered space X are equivalent.

(1) X is T3.5-ordered.
(2) X is a subspace of a compact, T2-ordered space.

(3) X satisfies the following conditions"

(i) If x q X, A is a closed subset of X, and x A, then there is f CI’(X) and

g CD’(X) such that f(x) g(x) 0 and f(y) V g(y) 1, for all y A;
(ii) If x y in X, there is f CI’(X) such that f(y) 0 and f(x) 1.

(4) The order and topology for X are induced by some qui-uniformity on X (i.e., W is the

order for X and the topology of X is the uniform topology of the uniformity W V W-a).
Every Ta.s-ordered space X has a largest T2-ordered compactification BoX called the Nachbin

compactification, which can be constructed by embedding X in the "ordered cube" lV’(x), with

the product order and topology.
Let X be an ordered space. If is any subset of CI’(X) such that X h the weak order

and the weak topology determined by , then is called a defining family for X. More precisely,

CI’(X) is a defining family if the following conditions are satisfied:

(W,) For any

(Wo) For any (x,y)
Some rather obvious remarks about defining families are summarized in the next proposition.

PROPOSITION 1.2 Let X be an ordered space.

(1) X is Ta.s-ordered iff X allows at least one defining family. In particular, CI*(X) is a

defining family for every .s-ordered space.

(2) If 1 2 CI*(X) and 1 is a defining family for X, then is also a defining family

for X.
2. THE COMPACTIFICATION

Let X be a T3.s-ordered space. If UF(X) and f CI*(X), there is a unique point ay,I in

I such that f() a,l. For any a I, let r(a) denote the neighborhood filter at a. If is a

defining family for X and q UF(X), we define the filter . v{f-(r(a,/)) f q }. Note

that if z in X, then a,/= f(x) for all f , and in this ce . is simply the neighborhood

filter at x.

Continuing with the suml)tions of the preceding paragraph, let X {7()" UF(X)}
be the set of grills sociated with the filters . If

and 7, then a, aa,f, for all f . It therefore follows that, for each f , the function
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f X --* I, defined by f(7) a-.f, where .T any ultrafilter that is a subset of 7, is well-defined.

If i X X is defined by i(x) ’7(.i:,), where is the fixed ultrafilter generated by {x}, then

clearly i is an injection and the diagram below commutes for every f .

Let X, be equipped with the weak order and weak topology induced by {f f }. Then

i is an ordered space embedding (i.e., i, is topological embedding, and

where _<, denotes the order of X,).
THEOREM 2.1 Let X be a T,.,5-ordered space and a defining family for X. Then (X,,i,)is

a T2-ordered compactification of X, and each f has a unique, continuous, increasing extension

to X such that the diagram below commutes.

i,

X

PROOF. The family ^ {f+ f } separates points in X, and therefore X, is T.s-
ordered; in particular, X, is T2-ordered. In view of the paragraph preceding the theorem, it remains

only to show that X is compact and i,(X) is dense in X.
Let ‘4 UF(X). For each ’7 6 X,, choose an ultrafilter .’. such that ’. C_ 7; in particular,

if7 "7(’,) where ’-- z in X, define . k. If B C_ X, let B* {’7 fi X, B f’,}.
Then, define .a A C_ X A" ‘4}; one easily verifies that a is an ultrafilter. We shall show

that ,4 ’7(.’.)in X. For this p,rpose, it suffices to show that f,(,4)
for all f fi . Given f , let U be a closed neighborhood of a:a.! in I. We first observe

that f(Ua) aa,l, and hence .f-(U) .Ta, which implies (f-(U))" .4. Then note that

f(Ua) --, aa,l; consequently fx(U) ‘4, and f,(‘4) aa,I. Thus X, is compact.

Finally, let 7 X and, for B C_ X, let B* be defined as in the preceding paragraph. If

U fi UF(X) and " C_ 7, let .T" be the filter on X generated by F" F 9r}. One easily shows

that f’" ’7 in X. Since i,(U) _> ", it follows that i,(X) is dense in X,.
The compactification (X, i) of X determined by a defining family will be denoted by K.

By the preceding theorem, each f has a unique extension f# CI’(X,). If Y is any compact,

T2-ordered space, we define CI(X, Y) {f CI(X, Y) h o f , for all h ( CI’(Y)}. The

next theorem establishes that each f CI,(X, Y) can be "lifted" relative to

THEOREM :2.2 Let X be a T.3.s-ordered space, a defining family for X, and Y a compact,

T2-ordered space. If 9 CI,(X, Y), then there is a unique 9, CI(X,, Y) such that the diagram

below commutes.

i, y

X

PROOF. Let g CI,(X, Y) and 7 X; assume " is an ultrafilter and .T" C_ 7- Define

g X, Y as following: g, (7) Y,., where y,a is the unique limit of g(.T’) in Y. Using the

facts that g c= CI,(X, Y) and CI*(Y) separates points in Y, we see that g(’7) is independent of

the ultrafilter .T" which represents 7, so g, is well defined.
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If h E CI’(Y), let h’ h o 9. Then we observe that the preceding definition of 9
following diagram commutes:

makes the

If 3’ _< 3 in X, then h(7) _< h(,5),Vl, CI’(Y), which implies h(g/(’,t,)) <_ h(g,(5)) holds

for all h CI’(Y). Since Y has the weak order induced by CI’(Y), g,(’7) <_ g,(,5). Thus g, is

increasing. A similar argument, based on Y having the weak topology induced by CI’(Y), shows
that g, is continuous. The uniqueness of g, is obvious because all spaces involved are Hausdorff.

We omit the simple proof of the next proposition.

