REAL HYPERSURFACES OF TYPE A IN QUARTERNIONIC PROJECTIVE SPACE

U-HANG KI and YOUNG JIN SUH

Department of Mathematics Kyungpook University Taegu 702-701 Republic of Korea

JUAN DE DIOS PÉREZ

Departamento de Geometría y Topología Facultad de Ciencias Universidad de Granada 18071-Granada Spain

(Received October 6, 1994 and in revised form May 30, 1995)

ABSTRACT. In this paper, under certain conditions on the orthogonal distribution \mathcal{D} , we give a characterization of real hypersurfaces of type A in quaternionic projective space QP^m . KEY WORDS AND PHRASES. Quaternionic projective space, Real hypersurfaces of type A, Orthogonal distribution

1991 AMS SUBJECT CLASSIFICATION CODES. 53C15, 53C40.

1. Introduction.

Throughout this paper M will denote a connected real hypersurface of the quaternionic projective space $QP^m, m \ge 3$, endowed with the metric g of constant quaternionic sectional curvature 4. Let N be a unit local normal vector field on M and $U_i = -J_iN$, i = 1, 2, 3, where $\{J_i\}_{i=1,2,3}$ is a local basis of the quaternionic structure of QP^m , [2].

Now let us define a distribution \mathcal{D} by $\mathcal{D}(x) = \{X \in T_x M : X \perp U_i(x), i = 1, 2, 3\}, x \in M$, of a real hypersurface M in QP^m , which is orthogonal to the structure vector fields $\{U_1, U_2, U_3\}$ and invariant with respect to the structure tensors $\{\phi_1, \phi_2, \phi_3\}$, and by $\mathcal{D}^{\perp} = Span\{U_1, U_2, U_3\}$ its orthogonal complement in TM.

There exist many studies about real hypersurfaces of quaternionic projective space QP^m (See [1],[3],[4],[5],[6]). Among them Martinez and the third author [4] have classified real hypersurfaces of QP^m with constant principal curvatures and the distribution \mathcal{D} is invariant by the shape operator A. It was shown that these real hypersurfaces of QP^m could be divided into three types which are said to be of type A_1, A_2 , and B.

Without the additional assumption of constant principal curvatures, as a further improvement of this result Berndt [1] showed recently that all real hypersurfaces of QP^m also could be divided into the above three types when two distributions \mathcal{D} and \mathcal{D}^{\perp} satisfy $g(A\mathcal{D}, \mathcal{D}^{\perp}) = 0$. Moreover, it is known that the formula $g(A\mathcal{D}, \mathcal{D}^{\perp}) = 0$ is equivalent to the fact that the distribution \mathcal{D} is invariant by the shape operator A of M.

In a similar notation of Takagi [7] a real hypersurface of type A_1 denotes a geodesic hyper-

sphere or a tube over a totally geodesic hyperplane QP^{m-1} and of type A_2 denotes a tube over a totally geodesic quaternionic projective space QP^k $(1 \le k \le m-2)$ respectively. Moreover, real hypersurface of type B denotes a tube over a complex projective space CP^m .

Now, let us consider the following conditions that the shape operator A of M in QP^m may satisfy

$$(\nabla_X A)Y = -\sum_{i=1}^3 \{ f_i(Y)\phi_i X + g(\phi_i X, Y)U_i \},$$
(1.1)

$$g((A\phi_{i} - \phi_{i}A)X, Y) = 0, \qquad (1.2)$$

for any i = 1, 2, 3, and any tangent vector fields X and Y of M.

Pak [5] investigated the above conditions and showed that they are equivalent to each other. Moreover he used the condition (1.1) to find a lower bound of $||\nabla A||$ for real hypersurfaces in QP^m . In fact, it was shown that $||\nabla A||^2 \ge 24(m-1)$ for such hypersurfaces and the equality holds if and only if the condition (1.1) holds. In this case it was also known that M is locally congruent to a real hypersurface of type A_1 or A_2 , which is said to be of type A.

