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ABSTRACT. In this paper we generalize the notion of pure injectivity of modules by introducing what
we call a pure Baer injective module. Some properties and some characterization of such modules are

established. We also introduce two notions closely related to pure Baer injectivity; namely, the notions of
a E-pure Baer injective module and that of SSBI-ring. A ring R is an SSBI-ring if and only if every
smisimple R-module is pure Baer injective. To investigate such algebraic structures we had to define
what we call p-essential extension modules, pure relative complement submodules, left pure hereditary
tings and some other related notions. The basic properties of these concepts and their interrelationships
are explored, and are further related to the notions of pure split modules.
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0. INTRODUCTION
In this introduction we establish terminology and recall a summary of some basic definitions and

results in the literature necessary for subsequent sections ofthe paper.
Throughout R will denote a ring with identity. Unless otherwise stated, all modules will be unitary

left R-modules, and all homomorphisms will be R-homomorphisms.
A short exact sequence 0---, N---} M---} K--} 0 of left R-modules is said to be pure if"

L (R) RN L (R) RM is a monomorphism for every right R-module L. A submodule N of an R-module
M is called a pure submodule ofM in case the natural homomorphism L (R) sN L (R)M is injective
for every right R-module L. Equivalently, N is pure in M if and only if for any finite system of

linear equations r,z a,, 1 < < m, where % E R and a, E N, if the system has a solution
3=1

(sl, sn) Mn, it also has a solution (tl, t,) N".

A left R-module is regular if and only if every submodule ofM is pure, and a submodule N of a flat

R-module M is pure ifIN IM N N for all right ideals I of R. For further results concerning this type

ofpurity see [1 and [2].
A left ideal I of a ring R is pure in R if and only if for every z I there exists an V I such that

z zV Furthermore, a ring R is Von-Neumann regular if and only if each left (fight) R-module is flat if

and only if every (principal) left (fight) ideal is pure (see [3]).
A submodule N of an R-module M is called relatively divisible or briefly RD-submodule if

rN N N rM for all r E R. A commutative domain R is Pr0fer if and only if every finitely generated
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ideal is projective. For modules over a Prefer ring, purity and RD-purity coincide, flatness and torsion

ffeeness coincide (see [4]).
By K M we shall understand that K is an essential submodule of

A ring R is called a left V-ring if and only if every simple left R-module is injective. Kaplansky
proved that a commutative ring R is a V-ring if and only if it is regular [5].

A left R-module M is called pure injective if it is injective relative to every pure exact sequence of

R-modules Warfield [4] proved that any left R-module can be embedded as a pure submodule of a pure
injective R-module. It can also be proved that a pure injective R-module is a direct summand of every

R-module containing it as a pure submodule (see [6]).
For further related results we refer to [2], [3] and [4], together with the monographs ], [6] and [7]

1. PURE BAER INJECTIVE MODULES
We now introduce the definition of a pure Baer injective module

DEFINITION 1.1. An R-module M is called a pure Baer injective module if for each pure left

ideal I ofR, any R-hemomorphism f I - M can be extended to an R-homomorphism f R
If a ring R is free from non-zero one sided zero divisors then any R-module is necessarily pure Baer

injective. In fact R does not possess any non-zero proper pure one-sided ideal in this case. This means,

in particular, that any abelian group is a pure Baer injective Z-module.

We find it necessary to point out from the start that the notion of pure Baer injectivity is different

from that of pure injectivity; as an example consider the Z-module Z. However, it is evident that every

pure injective R-module is pure Baer injective. Furthermore, we note the easily deduced fact that any

pure Baer injective module over a Von-Neumarm regular ring is injective.?
The following result is essential in characterizing pure semisimplicity of rings, a notion to be

introduced in the sequel.
THEOREM 1.2 (Pure Baer Injectivity Test). For a left R-module the following are equivalent

(1) M is pure Baer injective R-module
(2) For every pure left ideal I of R and every R-homomorphism f" I M, there exists an m E M
such that for all a

_
I, f(a) am;

(3)* For every pure exact sequence

the sequence

0 I R R/I ---,0

M Homl(I,M) 0

wish to thank my study supervisors for calling my attentmn to this result.

is exact.

