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At’STICACT. ia arricte we will’ invegaCe refleeffoaf dissipaCioa ofg/a waves, :6sm’iag
from a uniform vertical magnetic field, in a viscous, resistive and isothermal atmosphere. It is shown that

the atmosphere may be divided into two distinct regions connected by an absorbing and reflecting
transition layer. In the transition layer the reflection, dissipation and absorption ofthe magnetic energy of
the waves take place and in it the kinematic viscosity changes from small to large values. In the lower

region the effect of the resistive diffusivity and kinematic viscosity changes from small to large values. In
the lower region the effect of the resistive diffusivity and kinematic viscosity is negligible and in it the

solution can be represented as a linear combination of two, incident and reflected, propagating waves

with different wavelengths and different dissipative factors. In the upper region the effect of the resistive

diffusivity and kinematic viscosity is large and the solution, which satisfies the prescribed boundary
conditions, will behave as a constant. The reflection coefficient, the dissipative factors are determined

and the conclusions are discussed in connection with solar heating.
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1. INTRODUCTION
It is well known that the solar corona is extremely hot, the typical temperature is 2 x 106K, at heights

in excess of 2000 Km, compared with 5 x 10SK, temperature minimum, in the atmosphere (see Priest [3]
for references). As a result, thermal energy must be continually supplied to maintain this temperature

against radiative cooling. The old ideas for coronal heating were that ofsouM waves being generated in

the convection zone that could propagate through the solar chromosphere, steeping into shocks and to

give global heating. Sound waves have been ruled out in connection with coronal heating, however,

because their low group velocity means that they cannot supply the necessary energy However, the

remnants of this idea remain. Recent theories of the solar heating invoke, strongly, the magnetic energy

dissipation as a source of thermal energy. In particular, recent investigations are focusing on the

dissipation of magnetic energy, resulting from a vertical magnetic field, and its role in the heating process

ofthe solar atmosphere.
The aim of this paper is to investigate the combined effect of the electrical conductivity and the

viscosity on the reflection and dissipation of Alfvtn waves, resulting from a uniform vertical magnetic

field, in an isothermal atmosphere. It is shown that if the effect ofthe viscosity is small compared to that

of the resistive diffusivity the atmosphere can be divided into two different regions. In the lower region

the influence of the resistive diffusivity and kinematic viscosity is negligible and the solution can be

written as a linear combination of incident and reflected waves with different wavelengths and different

dissipating factors. In fact the wavelength factor ofthe reflected wave is smaller than that of the incident
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wave. This indicates that the magnetic energy which dissipates from the incident wave is larger than that
of the reflected wave and the difference in the magnetic energy of the reflected and the incident waves
represents the dissipated energy in the transition region. Moreover, the dissipative factors are a function
of the electrical resistivity and the dynamic viscosity. In the upper region the effect of the resistive
diffusivity and the kinematic viscosity is large. As a result, the solution, which satisfies the dissipation
condition, behaves as a constant. The lower and the upper regions are connected by a transition layer in
which the kinematic viscosity changes from small to large values because of the exponential decrease of
the density with height. Moreover, in the transition region the reflection and dissipation of Alfv6n waves
take place. The differences in both, wavelengths and dissipating factors, result from the absorption and

dissipation process of the magnetic energy in the transition layer, the reflection coefficient and the

dissipative factors are determined. The conclusions are discussed in connection with the process of the

heating ofthe solar atmosphere.
2. MATHEMATICAL FORMULATION OF THE PROBLEM

We will consider an isothermal atmosphere, which is viscous and resistive, and occupies the upper
half-space z > 0. It will be assumed that the gas is thermally non-conducting and under the influence of a
uniform vertical magnetic field. We will investigate the problem of small oscillations about equilibrium,
i.e. oscillations which depend only on time 4, on the vertical coordinate z and on the horizontal

coordinate z.

Let the equilibrium pressure, density, temperature and magnetic field strength be denoted by P0(z),
p0(x), To, and Bo(x), where P0(z), po(Z) and To satisfy the gas law P0(x)= RToPo(x) and the

hydrostatic equation P(x) / gpo(z) 0. Here R is the gas constant, g is the gravitational acceleration

and the prime denotes differentiation of the pressure with respect to x. The equilibrium pressure and

density,

P0(z) P0(0)exp(- z/K), p0(:r) p0(0)exp(- z/K), (2.1)

where K RTo/g is the density scale height.
Let p(z,z,t), p(z,z,t), V(z,z,t), and h(x,z,t) be the perturbations quantities in the pressure,

density, velocity, and the magnetic field strength.
Alfv6n waves are incompressible because they have motions transverse to the magnetic field, i.e. they

do not couple to slow or fast magnetohydrodynamics waves in a homogeneous medium, Priest [3]. As a

result, they can be described only by the induction and momentum equations and dissipation of linear

waves is not affected by thermal conduction or radiation. Thus, the equations ofmotion are

c9-’ + V x(ixV) V x V xlt (2.2)

ov v] " [n(0 -bZ+(v-v) +vp-gp+ v
v V V + V v. V )V + V Iv- V" V)], (2.3)