If we restrict the properties (1.1) and (1.2) to the orthogonal distribution \mathcal{D} , then for any vector fields X and Y in \mathcal{D} the shape operator A of M satisfies the following conditions

$$(\nabla_X A)Y = -\sum_{i=1}^3 g(\phi_i X, Y)U_i \tag{1.3}$$

and

$$g((A\phi_i - \phi_i A)X, Y) = 0 \tag{1.4}$$

for any i = 1, 2, 3. Thus the above conditions (1.3) and (1.4) are weaker than the conditions (1.1) and (1.2) respectively. Thus it is natural that real hypersurfaces of type A should satisfy (1.3) and (1.4). From this point of view we give a characterization of real hypersurfaces of type A in QP^m as the following

THEOREM. Let M be a real hypersurface in QP^m , $m \ge 3$, satisfying (1.3) and (1.4) for all X, Y in \mathcal{D} and any i = 1, 2, 3. Then M is congruent to an open subset of a tube of radius r over the canonically (totally geodesic) embedded quaternionic projective space QP^k , for some $k \in \{0, 1, ..., m-1\}$, where $0 < r < \frac{\pi}{2}$.

2. Preliminaries.

Let X be a tangent field to M. We write $J_i X = \phi_i X + f_i(X)N$, i = 1, 2, 3, where $\phi_i X$ is the tangent component of $J_i X$ and $f_i(X) = g(X, U_i)$, i = 1, 2, 3. As $J_i^2 = -id$, i = 1, 2, 3, where *id* denotes the identity endomorphism on TQP^m , we get

$$\phi_i^2 X = -X + f_i(X)U_i, \quad f_i(\phi_i X) = 0, \quad \phi_i U_i = 0, \quad i = 1, 2, 3$$
(2.1)

for any X tangent to M. As $J_i J_j = -J_j J_i = J_k$, where (i, j, k) is a cyclic permutation of (1, 2, 3)we obtain

$$\phi_i X = \phi_j \phi_k X - f_k(X) U_j = -\phi_k \phi_j X + f_j(X) U_k$$
(2.2)

and

$$f_i(X) = f_j(\phi_k X) = -f_k(\phi_j X) \tag{2.3}$$

for any vector field X tangent to M, where (i, j, k) is a cyclic permutation of (1, 2, 3). It is also easy to see that for any X, Y tangent to M and i = 1, 2, 3

$$g(\phi_{\iota}X,Y) + g(X,\phi_{\iota}Y) = 0, \quad g(\phi_{\iota}X,\phi_{\iota}Y) = g(X,Y) - f_{\iota}(X)f_{\iota}(Y)$$
(2.4)

 and

$$\phi_i U_j = -\phi_j U_i = U_k \tag{2.5}$$

(i, j, k) being a cyclic permutation of (1, 2, 3). From the expression of the curvature tensor of $QP^m, m \ge 2$, we have that the equations of Gauss and Codazzi are respectively given by

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + \sum_{i=1}^{3} \{g(\phi_{i}Y,Z)\phi_{i}X - g(\phi_{i}X,Z)\phi_{i}Y + 2g(X,\phi_{i}Y)\phi_{i}Z\} + g(AY,Z)AX - g(AX,Z)AY,$$
(2.6)

and

$$(\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^3 \{f_i(X)\phi_i Y - f_i(Y)\phi_i X + 2g(X,\phi_i Y)U_i\}$$
(2.7)

for any X, Y, Z tangent to M, where R denotes the curvature tensor of M, See [4].

From the expressions of the covariant derivatives of J_i , i = 1, 2, 3, it is easy to see that

$$\nabla_X U_i = -p_j(X)U_k + p_k(X)U_j + \phi_i AX \tag{2.8}$$

 \mathbf{and}

$$(\nabla_X \phi_i)Y = -p_j(X)\phi_k Y + p_k(X)\phi_j Y + f_i(Y)AX - g(AX,Y)U_i$$
(2.9)

for any X, Y tangent to M, (i, j, k) being a cyclic permutation of (1, 2, 3) and p_i , i = 1, 2, 3, local 1-forms defined on M.

3. Proof of the Theorem.

Let M be a real hypersurface in a quaternionic projective space QP^m , and let \mathcal{D} be a distribution defined by $\mathcal{D}(x) = \{X \in T_x M : X \perp U_i(x), i = 1, 2, 3\}$. Now we prove the theorem in the introduction. In order to prove this Theorem we should verify that $g(A\mathcal{D}, \mathcal{D}^{\perp}) = 0$ from the conditions (1.3) and (1.4). Then by using a theorem of Berndt [1] we can prove that a real hypersurface M satisfying (1.3) and (1.4) is locally congruent to one of type A_1 , or A_2 in the Theorem.