PROOF. Clear. VI

PROPOSmON 1.3. The direct product 1-I,M, of R-modules is pure Baer injective if and only if

each M, is pure Baer injective.

PROOF. Clear.

We recall that a module M over a ring R is called torsion-free if for no 0 :/: r R, rz 0 unless

O=xq.M.

The proof of the previous result shows that if

However, we have:

PROPOSITION 1.4. A direct sum oMo of torsion-free R-modules is pure Baer injective if and

only if each Mo is pure Baer injective.
PROOF. Let Mo be pure Baer injective for each c and consider any R-homomorphism

f I oMo, I being a pure left ideal of R. Considering the canonical projection ro on M and
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applying the pure Baer injectivity test Lemma 1.2, one can find rno E Mo for each a such that

raf(x) Xmo for every x E I. Thus f(x) _, Xmo. This means that xrna 0 for all but a finite
fimtc

number of the indices. But since each Mo is torsion-free, we conclude that mo= O for almost all

This means that the element {too} of HoMo is an element of oMo, proving that this direct sum is

pure Baer injective I"1

2. THE NOTIONS OF PURE HEREDITARY AND PURE SIMPLE
RINGS AND THEIR ROLE IN PURE BAER INJECTIVE MODULES
In this section we define and study two notions: the pure hereditary ring and the pure simple ring,

both ofwhich appear to have a vital role in characterizing pure Baer modules.

DEFINITION 2.1. A ring R is called left pure hereditary if every pure left ideal ofR is projective.

In what follows we shall prove that the class ofpure Baer injective R-modules over a pure hereditary

ring, is homomorphically closed.

THEOREM 2.2. The following statements are pair-wise equivalent for a given ring R
(1) R is left pure hereditary;

(2) The homomorphic image of a pure Baer injective R-module is pure Baer injective;

(3) The homomorphic image ofan injective R-module is pure Baer injective;

(4) Any finite sum ofinjective submodules ofan R-module is pure Baer injective.

PROOF. (1) = (2) Consider the following diagram

0 I R

M -g K 0

of R-modules, where I is a pure left ideal of R, and M is pure Baer injective. Projectivity of I shows

that for some R-homomorphism " I--, M, f go. Moreover there exists a homomorphism

" R M that extends . This shows that f g is an extension of f; and so K is pure Baer

injective as required.

(2) =, (3) Clear.

(3) = (1) Let I be a pure left ideal ofR and M be a left R-module whose injective hull is E(M)
Consider the following diagram ofR-homomorphisms

E(M) g- K 0

recalling that K is pure Baer injective by assumption. So, there exists an R-homomorphism h R K

whose restriction on I is f. Again since R is projective, there exists an R-homomorphism

a:R --, E(M) such that ga h; and so gai f. This means that I is E(M)-projective Thus I is

M-projective (for the proofcf [5, p. 180, prop 16.12]); and so I is projective

(4) = (3) Let N be a submodule of an injective R-module E. To prove that E/N is pure Baer
injective we confider the submodule K { (x, x):x N) of Q E E and the two submodules
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M1 {(x, O) 4- K x

_
E} and M2 { (0, y)-+- K y

_
E} of Q/K. Now Q/K M1 4- M2, also,

MlnM2-{(x,0)+K-xeN}. For ifxeN, then (x,0)+K--(0,-x)+KeMlf’IMg. on

the other hand the assumption that (x, 0) 4- K (0, y) + K where x, y E E means that x y e N
and therefore M1 fq M2 { (x, 0) + K" x E N} Define f- E -- M1 with f(x) (x, O) + K for all
x E E to obtain the isomorphisms E =" M1 and N M1 f’l M2. Similarly E M2. Thus

Q/K M1 + M2 is pure Baer injective. This shows that for some R-module G, Q/K M1 $ G and

G (Q/K)/M1 M2/M1 f’l M2 E/N. Now since G is pure Baer injective, E/N is pure Baer
injective as to be proved. IZ!