PROPOSITION 2.3 If

CI’(X)} is a defining family for X,.
Starting with a T.s-ordered space X and a defining family for X, it follows that ’ and

CI*(X) are both defining families for X, and it is clear that

Cff(X) there is g CI*(X) such that f g o i}; in other words, consists of all members of

CI*(X) which have

defining family for X. Note that ()’ CI*(X), and since ()’ is, by Proposition 2.3, a defining
family for X+, it follows that X X. These observations yield the following result.

PROPOSITION 2.4 If

CI*(X) there is g CI*(X,) such that f g o i} is the largest defining family for X such that

K, K.
THEOREM 2.5 Let , be defining families for a T3.s-ordered space.

(a) If , then K
(b) gg iff

PROOF. (a) implies g . Considering the diagram

X
and applying Theorem 2.2, we see that (i+)+ is increasing and continous. Thus K# K4 _< K#
K.
(b) If K# _< K,, then there is an increasing, continous map a making the diagram

commute. Each member of has the form f o i for some f CI’(X). But f o i, f o a o i, is

also in ft. Thus C_ ft. The converse follows fi’om (a).
If X is a Ts.s-ordered space, let DF(X) be the poser of all defining families, ordered by inclusion.

Two defining families and q in DF(X) are equivalent if K, K, (i.e., if K, and K, are

equivalent compactifications of X in the ustal sense). Thus DF(X) is partitioned into equivalent
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classes, and each equivalent class () contains a largest member + which we call a mazimal definin9
farailu.

COROLLARY :2.6 Let X be a T3..5-ordered space, K (X’, ) a T2-ordered compactification
of X, and E DF(X) such that each f E has an extension f’ CI’(X’). Then K, _< K.
COROLLARY :2.7 For a T3.s-ordered space, the correspondence K, is bijective and

order-preserving between the maximal defining families for X and the T2-ordered compactifications

of X.
3. DEFINING FAMILIES AND QUASI-UNIFORMITIES.

This concluding section is based on the results of Fletcher and Lindgren [1], and to some extent

we borrow their notation.

Let (X, ’) be a quasi-uniform space; the associated uniformity 12 V 2- will be denoted by ".
Recall that (X, ’) is To iff ’ is a partial order (or, equivalently, (X, ") is T2), and totallu bounded

iff, for each U F, there is a finite covet" {Aa,... ,A,} of X such that A, x A, C_ U, for 1,.-. ,n.
Note that 13 is totally bounded iff ’" is totally bounded.

Every To, quasi-uniform space (X,)2) induces a uniform ordered space (X, bl, <_), where b

and "_<"=flY; also associated with (X, Y) is the T.s-ordered space (X, r, _<), where r rv. and

"<" is again 7Y. Furthermore, for every compact, T=-ordered space (X, r, _<), there is a unique

quasi-uniformity 12 on X such that r rv. and _< 1) (Theorem 4.21, [1]). In particular, for

the compact, T-ordered space I, the unique compatible quasi-uniformity, denoted here by }/Y, has

a base of sets of the form W, {(z,y) I I" z- y _< e}, where > 0.

For a quasi-uniform space (X, Y), let QUC(X, Y) be the set of all quasi-uniformly continous maps
from (X, Y)into (I, I/Y). If X (X, -, _<)is the T.-ordered space associated with (X, 1’), it is

clear that QUC(X, Y) C_ CI*(X). It is shown in Theorems 3.29 and 3.33 of [1] that every To, quasi-

uniform space (X, ’) has a bicompletion ((2, )),3) such that ((, (1))’),3)is the unique uniform

space completion of (X,Y’), and each f QUC(X,,’) has a unique extension in QUC(fi,)).
These observations lead to the following proposition.

PROPOSITION 3.1 Let (X, Y) be a To, totally bounded quasi-uniform space with associated

T3.s-ordered space (X, r, <), and let ((2,1)),3) be the bicompletion of (X, 1)). If (), ", "_<)is the

T3.s-ordered space associated with ()]’, 9), then f ((X’, , "_<),)is a T-ordered compactification

of (X, r, <).
THEOREM 3.2 Let X be a T3.s-ordered space and E DF(X). Let ]2 be the weak uniformity

on X induced by relative to (I,W). Let ((R,9.),3) be the bicompletion of (X,l’), and

[( ((.,’?,-_<),3) be the T-ordered compactification of X induced by the bicompletion. Then

PROOF. Let ]2 be the unique, To totally bounded quasi-uniformity on X whose associated

T.s-ordered space is the compactification ((X,, r,, <,), i,) derived from . The latter space has

the weak order and topology induced by ’ (see Proposition 2.3) relative to I, and hence )3 is the

weak quasi-uniformity on X, induced by ’ relative to (I, W). If b (io)-a()) is the restriction

of F to X, then b/ is the weak quasi-uniformity on X induced by relative to (I, 4’). In other

words, b/= ’,. Since the T2-ordered compactification associated with a To, totally bounded quasi-

uniformity is unique (up to equivalence),/’, K,.
COROLLARY 3.3 Let X be a T.s-ordered space and fi DF(X). Then + QUC(X,
PROOF. By Theorem 3.29, [1], each f 6 QUC(X, ),) can be extended to the compactification

R, Ka,; thus QUC(X, ’)

_
+. (’,onversely, each f 6 + has a unique, increasing, continuous

extension to K, /,, and this extension of f is quasi-uniformly continuous from (),,) into
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(I, W). Thus f E QUC(X, 2).
COROLLARY 3.4 Let (X, 2) be a To, totally bounded quasi-uniform space with associated

compact, T2-ordered space X (X, ’, _<). Then QUC(X, V) is a maximal defining family for
Xand ’= V.
COROLLARY 3.5 Let X be a T.3..s-ordered space. Then V QUC(X, ) is bijective and

order-preserving between the To, totally bounded quasi-uniformities which induce X and the max-

imal defining families for X.
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