Namely we can obtain another new characterization of real hypersurfaces of type A in a quaternionic projective space QP^m . For this purpose we need a lemma obtained from the restricted condition (1.4) as the following

LEMMA 3.1. Let M be a real hypersurface of QP^m . If it satisfies the condition (1.4) for all X, Y in \mathcal{D} and any i = 1, 2, 3, then we have

$$g((\nabla_X A)Y, Z) = \mathfrak{S}g(AX, Y)g(Z, V_i), \quad i = 1, 2, 3,$$
(3.1)

where \mathfrak{S} denotes the cyclic sum with respect to X, Y and Z in \mathcal{D} and V_i stands for the vector field defined by $\phi_i AU_i$.

PROOF. Differentiating the condition (1.4) covariantly, for any vector fields X, Y and Z in \mathcal{D} we get

$$g((\nabla_X A)\phi_i Y + A(\nabla_X \phi_i)Y + A\phi_i \nabla_X Y - (\nabla_X \phi_i)AY - \phi_i (\nabla_X A)Y, Z) - g(\phi_i A \nabla_X Y, Z) + g((A\phi_i - \phi_i A)Y, \nabla_X Z) = 0.$$

Now let us consider the following for a case where i = 1

$$\begin{split} g((\nabla_X A)Y,\phi_1 Z) + g((\nabla_X A)Z,\phi_1 Y) &= -g((\nabla_X \phi_1)Y,AZ) - g(\phi_1 \nabla_X Y,AZ) \\ &+ g((\nabla_X \phi_1)AY,Z) - g(A \nabla_X Y,\phi_1 Z) + \Sigma_{\mathbf{i}} \theta_{\mathbf{i}}(Y)g(\phi_{\mathbf{i}}AX,Z), \end{split}$$

where $g((A\phi_1 - \phi_1 A)Y, U_i)$ is denoted by $\theta_i(Y)$ and we have used the fact that

$$g((A\phi_1 - \phi_1 A)Y, \nabla_X Z) = \Sigma_i \theta_i(Y)g(U_i, \nabla_X Z)$$
$$= -\Sigma_i \theta_i(Y)g(\nabla_X U_i, Z)$$
$$= -\Sigma_i \theta_i(Y)g(\phi_i AX, Z)$$

Then by taking account of (2.8) and (2.9) and using the condition (1.4) again, we have

$$g((\nabla_X A)Y, \phi_1 Z) + g((\nabla_X A)Z, \phi_1 Y) = f_1(AZ)g(AX, Y) + f_1(AY)g(AX, Z) + \Sigma_i \theta_i(Z)g(\phi_i AX, Y) + \Sigma_i \theta_i(Y)g(\phi_i AX, Z).$$
(3.2)

In this equation we shall replace X, Y and Z in \mathcal{D} cyclically and we shall then add the second equation to (3.2), from which we subtract the third one. Consequently, by means of Codazzi equation (2.7) we get

$$g((\nabla_X A)Y, \phi_1 Z) = f_1(AZ)g(AX, Y) + \Sigma_i\theta_i(X)g(A\phi_i Y, Z)$$
$$+ \Sigma_i\theta_i(Y)g(A\phi_i X, Z).$$

From this, replacing Z by $\phi_1 Z$, we have

$$g((\nabla_X A)Y, Z) = g(V_1, Z)g(AX, Y) - \Sigma_i \theta_i(X)g(A\phi_i Y, \phi_1 Z) - \Sigma_i \theta_i(Y)g(A\phi_i X, \phi_1 Z).$$
(3.3)

where V_1 denotes $\phi_1 A U_1$ and the second term of the right side are given by the following

$$\begin{split} \Sigma_i \theta_i(X) g(A\phi_i Y, \phi_1 Z) &= -g(X, \phi_1 A U_1) g(AY, Z) + \{g(A\phi_1 X, U_2) \\ &+ g(AX, U_3)\} g(AY, \phi_3 Z) - \{g(A\phi_1 X, U_3) \\ &- g(AX, U_2)\} g(AY, \phi_2 Z), \end{split}$$