V(x)= v(z,z,t)ey and is thewhere n(x, z, t) B(x) + h(x, z, t), V ex + % + ,
pbi of the maetic field, kby [3,8]. Here v d v- e, respeively, the incompressible

d compressible scosities. Moreover, c denotes the spd of light in valuta d is the Oc
electfic conducti. The induction equation (2.2) bces maetic field oscillation, veloci
trspon ong the maetic field lines d compressibili agnst resiive dissipation byO effect, the

HI effe bng oned. The momentum uation (2.3) bces the ineia force d pressure gradient

against weight, maeticd scous forces.
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In this article we will consider the case of a uniform vertical magnetic field B0(x) B0, as well as
r/= and v, i.e. they are constants. It follows from equation (2.1) that the kinematic viscosity and

Alfv6n speed can be written in the following form

(z) (U/po(O))e’/K, (2.4)

c(z) c. (o)e/, (2.)

where CA V/#/4rp0(0) Bo. Moreover, the linear forms of equations (2.2) and (2.3) are:

Dh(x, z, t) rl[D,h(x, z, t) + Dh(x, z, t)] BoDv(x, z, t), (2.6)

Dv(x,z,t) (x)[Dv(x,z,t) + Dv(x,z,t)] (c/Bo)Dh(x,z,t). (2.7)

In addition, the veloci v(x, z, t) c be efited to obtn equation for h(x, z, , oy Ts c
be aompBshed by deremiag uafions (2.6) d (2.7) th resp to t d using uation (2.7).
The msting emmi uation is

Duh(x,z,t)-ce/KDzh(x,z,t)= (+ve/g)D[Dzh(x,z,t)WDzzh(x,z,$)]. (2.8)

BOARY CONDONS. To mple the problem foulafion cenn bound conditions
must be impos to ensure a que solmion. Since the g is scous md resistive the dissipation
condition l be neces md mfficiem, as m upper bound ndition, to ensure a uque solution.
the &ssipafion condition rues the fiteness of the rate of the ener dissipation in m ite colu
offld ofa ut cross-section. Ts implies,

< , (2.9)lR(,k,)ld

where R(x, k, ) dotes thecfield sputum of a wave th equen w, wavelenh k d at

the position x (e equation 3.5). Ts bound confion 11 not be applible if u a 0, bm it 11
be applicable if u 0 or a 0. Moreover, a bound ndifion is sorr at x 0, d we shl
set

h(0, , ) , (2.0)

by suitably nong h(x, k, ). It 11 be sn that the bound conditions 11 ensure a uque
lution totn a multipficative nstt.

3. SOLOMON OFEPROBLEM
Ins ion we 11 invegate e bettor ofthe lmion ofthe differemi equation (2.8) d we

sdee a fies solution d obtn the ptotic behaor of the solution. We use Fourier

represmtion in z d t for the mastic field prbation h(x, z, ) bemuse the propeRies of the

atmosphe depend on x oy. In other words the maetic field h(x, z, ) is ven by the foilong
Fourier representation

h(x,,t) d R(x,k,t)exp[i(k -)]dk, (3.1)

where R(, , t) denotes the maic field perbatin spmmm fr a wave of equency , trsverse

wavenumber k at a psition . Moreover, we 11 introduce the fllong dimensiNess peters,

’=/, =, =/(0, =/(0, =/, =/. (3.

whe the prime on the dimensioNess vable is for simplici. er the subgitutin of

equation (3.1) d the densioNess peters, defin in equation (3 2), into equation (2.), we have

the follong erenfi uation
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[I +e-=/(]D2R(x,k,w) [/32(1-i2)+(f/o-iol/O2)e-=]R(x,k,w)=0, (3 3)

where d d/dx. Since the solution will depend on p/a, it will be convenient to introduce a new

dimensionless variable X defined by

then the operator D goes over into

x -:/, (3 4)

D2 x2d2/dx -t- xd/dx

For fixed value a > 0 the point X 0 corresponds to x oo, the point X0 1/a to x 0 and the

segment connecting these points in the complex x-plane to x > 0. Moreover let

R(X, .,,,.,) X’(X), (3.5)

then differential equation (3.3) can be written in the following form where the prime denotes the

derivative of with respect to X,

X(1 X)"(X) + [1 + 2r (1 + 2r)x]’ i(o/ot3 -/322)(x) O, (3.6)

provided that the parameter r satisfies the following relation

r fV/1 ic2.

