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ON AN INVERSE TO THE HOLDER INEQUALITY
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ABSTRACT. An extension is given for the inverse to Hhlder’s inequality obtained recently
by Zhuang.
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Recently Zhuang [1] proved the following inverse of the arithmetico-geometric inequality.
THEOREMA. Let O<a<_x<_A,O<b<_y<B, lip+l/q= 1, p> 1;then

x y fA/p+b/q a/p+B/q+ _< max
[ i7, a’i,B’i, f x’i’y’i (1)P q

or

x + y <_ max
A1/pbl/q ai./--i-/q xl/’yi/q, (2)

the sign of equality in (1) and (2) holds if and only if either (x,y) (a,B) or (x,y) (A,b).
Moreover, if a _>/5’, then

alp + B/q xl/,yl/q <_ x y Alp + b/q zi/pyi/q+- < (3)alh’B1/q p q- Ai/,bi/q

the sign of equality on the right-hand side of (3) holds if and only if (x,y) (A,b), and the

sign of equality on the left-hand side of () holds if and only if (.x,y) (a, B). The sign of

inequality in (3) is reversed if b _> A.

This enables us to formulate the following theorem.

THEOREM 1. Suppose x, y, a, b, A, B, p, q are as in Theorem A and a,/ > 0. Then

az’ + 3y <_ max(C, D)xy, (4)

where

C (hA’ + 13bq)/(Ab), D (ha’ + 3B)/(aB). (5)

Equality occurs if and only if either (x,y) (a, B) or (x, y) (A, b). Moreover, if apa’ >_

flqBq, then

Cxy

_
otxp -b flyq

_
Dxy, (6)

with equality on the right-hand side if and only if (x,y) (A,b) and on the left if and only if

(x, y)= (a, B). The inequalities in (6) are reversed if apA’ <_ qbq.



206 J. PECARIC AND C. E. M. PEARCE

PROOF. Inequalities (4) and (6) follow from (1) and (3) under the substitutions

x apx;’, y --+/3qy, a apa, b -+/3qb, A opA’, B --/3qB

REMARK. Theorem gives (1) and (2) together, (1) resulting from the substitutions a 1/p,

z x 1/;’, A A 1/;’, 42 a /;" and corresponding relations for/3, y etc. with q in place of p,

while (2) results from similar substitutions with a =/3.

The following result now gives an extension of the inverse to H61der’s inequality obtained

in [1]. We suppose that all the integrals involved exist.

THEOREM 2. Let the functions f,g satisfy 0 < a <_ f(x) <_ A, 0 < b <_ 9(x) <_ B for

almost all x E X with respect to a measure #. Suppose c,/3, p, q, C, D are as in Theorem 1.

Then

fVdlt gqdl.t <_ (ol3)-’/;’(/3q) -a/q max(C, D) [ f9 du (7)

and equality holds if and only if

and

where

u( F,) .(x)

,(E,
(apA;’- qbq)la(X)

op(A’ a;" + ,Oq(B’

E1 {z X" f(z) =a,g(z) B},

F1 {x G_ X f(x) A,9(x) b}.
Moreover, if opal’ >_ 13qB, then

(fx fndP) 1’ (fx g’du) / <- (P)-/r’(q Ix f9 du, (s)

with equality only if (f,9) (a,B) a.e. on X and opa’ 13qBq, and if opAr’ <_ qb, then

(IX if’l*) ’/" (/,,X" ,.,,)’l,<_ {op)_ll,(jq)_.lqj. ’’1’. (9)

with equality only if (f,9) (A,b) a.e. on X and opAl’

PROOF. The first statement was proved in [1]. A simple proof of the remainder of the
theorem was given for the case o l/p, 3 1/q in [2]. We give a similar simple proof for the
general case.

max(C, D) /x fg d fx max(C, D)fg dp

>- fx (of;’ + g’)dla

1_ (op) fX f’d. +-(/3q)fx.qd,,P q

>- (P)I/;’(pq)I/ (fx f’d,,) l/;"

(fx ggdla)1/
by the arithmetico-geometric inequality.
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The equality conditions result from those in Theorem and the arithmetico-geometric

inequality.

Similarly we can prove (8). Using the second inequality in (6) we have

D/xfgd, fxDfgd
>- Ix (’f; +

P q

Relation (9) follows similarly.

REMARK. The simplest cases of (8) and (9) occur for a 1/p, 13 1/q. Then we have

that if a’ _> Bq, then

and if A’ <_ bq, then

where

<_ D fx fg

(Ix f’d#) :h’ (fx gqdlt) /q <_ C1 fx fg d#,

D, (a’+ ;B’)/(aB),
Ar,C, (; + :b) /(Ab).
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