from this, the third term can be given by exchanging X and Y. Thus substituting this into (3.3), we have

$$g((\nabla_X A)Y, Z) = \mathfrak{S}g(V_1, Z)g(AX, Y) + \alpha(X, Y, Z) + \alpha(Y, X, Z),$$
(3.4)

where \mathfrak{S} denotes the cyclic sum with respect to X, Y and Z in \mathcal{D} and $\alpha(X, Y, Z)$ denotes

$$-\{g(A\phi_1X,U_2)+g(AX,U_3)\}g(AY,\phi_3Z)+\{g(A\phi_1X,U_3)-g(AX,U_2)\}g(AY,\phi_2Z).$$

Then by virtue of the assumption $\alpha(X, Y, Z)$ is skew-symmetric with respect to Y and Z in \mathcal{D} .

Now firstly let us take cyclic sum of the both sides of (3.4) one more time. Next using the skew-symmetry of $\alpha(X, Y, Z)$ to the right and the equation of Codazzi (2.7) to the left of the obtained equation respectively, we have the above result for i = 1. For a case where i = 2 or 3 by using the same method we can also prove the above result. \Box

PROOF OF THE THEOREM. From the assumption (1.3) we know that the shape operator A is η -parallel, that is, $g((\nabla_X A)Y, Z) = 0$ for any X, Y and Z in D. From this, by Lemma 3.1 we have for a case where i = 1

$$g(V_1, Z)g(AX, Y) + g(V_1, Y)g(AZ, X) + g(V_1, X)g(AZ, Y) = 0.$$
(3.5)

Thus in order to prove $g(A\mathcal{D}, \mathcal{D}^{\perp}) = 0$, we suppose that there is a point p at which $g(A\mathcal{D}, \mathcal{D}^{\perp})_p \neq 0$. Then there exists a neighborhood $\mathcal{U} = \{p \in M : g(A\mathcal{D}, \mathcal{D}^{\perp})_p \neq 0\}$ on which there exist such a distribution \mathcal{D} . Now let us denote AU_i by

$$AU_{i} = W_{i} + \Sigma_{j} \alpha_{ij} U_{j}, \qquad (3.6)$$

where W_{i} , i = 1, 2, 3 denote certain vectors in \mathcal{D} . Since on this neighborhood \mathcal{U} we have $g(A\mathcal{D}, \mathcal{D}^{\perp}) \neq 0$, at least one of the vectors W_{i} , i = 1, 2, 3 should not be vanishing. Thus for a convenience sake let us assume that W_{1} is a non zero vector on this neighborhood \mathcal{U} . Then it follows that

$$V_1 = \phi_1 A U_1 = \phi_1 W_1 + \Sigma_j \alpha_{1j} \phi_1 U_j, \quad W_1 \in \mathcal{D},$$

so that, (3.5) gives the following for any X, Y and Z in \mathcal{D}

$$g(\phi_1 W_1, Z)g(AX, Y) + g(\phi_1 W_1, Y)g(AZ, X) + g(\phi_1 W_1, X)g(AZ, Y) = 0.$$

From this, putting $Z = \phi_1 W_1$, then for any X, Y in \mathcal{D}

$$||W_1||^2 g(AX,Y) + g(\phi_1 W_1,Y)g(A\phi_1 W_1,X) + g(\phi_1 W_1,X)g(A\phi_1 W_1,Y) = 0, \qquad (3.7)$$

so that, putting $Y = \phi_1 W_1$ gives

$$2\|W_1\|^2 g(AX,\phi_1W_1) + g(\phi_1W_1,X)g(A\phi_1W_1,\phi_1W_1) = 0.$$
(3.8)

From this, putting $X = \phi_1 W_1$, by virtue of $||W_1|| \neq 0$ we have

$$g(A\phi_1W_1,\phi_1W_1)=0$$

From this together with (3.8) we have

$$g(AX,\phi_1W_1)=0.$$

for any X in \mathcal{D} . Thus it can be written

$$A\phi_1 W_1 \in \mathcal{D}^\perp$$
.

