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ABSTRACT. Employing the method of generating functions in conjunction with various number-

,thoretic identities, we obtain recursion relations for the Kostant partition functions for the affine Kac-

Moody algebras The partition functions for the higher rank algebras are expressed in terms of SU(2)
partition functions We derive certain number-theoretic identities using the equivalence of our result with

the expressions derived by Kac and Peterson
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1. INTRODUCTION
The weight multiplicities of the finite dimensional Lie algebras are usually computed using

Freudenthal’s recursive algorithm or Kostant’s formula. For algebras of low rank, the latter works better

Kostant’s formula for the weight multiplicity MA(m) of a weight m belonging to the irreducible

representation with the highest weight A is given by

M^(m) E5sK[s(A + p) (m + p)], (l l)

where the sum is over the Weyl group W and 68 + 1 specifying the signature ofthe permutation The
root-space element p is defined as

p 1/) c, (1 2)

where cE are positive roots The Kostant’s partition function K(X) is defined as the number ofways X,
an arbitrary element of the positive root space, can be written as a sum over the positive roots with non-

negative integral coefficients, where in general each root is counted as many times as its multiplicity The

positive roots in turn can be expanded in the basis of the simple roots with non-negative integral
coefficients and the value ofK(X) is given by all possible solutions of a set of simultaneous Diophantine

equations, the number of equations being the same as the rank ofthe group
The explicit evaluation for K(Xi has been carried out by Tarski [1], Gruber et al [2], Klimyk [3],

Gruber et al. [4] and others [5]. One of us (T.S.S) developed a method [6] using generating function

techniques to obtain the number of solutions of these simultaneous Diophantine equations Explicit
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formula for various Lie algebras and recursion relations for the Kostant partition functions for the higher
rank Lie algebras in terms ofthe SU(2) partition functions have bn obtained

The Kostant partition formula is also of interest in infinite dimensional Kac-Moody algebras. Kac
and Peterson [7] have shown that the Kostant multiplicity formula in Eq (I. I) holds also for Kac-Moody
algebras G except that the Weyl group W has a semi-direct product structure

w w ^ T ( )

where W is the finite discrete Weyl group ofthe finite dimensional Lie algebra G contained in G and T is

the infinite translation group acting on the co-root lattice. Kac and Peterson [7] also obtained the

Kostant partition function for SU(2)(AI)), SU(3)(A1)) and A21 case, where the superscripts in

parenthesis refer to the order ofthe automorphisms (twist).
In the present article we will discuss the computation of Kostant partition functions for the Kac-

Moody algebras by explicitly finding the number of simultaneous Diophantine equations discussed earlier

in the contt of finite dimensional Lie algebras Much of that program can be translated to the Kac-

Moody case. In particular, the generating functional technique in conjunction with certain number

theoretic identities can be fruitfully used to yield a recursive algorithm to generate the Kostant partition

function for an arbitrary Kac-Moody algebra.
The number theoretic identities we will repeatedly use are listed below:

Euler’s identity.
(q) H (I- q’) (- 1)qg(+1) (I 4)

n=l k=-oo
Jacobi’s triple product identity:

H (1 z"/")(1 z"/’-l)(1 z"-ly’) (- 1)z1/2(k+),(k-1) (1.5)
n=l k=-oo

and, Jacobi’s quintuple product identity:

[u:-2v1/2://- u:-+lv/:-)]. (1 6)
k=-oo

These, and other related identities relate an infinite product structure with an infinite sum, and are of

relevance to Kac-Moody algebra because ofthe infinite number ofpositive r,oots ofthe latter

To illustrate the method we will generally adopt in this article, we will now determine the Kostant
partition function for the toy example of Virasoro algebra [8]. The Virasoro generators L,.,(n E 07)
satisfy the commutation relations

C

where c denotes the central charge. The Canan subalgebra is given by (- L0) and c and the positive
roots are given by L, for n > 0. The root vectors can be read from the commutation relations

The simple and the positive roots ofthe algebra and respectively

6=(0,1), a=(0,n)=n6 for n>0. (19)

Kostant’s partition function K(no) is given by the number of solutions ofthe Diophantine equation

no=k1+2k2+3k3+ (1 10)

where kz non-negative imegers.
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The generating functional for this partition is given by

II
n=l n0=0

and therefore

K(no) P(no),

(1.11)

(1.12)

where P(no) denotes the unrestricted partition of no into non-negative integers. Now we may use

Euler’s identity (4) to rewrite Eq. (1.10) as

(- l)x(3+l) K(no)xTM I, (1.13)
k=-oo n0=0

which implies that

(- I)K no- :(3k+ I) =o,o. (1.14)

Equation (1.14) can be used to compute K(no) recursively.

