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ABSTRACT. In this paper we prove that if R is a ring with as an identity element in which

rm- xr’e Z(R) for all x e R and fixed relatively prime positive integers m and n, one of which is

even, then R is commutative. Also we prove that if R is a 2-torsion free ring with in which

(2k)n+ 1-(z2k)n 5 Z(R) for all z e R and fixed positive integer a and non-negative integer k, then

R is commutative.
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1. INTRODUCTION.
Throughout this paper, R is an associative ring with as an identity element. We denote

the centre of R by Z(R) and the commutator zy-yz by [z,y]. Recently, Quadri and As]arM [1]
proved that if R is a ring in which x + 1_ zn e Z(R) for all x e R and fixed positive integer n, then

R is commutative. In this paper, we generalize this result.

2. MAIN RESULTS.
We start with the following lemma of Bell [2].
LEMMA 2.1. Let tve R. If for each x e R there exist relatively prime positive integers

n n(z) and m re(z) such that

[w,zn] [w,zm] 0, then t e Z(R).

THEOREM 2.1. If R is a ring with zrn- zne z(R) for M1 z e R d fixed relatively prime

positive integers m d n, one of which is even, then R is commutative.

PROOF. Let
zm- zn e Z(R) for 1 z e R. (2.1)

Asse m is even d n is odd. Using both z d -z in (2.1) d then adding d subtracting,
we get 2zm Z(R) d 2zn Z(R). Thus [zm,2y]=[zn,2y]=O for r,y R; d by Lena 2.1

2y Z(R) for y q R. Now we replace r by + to obtMn

d since m is even d n is d d [,] , we ge [()-,1 for some () Z[]. Now
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the theorem follows from Herstein’s result [3].
In Theorem 2.1, all the hypotheses are essential. If both m and n are odd or if one of rn and

n is even and the other odd, but they are not relatively prime; or if both m and n are even; or if R
is a ring without the identity element in the hypotheses of the theorem, then / need not be

commutative.

EXAMPLE 2.1. It can be shown easily that

R 0 a d :a,b,c,d 6. GF(3
0 0 a

is a ring with identity element, in which

(i) z3_z9 e

(ii) z3-z6 e

(iii) z4 z1 6- g(R)

for all z 6- R, but R is not commutative.

EXAMPLE 2.2.

R=

0

a d :a,b,c,d 6. GF(2)
0 a

is a ring with identity element in which

(i) z z9 6- Z(R)

(ii) z4 zS 6-

for all r 6- R, but R is not commutative.

EXAMPLE 2.3.

l/R= 0

0

0 :a,b,c, 6- GF(3)
0 0

is a ring without identity element with z3 z4 6- Z(R) for all z 6- R, but R is not commutative.

We state the following lemma which can be proved easily.
LEMMA 2.2. If 2kn where k and n are positive integers, hen

are multiples of 2:
(2r 1) + 2k r k2r 1/

for 1,2,3, -.
Now we give the following theorem which generalizes the theorem of Quadri and Ashraf [1]

for 2-torsion free rings.
THEOREM 2.2. If R is a 2-torsion free ring with (z2k)n + _(z2k)n 6- Z(R) for all r 6- R and

fixed non-negative integer k and positive integer n, then R is commutative.

PROOF. If k 0 then result follows from Theorem 2.1. Let k > 0 and

[z + 2k, p] [zt, u] for all z,u R where 2/%

Now we replace z by z + to obtain
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(2.2)

Next we replace z by-z in (2.2) and subtract the result from (2.2) and use the fact that R is

2-torsion free to get

Lr k2r- II +r=ll \(2r- 1)+ 2k r-1

By Lemma 2.2 and the fact that R is 2-torsion free, we get [z2p(x)-x,y] 0 for all z,y E R and

some p(x) E Z[x]. Now R is commutative.

All the hypotheses of Theorem 2.2 are essential. In Example 2.1, R is a 2-torsion free ring

with identity element in which (x2k)m- (x2k)n Z(R) (k 2,m 4,n 7) for all x,y E R and m and n

are relatively prime positive integers and one of them is even, but R is not commutative. In
Example 2.2, R is a 2-torsion ring with identity element in which (x2/)n / 1- (x2/c)n Z(R) (k- 2,

, 1) for all x R, but R is not commutative. In Example 2.3, R is a 2-torsion free ring without

identity element in which (x2t)n+l-(x2k)nEZ(R) (k=2 and n=l) for all zR, but R is not

commutative.
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