It is clear that he differential equation (3.3) is a special case ofthe hypergeometric equation

[X(1 x)Efl + (c (1 + a + b)x)D ab](X) O,

with

c=l-2r, a+b=2r, ab=i(a2/c3-c2). (3.9)

Moreover, equation (3.6) has three regular singular points, X 0, X 1, and X c. The imermediate

regular singular point X 1 corresponds to the reflecting layer. Solving for the dimensionless

parameters a and b we have

a=/3[V/1- ic2 + V/1 ic/13,2c3], (3.10)

(3 11)

For IX[ < 1, the hypergeometric equation (3.6) has two linearly independent solutions of the following
form:

(I)I(X) F(a,b, 2,X), (3.12)

2(X) X-2"F(a c + 1, b- c + 1, 2 c, X), (3 13)

where

F(a,b, 2,X)
.=o (c).

r() r( + )r( + ) x__i
r()r() z_..=o r( + ) !

For IX[ > 1 and [arg( X)] < r, the solution of equation (3.6) can be written in the following form:

.(X)=(-X)-aF(a,l-c+a,l-b+a,x-’), (3 15)

(x) (- x)-’F(,, a +, ,, + ,x-’). (3.16)
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The second solution 2(X) will be eliminated by the boundary condition (2.9) because it increases to

infinity as x-- oo. As a result, the solution of the differential equation (3.6), which satisfies the
dissipation condition, is a multiple of (X), i.e.

O(X) 001 (X) (TF(a, b, cX), (3.17)

where (7 is a constant which can be determined from the boundary condition (2.10). For IXl > 1,
larg( X)I < r, the analytic continuation of the solution of the differemial equation (3.6) carl be written

like:

),(x) c
r()r(c )

r()r( )+ r()r(- )

X)-"F(a, 1 c + a, 1 b + a,x-1)

x)-F(, + b, + , X-’)] (3.18)

For [X[ > 1 and ]arg( X)[ < r the asymptotic behavior of the solution, defined in equation (3.8), as

a 0 can be obtained by retaining the most significant terms in equation (3.18), the resulting equation is

[r()r(- )(x) c
[r()r( )

r()r(- )x)- + r()r(c )
x)- (3.19)

4. MAGNITUDE OF THE REFLECTION COEFFICIENT AND CONCLUSIONS
In this section we will investigate the behavior ofthe solution ofthe differential equation (3.6) defined

by the hypergeometric function (3.17) and its asymptotic expansion defined by equation (3.19). In
particular, we will determine the reflection coefficient and the dissipative factors To do this we have to

make use ofthe dimensionless parameters a and b. It is easy to see that

a= [V/1- io2 + V/1 ivt2/2sl=dl-id, (4.1)

It is clear that dl> a and da > rib. Reintroducing the original variable x via (3.4), the equation (3.19)
can be written in the following form

c [r()r( b)exp(- d2 + idb)loga
(x) r()r( )

[exp[( d2 + idb)X] + R exp[(dl id,)x]], (4.3)

where R denotes the reflection coefficient obtained from the ratio of the amplitudes of the reflected and

incident waves and defined by

F(a)F(c-b)F(b-a) ((W[ iot/ ) log t) (4.4,R
r(b)r(c a)r(a b)

exp 2a 1

The constant C can be determined from the boundary condition (2.10). As a result,

r()r( b)exp(d idb)lOg a
c

r()r( b)[1 + R]
(4.5)

and equation (4.3) can be written in the following form

(x)
1 + R [exp[( d + idb)x] + R exp[(dl id,,)z]].

As a consequence ofthe above results and discussion we have the following conclusions.

(4 6)
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[A] Equation (4.3) represents the behavior of the solution of the differential equation (3.6), which
satisfies the prescribed boundary conditions, in the lower region. It indicates that the solution can be
written as a linear combination of an incident and a reflected wave. In the upper region the solution,
which satisfies the dissipation condition, should behave like a constant. These two regions are connected
by a transition region.

[B] In the transition region the reflection, dissipation and modification of the waves takes place.
Moreover, the kinematic viscosity changes from small to large values because ofthe exponential decrease

ofthe density with x.

[C] The incident wave decays exponentially like exp( dx), while the reflected wave decays like

exp( dlx). Since dl > d2, the dissipative factor ofthe incident wave is larger than that ofthe reflected
wave. On the contrary, the wavelength of the reflected wave A, 27r/da is smaller than that of the
incident wave A, 27r/rib, because da > rib. This indicates that the larger pan ofthe dissipated magnetic

energy comes from the incident wave.

[D] The dissipative factors are functions ofthe dynamic viscosity and electrical conductivity and they
behave like exponentially decaying waves. This indicates that the magnetic energy of the wave dissipates
as the wave propagates, upward and downward, but still most of the dissipation of the magnetic energy
takes place in the transition region.

[El The reflected wave, from the transition region, will be reflected upward at the boundary of
z z 0. Reflection and dissipation of the waves will continue, in the lower region, until the energy of

the waves dissipates completely.
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