Recursive relations, similar to Eq. (1.14) can be obtained for all Kac-Moody groups. In a purely
number theoretic comext Carlitz [9] obtained similar relations for quantities, which are nothing other than

Kostant partition functions for SU(2) Kac-Moody algebra. Subsequently we will refer to these relations

as Carlitz reeursive relations.

The equivalence of the Kostant partition function by the present generating functional method and

that developed by Kac et al. [7] demands a number theoretic identity to be satisfied for each group G. In
the case of SU(2), the identity is the well-known identity [10]. The necessary identity for the SU(3)
example will be established here. Similar generalized T.M identities can be generated by adopting the

techniques developed here. Another point to note is that the Kostant partition function for any higher
rank group G can be written in terms of the Kostant partition function for SU(2) alone. The reason for

this is the fact that the Lie group G, comained in G, has a triplet (E,,,,E_o,H,,,) satisfying SU(2) Lie

algebra for each positive root E, and its corresponding Cartan generator Ho. In fact, the generating
functional for comains that ofthe maximal subalgebra contained in .

The plan of the paper is as follows. Section 2 will contain our computation for Kostant partition
function for SJ(2)(A:)). In Section 3, the partition functions for S](3)(A1)) will be evaluated.

Other (Kac-Moody) rank 3 groups, ffp(4) (C1)) and 2(G(:)) will be discussed in the same spirit in

Section 4. The example ofA2), where we will use the quintuple product identity (6), will be discussed in

Section 5. Finally we will conclude in Section 6.

:. PARTITION FUNCTION FOR SU(2)
The Kostant partition function for SU(2) can be computed in many different ways. One of the

most elegant methods is formulated by using the recursive relations obtained by Carlitz [9] in the number

theoretic context. Alternate expressions obtained by Kac et al. [7] can also be derived in the present

procedure of formulating in terms of generating functionals by use of the T.M idemity [10]. A third

procedure of direct enumeration of the Kostant partition function is also possible by examining the range

of possible values of each integer variable in the simultaneous Diophantine equations.
The Canan matrix for SJ"(2) A ) is

A=(_22 -2)2 (21)

and the positive roots ofthis algebra are given by
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A+ (j 1)ao + ja, jao + (j 1)a, j(ao + a), for j 1, 2, 3 (2.2)

where ao and a are two simple roots and are given by

ao (-a, 0,1), a (c,0,0), (2.3)

where c is the only simple root for the finite dimensional Lie algebra SU(2). The third set ofthe positive
roots are positive imaginary roots and have to be taken into account in the computation of partition
function. The Diophantin equations yielding the Kostant partition functions K(noao +n]a]),
subsequemly denoted as K(no, nl), (no, n, are non-negative integers) are

n0 Ej(k3:-I + k33 + k3:+l) (2.4)
3=1

and

n, E (J- 1)k,_, + Ejk3. +E (j + 1)k3+1. (2.4)
j=2 .1=1 .1=o

The upper limits in the sums in Equation (2.4) are given for the case no < hi. The limits for the case

no > n can be easily written. The variables k0 are non-negative integers and the number of solutions of

Equation (2.4) give the value of the partition function K(no, hi) The generating functional for the

partitiom is easily seen to be

G(x,y) 1-I (1 x"-y)-(1 x"y"-’)-(1 xayr)-1

r0,n =0

The scond equality is well-dfind in the region Ixl, lyl < 1. Viewed as a partition problem, K(no,
denotes the number of partitions into, not necessarily distinct, parts (a,a), (b,b- 1) and (c- 1, c)
where a, b, c 1, 2, 3, If we now use Jacobi’s triple product identity in the form ofEq. (1.5), which

turns out to be essentially the "denominator identity", we get

E (- l)’x’(’/1)12Y’(’-’)12 E K(n’n)xYa’ I, (2.6)
"1,=--oo n0,nl =0

which leads to the remarkable relation of Carlitz [9]

(- 1)K(M k7(7 + 1), N ’A7(7- 1)) 6M,otN.O. (2.7)

Notice that the summation is over all 7 satisfying

1/27(7+1)_<M, 1/27(7-1)_<N.