From this together with (3.7) it follows that for any X, Y in \mathcal{D}

$$g(AX,Y)=0,$$

where we also have used the fact $||W_1|| \neq 0$ on a neighborhood \mathcal{U} . Unless otherwise stated let us continue our discussion on this open set \mathcal{U} . Accordingly, by (3.6) we know for any $X \in \mathcal{D}$

$$AX = \sum_{i} g(AX, U_{i})U_{i}$$

= $\sum_{i} g(X, AU_{i})U_{i}$
= $\sum_{i} g(W_{i}, X)U_{i}.$ (3.9)

On the other hand, from the condition (1.3) let us put

$$(\nabla_X A)Y = -\sum_{i=1}^3 g(\phi_i X, Y)U_i$$

= $\lambda_1(X, Y)U_1 + \lambda_2(X, Y)U_2 + \lambda_3(X, Y)U_3.$ (3.10)

for any X, Y in \mathcal{D} . Since we have put $AU_1 = W_1 + \Sigma_j \alpha_{1j} U_j$, from which it follows

$$(\nabla_X A)U_1 = \nabla_X W_1 + \Sigma_j X(\alpha_{1j})U_j + \Sigma_j \alpha_{1j} \{-p_k(X)U_i + p_i(X)U_k + \phi_j AX\} - A \{-p_2(X)U_3 + p_3(X)U_2 + \phi_1 AX\}.$$

Then for any X, Y in \mathcal{D} the function $\lambda_1(X, Y)$ is given by

$$\lambda_{1}(X,Y) = g((\nabla_{X}A)U_{1},Y)$$

= $g(\nabla_{X}W_{1},Y) + \Sigma_{j}\alpha_{1j}g(\phi_{j}AX,Y) + p_{2}(X)g(AU_{3},Y)$
- $p_{3}(X)g(AU_{2},Y) - g(A\phi_{1}AX,Y).$ (3.11)

When we put $X = W_1$ and $Y = \phi_1 W_1$ in (3.10), we get

$$\lambda_1(W_1, \phi_1 W_1) = -\|W_1\|^2.$$
(3.12)

On the other hand, by the equation of Codazzi (2.7) and using (3.6) and (3.9) we have

$$\begin{aligned} (\nabla_{U_1} A) W_1 - (\nabla_{W_1} A) U_1 &= \phi_1 W_1 \\ &= \nabla_{U_1} (A W_1) - A \nabla_{U_1} W_1 - \nabla_{W_1} (A U_1) + A \nabla_{W_1} U_1 \\ &= \Sigma_i U_1 (g(W_i, W_1)) U_i + \Sigma_i g(W_i, W_1) \nabla_{U_1} U_i \\ &- A \nabla_{U_1} W_1 - \nabla_{W_1} W_1 - \Sigma_j W_1 (\alpha_{1j}) U_j \\ &- \Sigma_j \alpha_{1j} \{ -p_k (W_1) U_i + p_i (W_1) U_k + \phi_j A W_1 \} \\ &+ A \{ -p_2 (W_1) U_3 + p_3 (W_1) U_2 + \phi_1 A W_1 \}. \end{aligned}$$

From this, substituting (2.8) and taking the inner product with $\phi_1 W_1$ and using (3.6), we have

$$g(\nabla_{W_1}W_1, \phi_1W_1) = ||W_1||^2 (||W_1||^2 - 1) - g(A\nabla_{U_1}W_1, \phi_1W_1) - \sum_j \alpha_{1j}g(\phi_jAW_1, \phi_1W_1) - p_2(W_1)g(AU_3, \phi_1W_1) + p_3(W_1)g(AU_2, \phi_1W_1) + g(A\phi_1AW_1, \phi_1W_1).$$
(3.13)

On the other hand, it can be easily verified that

$$g(A\nabla_{U_1}W_1, \phi_1W_1) = g(\nabla_{U_1}W_1, A\phi_1W_1)$$

= $\Sigma_i g(W_i, \phi_1W_1)g(\nabla_{U_1}W_1, U_i)$
= $-\Sigma_i g(W_i, \phi_1W_1)g(W_1, \phi_iAU_1)$
= 0.