If R is left self-injective, the pure Baer injectivity of each homomorphic image RR can be discussed
in view ofthe following.

PROPOSITION 2.3. Let R be a left self-injective ring. If R/J is pure Baer injective for each

essential left ideal J, then R/I is pure Baer injective for every left ideal I ofR.
PROOF. Let I be a left ideal of R and let E(I) be its injective hull. Now, since E(I) is a

direct summand of R, there exists an idempotent e E(I) such that E(I) Re. Consider the R-
homomorphism f- R ---, re, with f(r) re for each r e R. Since I Re, f-1 (I) R. Therefore by
hypothesis R/f-I(I) is pure Baer injective. Define ]" Re/I R/f-l(I) by ](re + I) r + f-l(I)
This is a well-defined R-isomorphism; and so Re/I is pure Baer injective. We prove that the sura
B R(1 e) + I is a direct sum. Ifx R(1 e) f’lI, then x r re r’e for some r, r’ . R and

so x 0. Thus B/I " R(1- e) showing the pure Baer injectivity of B/I. Furthermore we have

R/I B/I Re/I. To see this we notice that r + I (r(1 e) + I) + (re + I) for each r E R
Also 5 r(1 e) + I se + I means that r re (s + r’)e for some r’ R which shows that
5 0. Now R/I, being the direct sum of two pure Baer injective R-modules, should be pure Baer
injective. IZI

DEFINITION 2.4 [$]. A left R-module M is called pure-split if every pure submodule of M is a

direct summand. R is lett pure-split ifRR is pure-split.
It obviously follows that every left pure-split ring is left pure hereditary.
It is easily seen that every pure submodule of a pure-split module is pure-split, and the quotient of a

pure-split module by a pure submodule is again pure-split.
We thus extract the following simple result

TItEOREM 2.5. For a given ring R the following statements are equivalent.

(1) Every direct sum of copies ofR is pure-split;

(2) Every flat R-module is pure-split.
PROOF. (1) = (2) For any flat module M, there is a pure exact sequence

O--- K--, F--, M O

where F is free and so is a pure-split module; consequently both K and M are pure-split modules.

(2) = (1) Clear. E!
TItEOREM 2.6. The following statements are pair-wise equivalent for a given ring R
(1) R is left pure-split;

(2) Every left R-module is pure Baer injective;

(3) Every pure left ideal ofR is pure Baer injective;

(4) Every pure left ideal ofR is principal.
PROOF. (1) = (2) Let I be a pure left ideal of R and let f I M be an R-homomorphism

Then R I J for some left ideal J ofR, so that there is an R-homomorphism R M that extends f
(2) = (3) Obvious.

(3) = (1) Since every pure left ideal ofR is pure Baer injective, each pure exact sequence

0-- I R R/14 0
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splits, showing that R is left pure-split.

(4) := (1) Let M be an R-module and let I Rz be a pure left ideal of R. So, for some a E I,
x za. If f" Rz M is a given R-homomorphism, the restriction on I of the R-homomorphism

f" R M effected by f(1) f(a) is f. Indeed f(rx) f(rza) f(rx) for all r

(1) = (4) Obvious.

REMARK 2.7. We know that RR is semisimple if and only if every R-module is semisimple. This

fact cannot be extended to pure-splitting To see this we notice that Z is a pure-split Z-module

However 7"‘ can be embedded as a pure submodule in a pure injeetive Z-module or. But o cannot be

pure-split since otherwise 7’, will be a direct summand of or, contradicting the fact that Z is not pure

injective. El

However, the previous property is valid for certain types of rings. For example, a regular ring R is

pure-split if and only if it is semisimple. We can thus state the following proposition.
PROPOSITION 2.8. For a regular ring R, the following statements are equivalent:

(1) R is pure -split;

(2) Every module is semisimple;

(3) Every module is pure-split;

(4) Every (pure) exact sequence is split exact.