Equation (2.7) completely determines any SU(2) Kostant partition function K(n0, n).
Equation (2.5) allows us to relate K(n0, n) to other objects in partition problems. If we define

P(m,n) as the number of partitions of (re, n) into not necessarily distinct parts (a,a- 1), (b- 1,b)
where a, b 1, 2, 3, ...; we get the expansion

(1 -’)-’( =-’v)- r(., )=%
n=l

From Eqs (2.5) and (2.8) we get
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mn(no,n)

K(no, nl) E P(-/)r(no %n n),
-0

where P(7), introduced earlier, satisfies

H (1 n)-1 p(,/,)27.)," (2.10)
n=l 3,=0

Also, ifwe set

H (I x’y"-)-(1 xn-lyn)-1(1 X2ny2n)-I 7r(W,R)xrnyn,
n=l m,n=O

SO that 7r(m,n) is the number of partitions of (re, n) into not necessarily distinct parts (a,a- 1),
(b 1, b) and (2c, 2c) where a, b, c 1, 2, 3..., we obtain

mtn(no,nx

K(no,nl)
3,--0

(2.12)

where

1-/( + ") Q(’r)- (2.)
n=l y=O

Alternately, Eq. (2.5) can be used to derive the expression obtained by Kac and Peterson [7]. For this

purpose, we make a change in variable in (2.5) q zy and re-express G(z, y)( =_ (7,(q, y)) as

(q,y) [b(q)]-I’I (1 qr’y)-(1 qn/-1)-a (2.14)
n=l

To proceed further we use the T.M identity 10], which is

H (1 qny)-l(1 qny-)-I Z (- 1)k+[q(q)]- q

n=l k=-o y_ q-k (2.15)

This identity can be proved by noting that both sides have the same pole structure in y-plane, which

allows them to differ only by an analytic function that must vanish as both, sides vanish asymptotically
To consider the case no < nl, we need to take into account only the region of summation k > 0 in the
rhs ofEq. (2.15). Keeping this restriction in mind, we get from Eqs. (2 14) and (2.15)

qk(k+l)/2(q,) - )[(q)]-
a=o 1 qky

Z( 1)kp(a)(m)q,.n+(k+)/ (qky). (2 16)
k=0 m=0 ./=0

where p(a)(n) is defined by

[q(q)]-a ’p(a)(n)qn" (2 17)

Substituting

( + )and no m + k(nl no +
2
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we derive the result

K(no, nl) -(- 1)kp(3)((k + 1)no knl k(k + 1)/2).
k

(2.15)

In the case of no > nl, we need to consider the region of summation k < 0 in the rhs of (2 15).
Equations (2.14) and (2.15) now yield

(2 19)

The substitutions

#=no--n -I, no m + k(k + 1)/2 k(no hi),

reduces Eq. (2.19) to the form

{(q,y) ’(- 1)kp(:)((k + 1)no kn, k(k + 1)/2)qnoy’’-no
no>n >0 k<0

(2.20)

which, from Eq. (2.5) immediately gives

K(no,nl) (- 1)kp(Z)((k -t- 1)no ?I ](] -I" 1)/2)
k<0

(2.21)

for the case no < hi.

There is another more primitive way to determine the Kostant partition function directly from the

Diophantine equations. We consider the case of no < n, where the limits of Eq. (2.4) are valid. The

ease for no > n can be developed in a parallel way. The number of solutions of Eq. (2.4) which, by
definition, is the Kostant partition function can be expressed in the general case as

E
k=o =o

where

j j-I

M3,+l =min([no-P(J-1)-jk3.-l-Jk3,1 [nl-q(J-1)-(J- l)ks,-1-Jk3l).7 j+l
.-I

P(j- 1) /[(1 6.l)k3t-1 + k3t +
/=1

j-I

Q(j 1) [(/- 1)k3t_ + k3, + (l + 1)k3/+1].
l=l

(2 23)

This method can be generalized to any arbitrary G and computationally it is quite simple. Notice that for

the case nl > 2no, the upper limits of the sums in Eq. (2.22) can be proved to be given by the first entry
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in Eq. (2.23) for Ma-, Maa and M3+]. The resultant expression for K(n0, n) as given by Eq. (2.22)
is

K(no, n > 2no) p(s)(no), (2.24)

which is the first term for the series obtained in Eq. (2.1 $)
ill PARTITION FUNCTION FOR SU(3)

Our discussion for S3"(3) will closely parallel that of SU(2). The generating functional for the