where we have used (3.9) and (2.8) to the second and the third equality respectively. Moreover, the facts that $AW_1 = \sum_i g(W_i, W_1) U_i \in \mathcal{D}^{\perp}$ and $\phi_1 W_1 \in \mathcal{D}$ imply

$$\Sigma_j \alpha_{1j} g(\phi_j A W_1, \phi_1 W_1) = 0. \tag{3.14}$$

By virtue of these formulae (3.13) can be rewritten as

$$g(\nabla_{W_1}W_1, \phi_1W_1) = ||W_1||^2 (||W_1||^2 - 1) - p_2(W_1)g(AU_3, \phi_1W_1) + p_3(W_1)g(AU_2, \phi_1W_1) + g(A\phi_1AW_1, \phi_1W_1).$$
(3.15)

Now putting $X = W_1$ and $Y = \phi_1 W_1$ in (3.11), from which substituting (3.15) and using (3.14), we have

$$\lambda_1(W_1, \phi_1 W_1) = \|W_1\|^2 (\|W_1\|^2 - 1).$$

From this and (3.12) we know $||W_1|| = 0$, which makes a contradiction on \mathcal{U} . Using the same method for the cases where W_2 or W_3 are non vanishing, we can also prove $W_2 = 0$ or $W_3 = 0$ respectively. This makes a contradiction. From this we know that there does not exist such a neighborhood \mathcal{U} on M. Thus we can conclude $g(A\mathcal{D}, \mathcal{D}^{\perp}) = 0$. Then from [1] M is congruent to an open part of either a tube of radius $r, 0 < r < \frac{\pi}{2}$ over the canonically (totally geodesic) embedded quaternionic projective space $QP^k, k \in \{0, 1, ..., m-1\}$ or a tube of radius $r, 0 < r < \frac{\pi}{4}$, over the canonically (totally geodesic) embedded complex projective space CP^m .

Let us consider the second kind of tubes. The principal curvatures on \mathcal{D}^{\perp} and \mathcal{D} of such a tube are given by $\alpha_1 = 2\cot 2r$, $\alpha_2 = \alpha_3 = -2\tan 2r$, $\lambda = \cot r$ and $\mu = -\tan r$, with multiplicities 1, 2, 2(m-1) and 2(m-1) respectively ([1],[4]). Moreover, it is also known that

$$A\phi_{i}X = \frac{\lambda\alpha_{i}+2}{2\lambda-\alpha_{i}}\phi_{i}X, \quad i = 1, 2, 3$$

for a principal vector X in \mathcal{D} with principal curvature λ . When we consider for the cases where $\alpha_2 = \alpha_3 = -2tan2r$, we have

$$(A\phi_i - \phi_i A)X = -(cotr + tanr)\phi_i X, \quad i = 2,3$$

for any X in \mathcal{D} with principal curvature *cotr*. Then from (1.4) we have -tanr - cotr = 0. This implies that $cot^2r = -1$, which is impossible. Thus the second kind of tubes can not satisfy (1.4). This completes the proof of the Theorem. \Box

ACKNOWLEDGEMENT. The first and second authors were supported by the grants from TGRC-KOSEF and BSRI program, Ministry of Education, Korea, 1995, BSRI-95- 1404. This work was done while the second author was a visiting professor of the University of Granada, SPAIN.

The present authors would like to express their sincere gratitude to the referee who made some improvements in the original manuscript.

REFERENCES

- BERNDT, J. Real hypersurfaces in quaternionic space forms, <u>J. Reine Angew. Math.</u> 419 (1991), 9-26.
- 2. ISHIHARA, S. Quaternion Kaehlerian manifolds, J. Diff. Geom. 9(1974), 483-500.
- MARTINEZ, A. Ruled real hypersurfaces in quaternionic projective space, <u>Anal. Sti. Univ.</u> <u>Al I Cuza, 34</u>(1988), 73-78.
- MARTINEZ, A. and PÉREZ, J.D. Real hypersurfaces in quaternionic projective space, <u>Ann. Math. Pura Appl. 145(1986)</u>, 355-384.

- PAK, J.S. Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Qsectional curvature, <u>Kodai Math. Sem. Rep. 29</u>(1977), 22-61.
- PÉREZ, J.D. Real hypersurfaces of quaternionic projective space satisfying ∇_U, A = 0, J. <u>Geom.</u> 49(1994), 166–177.
- TAKAGI, R. Real hypersurfaces in a complex projective space with constant principal curvatures, J. <u>Math. Soc. Japan 27</u>(1975), 43-53.