PROOF. Clear. El

We now recall the following definition; for analogous and related concept cf. [6, p. 48].
DEFINITION 2.9. An R-module M is called pure injective relative to the R-module N, or simply

N-pure injective, if in each diagram

0 K -f N

M

where the embedding f(K) is pure in N, there exists an R-homomorphism h-N M such that

g=hf.
The following theorem relates some ofthe previous notions.

TItEOREM 2.10. For a left perfect ring R the following properties hold:

(1) Every fiat R-module is pure-split,

(2) Every R-module is pure Baer injective, and

(3) Every R-module is pure injective relative to any fiat R-module.

PROOF. (1) and (2) are both direct. To prove (3), let C be a lett R-module and N be a pure

submodule of a fiat R-module M. Then N is a direct summand of M, so that every homomorphism

N C extends to a homomorphism M --, C. l’i

DEFINITION 2.11 (see [9]). A non-zero R-module M is called pure simple if (0) and M are its

only pure submodules.
PROPOSITION 2.12. In a commutative ring R in which every ideal is the intersection of maximal

pure ideals, every epimorphism f" I S whose domain is a pure ideal of R and codomain is a pure

simple R-module has an extension f R S.

PROOF. Let f" I S be as given in the premise By assumption Ker f is the intersection of a

family (C: j J) of maximal pure ideals of R. If I c_ C’ for all j J, then Kerf I and this means

that S (0) contradicting that S is a pure simple R-module. Thus for some j J we have I C
Now R is commutative. So, I + C is pure; and maximality of C forces R I + Ca. But I C is
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pure in R. So ICIC is pure inI, and so I[3Ca/Kerf is a pure submodule of I/KerfS By
assumption either I Ca/Ker f {0}, or I [3 Ca/Ker f I/Ker f. The latter assumption is impossible,
since otherwise I C Ca. So, I N C Ker f. Now the assignment f- R S defined by f(r) f(i)
where E I that satisfies r + c for some c E C is a well-defined function that gives the required
homomorphism.

COROLLARY 2.13. Let R be a commutative ring in which every ideal is the intersection of
maximal pure ideals. Then

(1) Every pure simple R-module is pure Baer injective,

(2) Every semisimple R-module is a direct sum of pure Baer injective R-modules.
PROOF. The prooffollows from Proposition 2 12.

LEMMA 2.14. A finitely generated non-zero R-module M possesses a maximal pure submodule
PROOF. The set A (K- K < M and K pure in M} is partially ordered by inclusion. The

union ofa chain ofA is clearly a member ofA; and an appeal to Zom’s Lemma yields the result.
THEOREM 2.15. Let M be an R-module M in which every cyclic submodule is pure-split, then

every non-zero submodule ofM contains a pure simple submodule.
PROOF. Let (0} - K _< M, if 0 x E K. Then by Lema 2.14 Rx contains a maximal pure

submodule, say, H. Thus Rx H H. This shows that H is a non-zero pure simple submodule in

Rx and so is a non-zero pure simple submodule in K.
It seems that an appropriate notion of an "intersection property" would play an important role in the

structure theory of rings. Thus within our context, we define

DEFINITION 2.16. An R-module M is said to have the pure intersection (resp. pure finite

intersection) property if and only if the intersection of any (resp. finite) family of pure submodules ofM
is again pure.

It can be easily shown that any commutative ring possesses the pure finite intersection property, and

furthermore, a regular ring R possesses the pure intersection property to each R-module

PROPOSITION 2.17. Any torsion-free R-module M over a Pfer ring R has the pure
intersection property.