Kostant partition function can be obtained from the knowledge of all the positive roots. On application
of the identity in Eq. (1.5), we can establish a recursive relation for the Kostant partition function. The

S3"(3) generating functional can also be expressed as a product of the SU(2) generating functionals.
This relation can be exploited to express the SU(3) partition function in terms of a linear combination of
the products of the SU(2) partition functions. Finally, the equivalence of the generating functional

method and that developed by Kac et al. [7] demands some number theoretic identity to be satisfied. In
fact, the identical values of the Kostant partition functions may be viewed as a "proof’ of this identity.
Here we adopt a somewhat anachronistic attitude in that we assume this identity and using it prove the
results in Re. [7]. The rationale for this is that an independent proofofthe identity may exist.

The Caftan matrix for flU(3) is

2 -1 -1)A= -1 2 -1
1 -1 2

and the system ofthe positive roots are given by

(,o,o)
A+ 4-a, 0, n) for n > 0, (3.2)

(0,0,n) for n > 0,

where a denotes the positive roots of SU(3). The last set of positive roots are the imaginary positive
roots and these occur with multiplicity 2 (in general r, where r is the rank of the Lie group G). This

degeneracy is an important distinction with the Lie algebras. The simple roots offlu (3) is given by

ao a a2, 0,1), a (al, 0, 0), a,2 (a2,0, 0) (3.3)

where al and a2 are the simple roots of the S](3) Lie algebra. As in the case of flU(2), we can write
the Diphantine equations corresponding to the SU(3) partition problem. Instead we directly write the

generating functional G(x, V, z) as

G(z, v, z)l Izl, ivl, Izi <

X H [(1 xnvnzn)(1 xnznyn-1)(1 xn-lzn-lyn)] -1

[(I V"z"z")(l y"z"z=-1)(l yn-lzn-lx")] -I

[(1 xnv"z")(l zny’z"-l)(1 z"-ly"-12")] -: (3.4)

The Kostant partition function K(no, rq, ro2), corresponding to the root space element

R (na +nal + n2a2) relates to G(z,y, z) as

G(x, y, z) E K(no, n:, n2)x"y"’ zTM (:3.5)
no,n: ,rv2=0

Using Eqs (1.4), (1.5) in Eqs. (3.4) and (3.5), we get
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(3 6)

After the following substitutions

( q- 1) v(v-- 1) iV(p-i- 1) #(D-- 1) v(vq- 1) p(p- 1)
2

+
2

+
2

MQ=
2

+
2

+
2

(# + 1) v(v + 1) p(p- 1) N(3N + 1)M=++, E=
2 2 2 2

we get the Carlitz recursive relations

N(- 1)’++’K(P Mp, Q- MQ, R- M/)= (- 1)
D,v,p--

(3.7)

Now we will express the SU(3) partition function as a linear combination of the products of

SU(2) partition function. For this we introduce the variable q( :Wz) and re-express the generating
functional (q, y, z)( G(x, y, z)) as

(q,y,z) [(q)]-2[(1 y)(1 z)(1 yz)]-lH [(1 q,y)(1 q,z)(1 q.yz)

(1 q’y-1)(1 q’z-)(1 q’y-z-)]-1 (3.$)

A comparison with Eq. (2.14) immediately reveals a factorization of the SU(3) generating
functional takes place in terms ofthe SU(2) generating functionals:

((q, y, z) (q)((q, y)_,(q, z)__,(q, yz). (3 9)

Using Eqs. (1 4), (2.5), (3.5) and equating the coefficients of the identical powers of the variables q, y
and z on both sides ofEq. (3.9) we get

K(M,N,P)= (-1)’K(M-p-q-m(3m+l)/2,r)
p,q,r=O

K(N q r- m(3m + 1)/2,p)

K(P- p- r- m(3m -+- 1)/2, q),

where the summation variables satisfy the conditions

p+q-+-m(3m + l)/2 <_ M, q-+-r-+-m(3m-+- l)/2 <_ N, p+r-+-m(3m-+- l)/2 <_ P.

Showing the equivalence of the generating functional method of obtaining Kostant partition

function with the result of Ref [7] demands satisfaction of certain idemities, which may be referred to as

generalized T.M identity. In fact, the equivalence, which can be checked by calculating K(no, nl, r) in

both ways for an arbitrary set of positive imegers (no, n, n2) may be considered as a proof of these

identities. We will, however, take the opposite viewpoint and assume that independent proofs of these

identities may be furnished; thus taking these identities as starting points we will attempt to derive the

results in Ref [7] from the generalized functional point of view In the present article, we only write the
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generalized T.M identity for SU(3) algebra and derive the result for K(no, nl, n) first obtained in gef

[7]
The generalized T.M identity for SU(3) may be written as

[(1 y)(1 z)(1 yz)]-H [(1 q’y)(1 q’z)(1 q’yz)
n--1

x (1 q"y-lz-)(1 qz-)(1 q"y-)]-
(3 11)

where the fight hand side of(3.11) can take one ofthe following forms

(RHS)l [(q)]_s

_
qt(t+k+l)+k(k+l) [ 2k + l_+_ 1 qky

k,l>O (1 qky)(1 qz) + (1 qky)(1 qz)

q(l+l)(k+l+l)+k(k+l) ( 2k + "+- 2

k,>o (q--Y)(q++ z)

ql+k+lZ q-k-y
+

(1 q-k-y)(1 q+k+Z)2 (1 q-k-y)2(1 q;+k+Z)J (3.12)

(Ri.IS)3 [(q)]-6 -’ ql(l+k+l)+k(k+l) [ (2k d-l d-1)q-lz-1 qk-lyz-1 ]k,l>0 (1 qky)(1 q-z-) -+-
(1 qky)2(1 q-tz-1)

q(l+l)(l+k+l)+k(k+l) [ (2k + + 2)q-(k++l)z-1

k,t>0 L (1 q-k-ly-1)(1 q-l-k-lz-1)

q-2k-l-2yz-1 q-k-l-1Z-1
(1 q--’y)(1 q-k-’-z-) (1 q-k-’)y)- : -_-k_l_lz_l)2 j (3.14)

and

[(q)]-6 ql(l+k+l)+k(k+l) (2k -- -- 1)q--ly-Z-(P.HS)4
k,l>O (1 q-ky-i)(1 q-tz-)

q(l+l)(k++)+k(k+) (2k + + 2)q-y-z-k.,>_o (1 qk+iy-1)(1 q-k-l-lz-1)

(q-k-ly-lz-1)
(1- q-y-):(1- q-z-)

q-ty-iz- q-y-z-+
(1 qk+ly-1)2 (1 q-l-k-lz-) (1 qk+ly-1)(1 q-k-l-lz-1)2 (3 15)

The precise meaning of the identity is the following. If we use Taylor’s expansion both sides of Eq.
(3 11) as a power series in (q, y and z) or (q, y- and z) or (q, y, z-), the RI-IS takes the value in Eq
(3.12)/Eq. (3.13)/Eq (3.14)/Eq. (3.15)
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For the determination of the SU(3) Kostant partition function in the region no < min(n], rt2), we
need to consider the value of RI-IS in Eq. (3.11) as given in Eq. (3.12). From Eqs. (3.8),(3.11) and

(3.12), we obtain

’(q,y, z) T1 T2. (3.16)

The term T1 may be written as

k,l>O (1 qky)(1 qlz) (1 qky)2 (1 qlz)

k,l>OE m>0EP(8)(m)qm+k(k+l)+l(l+k+l)[ Iz,v>_OE (# + 2k + + l)(qky)’(qtz)V] (3.17)

After the substitutions of

no m + k# + lv + k(k + l) + l(k + + l), nl =p+no, n2 v + no,

we get from Eq. (3.17)

T1 E E (nl no + 2k /l + 1)P(S)(fk /l + 1)no kn, ln2 -l(k +l + 1))
rq ,_>_>0 k,l_>0

qnoyrq -no zn no

The term T2 is given by

E E p(8)(m)qm+k(k+l)+(l+l)(k+l+l)
k,l>O m>0

[ E (V--#+2k+l+2)(q-k-ly)(ql+k+lz)VJ",v>o (3 19)

We make the substitutions

no rn + (l + 1)(k + + 1) + k(k + 1) + v(l + k + 1) -/..t(k + 1),

which re-expresses T as

<, + 2- + 2/Ps( + /o + < + 1=1 < + +
n,ng_>_O n,l>_O

(1 + 1)(k +l+ 1)- k(k + 1)q"y"’-noz’-no (3 20)