PROOF. It is known that over a Pfer ring purity and RD-purity are equivalent notions, see

[4, p. 706]. Thus the required result is immediate ifwe notice that the intersection of any family of RD-
submodules of a torsion-free module is again an RD-submodule, see 10, p. 39].

PROPOSITION 2.18. A torsion-free R-module M over a principal right ideal ring R has the pure

intersection property.

PROOF. Let {N j E J} be a family of pure submodules ofM. In view ofthe torsion-freeness of

M, K fjN is an RD-submodule, see [10, p. 39]. We prove first that K is an f-pure submodule.

To this end let I be a given right ideal of R. Now K is RD-pure and R is a principal right ideal ring

So, given x K IM, we can find a I and m M such that x am aK. Thus K IM IK,
showing that K is -pure. Finally the flatness ofM guarantees the purity ofK.

3. THE ,BI-RING AND -PURE BAER IN$ECTIVE MODULE

In this section we introduce two related notions namely SSBI-ring and T-pure injective module

which prove to be useful to our investigations.

Byrd I11 calls a ring R an SSI-ring if every semisimple R-module is injective. In what follows we

generalize this concept.

DEFINITION 3.1. A ring R is called an SSBI-ring if every semisimple R-module is pure Baer

injective.

THEOREM 3.2. A ring which is both a V-ring and SSBI-ring satisfies the ascending chain

condition (A.C.C.) on pure left ideals.
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PROOF. Let I0 C I1 C C Im C be a strictly ascending chain of pure left ideals ofR and for a

given Ik in the chain take a Ik such that a Ik-1. The family Ak L <_ R Ik-1 <_ L < Ik a L}
is partially ordered by inclusion in which every chain has an upper bound. Let Lk be a maximal member

of Ak. Thus, Ra + Lk/Lk is simple and the given assumption yields Ik/Lk Ra + Lk/Lk N/Lk
for some left ideal N of R. Now, since a N, the maximality of Lk forces N Lk. This means that

Ik/Lk is simple. Hence l/Lk lk/Lk ( Nk/Lk for some left ideal Nk and I U Ik. Now, if
K

" x + Lk "k +k for some k Ik/Lk and k Nk/Lk, the assignment cr I (klk/Lk, with

c(x) {k} is a well-defined R-homomorphism. For if z I, then x L for some and a: L+3 for

all j. So, or(z)= {k} (k(lk/Lk) since +3 0 and (k(Ik/Lk) is semisimple. By hypothesis

k(Ik/Lk) is therefore pure Baer injective and we should have the extension R-homomorphism

-" 12-’* (k(lk/Lk) of tT. Furthermore, since (1)6- ’=I(I,/L:) for some r Z+, we see

that (I)C_ ,=I(I,/L,). Suppose now that =z+l+, I,+/L,+, and or(z)= (k), then

,+, 0. The argument shows that I,+ L,+,, contradicting the fact L.+ A+z. This shows

that the above tower ofpure left ideals is offinite length. I"!

DEFINITION 3.3. A left R-module M is called E-pure Baer injective if every direct sum of copies
ofM is pure Baer injective.

As examples of E-pure Baer injective modules we mention torsion-free modules, modules over

integral domains or over left pure-split rings.
THEOREM 3.4. A ring R in which every injective module is E-pure Baer injective, satisfies the

ascending chain condition on pure left ideals.

PROOF. Let I1 C I2 C C In C be a chain of pure left ideals For each let K, be the

injective hull of R/I, and let K ,K,. For every c Z+, YI,K, Ko II,oK. If we set

Mo IIK,, then Mo is injective By abuse ofnotation we have

By assumption B,Mo is pure Baer injective. Thus K itself is pure Baer injective. Now the R-
homomorphism f" OiI, .-.* K, defined by f(z)=(z+Ii} extends to an R-homomorphism

" R ---, K. Let n Z+ such that (1) (3=lKi. Then f(t3I,) < IK. So, if z O,I then

x Io for all a > n, and so

PROPOSITION 3.5. A direct summand of a E-pure Baer injective module is again E-pure Baer

injective.
PROOF. Immediate.

THEOREM 3.6. R is left pure-split if and only if R is left pure hereditary and E-pure Baer

injective.
PROOF. e= Let I be a pure left ideal of R. Then I is projective and so a direct summand ofa free

R-module F. But R is pure Baer injective. Thus both F and I are pure Baer injective, yielding the left

pure-splitting ofR. : The prooffollows from Theorem 2.6. El

4. P-ESSENTIAL SUBMODULES
In this section we introduce the notion of p-essential submodules with the aim of gaining further

insight about the structure of pure Baer injective modules. For example, Corollary 4.16 to follow

presents a criterion for a left R-module over a commutative ring R to be pure Baer injective, employing

this notion of iv-essentiality. Also by using this notion, corollary 4 17 sharpens a result [5] ofKaplansky’s

on V-tings.

DEFINITION 4.1. A submodule K of an R-module M is called p-essential in M, abbreviated by

K _’M, in case for every pure submodule L of M, K L {0} implies that L { 0}. In this case
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M is called a p-essential extension of K. Also a monomorphism f N M is called a p-essential if
Irn fs’M.

Given left R-/nodules M and N, PHa(M,N) designates the set of R-ho/no/norphis/ns
PHR(M,N)= {h" h" M N and Ker h pure in M}.

PROPOSITION 4.2. The following state/nents are equivalent for any sub/nodule Kof an R-
/nodule M

(1) K
(2) For each R-module N and for each h E PHIt(M, N)

(Ker h) fl K 0} implies that h is monomorphis/n

PROOF. (1) = (2) Holds by the definition ofp-essential sub/nodule.

(2) = (1) Since any pure sub/nodule L of M is the kernel for some h . PHIt(M,A) for some
R-module A, then L gl K {0} implies that L {0} and so Ks’M. V1

COROLLARY 4.3. A/nono/norphism f K - M is p-essential if and only if (any epi/norphism)
h e PH/i(M, is/nonic whenever hf is/nonic

PROOF. Let 0 K -/M be p-essential and h M N, where h . PHIt(M, N). Then if hf
is monic Ker h fl Im f {0}. So, Ker h {0} and h is monic. Conversely, suppose that af K M
is a /nono/norphis/n satisfying the given condition and let L be a pure sub/nodule of M with
L flIrn f {0}. Then rf is obviously /nonic, r being the canonical /nap zr" M M/L. By
assumption r should be/nonic. This/neansthat L {0} andIrnfs’M.

The following result is analogous to a similar result concerning essential sub/nodules ofa module.
TREOREM 4.4. Let K < N < M be a tower of R-modules. Then:

(1) IfKs’M then NsrM.
(2) IfN is pure in M and KrM, then KsN and N
(3) If M has pure finite intersection property and if N is pure in M, then K s’M if and only if

Ks’N and N
PROOF. (1) and (2) are obvious.

(3) Let L be pure in M with L N K 0. By assumption L N N is pure in M. This means that

L N N is pure in N. Thus L N 0 and consequently L 0. Therefore KS

COROLLARY 4.5. Let M be an R-module that has the pure finite intersection property. If H is

pure in M, then H N K
_
’M if and only ifHSM and KSrM for any submodule K ofM.

PROOF. :: The proof follows from Theorem 4.4. Suppose that Hs’M and K’M. Given

a pure submodule L of M with L (H N K) (0, then L H is pue in M by hypothesis. Thus

L H {0} and consequently L {0}. l-!

EXAMPLE 4.6. We give here an example of sub/nodules A, B, A’ and B’ of a certain Z-module

M Z Z/2Z with AS ’B and A’ s’B whereas A + A’ is not p-essential in B + B’. The idea ofthis

counter example is lifted fro/n example 1.2 from Goodearl’s/nonograph [7]. Take A A’ Z(2, ),
the sub/nodule generated by (2,),B=Z(1,) and B’= Z(1,). Now AZ(0,)= {0} see

Goodearl [7]. What is left now to prove our assertion is to prove that Z(0,) is pure in B + B’ To see

this suppose that n(m,) + (k, k--) (0, ). This means that L is odd and m k. Again n is odd

This gives n(m, "6) + (k, 1-) n(O, ), showing that Z(0, $) is pure in B + B’.
A pure left ideal I of a ring R is a direct summand ofR if I is pure Baer injective. Hence, we have

the following:
PROPOSITION 4.7. A ring R cannot have a proper pure left ideal I which is both p-essential and

pure Baer injective.

PROOF. Clear.
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PROPOSITION 4.8. A pure injective module iV does not have a proper p-essential extension M in

which N is pure.
PROOF. Clear. I-I

COROLLARY 4.9. Any R-module M cannot have a proper submodule which is both injective and
p-essential.

PROOF. Any injective submodule K of M is pure in M. But K is pure injective. So, if K is

p-essential in M, the previous proposition shows that K M.
DEFINITION 4.10. A submodule N of an R-module M is called a pure closed submodule ofM if

M does not contain a proper p-essential extension of N. Obviously N _< M is pure closed if and only if

N__<’K < M implies that K N.
PROPOSITION 4.11. Any direct summand ofan R-module M is pure closed.

PROOF. LetM=AB. If A <_’K <_ M, thenKfBispureinK ButKnBqA={0}
This meatus that K N B {0}; and so K A.

COROLLARY 4.12. (1) Every pure injective R-module M is pure closed in any R-module that

contains M as a pure submodule.

(2) A pure left ideal ofR which is pure Baer injective is pure closed in

PROOF. (l) Let M be embedded in N as a pure submodule. In this case M is a direct summand

ofN; and so M should be pure closed in M
(2) Clear.

DEFINITION 4.13. Let N and K be submodules of an R-module M with K pure in M K is

called pure relative complements ofN in M ifK is maximal with the property K f3 N 0}.
PROPOSITION 4.14. Every R-submodule ofM has a pure relative complement in M.

PROOF. Let N be a given submodule ofM and consider the set

A {K;K < M,K pure in M andN nK {0}}.

A is partially ordered by inclusion. Obviously any chain of A has an upper bound. Zorn’s lemma then

guarantees that A has a maximal member, which means that N has a pure relative complement in M IZi

PROPOSITION 4.15. I and J are given ideals of a commutative ring R If J is pure relative

complements of I in R, then I J is p-essential in R.
PROOF. Let A N (I J) {0} for some pure ideal A of R Then I n (A J) {0} Since R

is commutative, A J is pure in R. The maximality of J forces A {0}. This means that I 9 J is

p-essential in R.
So we deduce that a commutative ring that has no proper p-essential ideals’is necessarily semisimple.

COROLLARY 4.16. R is a commutative ring. An R-module M is pure Baer injective if and only

ifHomR(R, M) HomR(J, M) is an epimorphism for every pure, p-essential ideal J of R.

PROOF. Consider a homomorphism f I M where I is a pure ideal ofR By Proposition 4.14

we can find a pure relative complement J of I in R. Then f extends to a homomorphism I 9 J M,

and this extends to a homomorphism R M by our assumption.

It is known [5] that if R is a right V-ring, then/ I for any right ideal I of R. This yields the

celebrated result of Kaplansky stating that a commutative ring is a V-ring if and only if it is regular The

following result refines that ofKaplansky’s.
COROLLARY 4.17. A commutative ring R is a V-ring if and only if I 12 for every p-essential

ideal I ofR.
PROOF. Let J be an ideal of R. If J’ is a pure relative complement of J in R, then J + J’ is

p-essential. By assumption (J + j,)2 j + j,. But since J g J’ {0}, we get J + J’ j2 + j,2

This directly gives J j2, showing that R is a V-ring I"1
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