From Eqs (3.5), (3.16), (3.19) and (3.20), we get the SU(3) partition function in the range
0 < n0 < rain(n1, r)

r(=o...,) (. o + 2+ + )ps>(( + + 1)o - -. (+ + l) ( +
._>o

E (n2 n + 2k +l + 2)P(8) ((/+ 1)no + (k + 1)nl (l + k + 1)n2
k,l_>0

(l + 1)(k + + 1) k(k + 1)). (3.21)

Taking other forms of RHS in Eq. (3.11) we can get the partition functions in other regions. The

particular form ofthe identity we have chosen will always lead to the expression ofthe partition function
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K(no, n:, n2) as given in Eq. (3.21). We repeat, we do not have an independent proof of the identity in
Eq. (3.11); and, the identical numerical values of K(no,nl,n2) given by our method and in Re [7]
should properly be viewed as a "proof’ ofthe identity (3.11) nevertheless an independent proofofEq.
(3.11) may exist, which may be subsequently used to get the result of Re [7] from our generating
functional method.

IV. PARTITION FUNCTION FOR S(4)ANDre2 The program developed so far is adequate
for determination of the partition function for all Ka-Moody algebras G. To demonstrate this point we
consider the other Kac-Moody algebras with rank 3 i.e. Sfi(4) (C:)) and ( Since we gave a detailed

exposition of our method earlier, our future discussions will be brief We directly write the generating
functional for S’(4) as

co(=,u, =)1 I=1, lul, I=1 < ] (x2z)2H[(1- (xyz)’y’)(l -(x-gz)"-ly’)(1- (x-yz)"y’-])]

[(1 (j)=(yz)")(1 ()"-:(Vz)")(1 (xy)"(Vz)"-:)] -1
[(I x"(y)")(l ="-: (z)")(l x"(2z)"-:] -:. (4.1)

The partition function K(no, :, rz) is defined by the expansion

G(x,y,z)= Kc(no,n,nz)x’y’’zTM (4.2)

As done previously, we derive the Carlitz recursive relation for SP(4) by using Eqs. (1 4), (1 5), (4.1)

1,1% ,1’ ,/1"

and (4.2)

where

"m,(m, + 1),
1

M, :
,=1

(- 1)’ "’Kc P Mp, Q MQ, R

(-- 1)N+Np,EvQ/2.ER,EN (4 3)

MQ m + T (rn + 1)+m + m4 (m4 1),

1721 m2 rns rn4 1 kMs -:- (m: + 1) + T (m 1) + T (m3 1) + T (m4 1), "E.
,=1

N,(aN, + 1).

The pidon nion K,(,n,) be expres tes of U(2) pition nion. To
ts ff, we introduce the vmable q(=xz) d t the eneratin8 cdonM

(,,)( c,(=,,))

,(q, , =) [()](,)(,)(,,)&(, ==).

We quote our remit for K(M, N, P).

K(M,N,P)=

K(M p- q m- S(#),r), g(g M q r 2n + m S(#), p),
g(P- p- r- n- S(#), q). (4 5)

The ments ofK(m, n) mu be non-negative integers d N(#) d S(p) e defined as
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N(,//) ’1 q-//2,
1

S() . -’,([3,, + 1).
=1

Comparing Equations (3.9) and (4.4) we notice that

{c (q, Y, z) (q)O(q, y, z)O(q, y2z) (4.6)

This indicates that the generating functional ofSP(4) can be factorized in- apart from factors of Euler

function that of SU(3), which is the maximal subalgebra of the former, and other factors of SU(2)
generating functionals The latter originates in the extra roots the algebra has over and above its maximal

subalgebra. Exploiting this we write the SP(4) partition function Kc(M, N, P) in terms of the partition

functions for SU(3) and SU(2) as

K(M,N,P) E E 1)kK(M P-
k=-oo ,q=O

k(3k / 1) k, NWp- 2q- -(3k + l),

k
P-q- (3k + 1))K(p, q). (4.7)

We can cominue the same program for .(G()). We will just quote the results here. A recursive

relation can be established for the G partition function Ke(r, n, r)"

E (- 1)’’’ Kc(P- M,,Q- M,R- MR)
,rn2 ,ooo,rn----oo

E 1)’ ’ 6P.E, 6Q/2.E, 6R/3.E (4.8)

whe

m,(3m / 1),Mp

MQ --m21 +rn2(m2 + 1)+m +m +ms + m6(rn6- 1),
m33m m,

(3rn + 1) + (3rna + 1)Mn --(mi 1) + - --m4 3m5
/ -- (3m4 1)+ -- (m 1) + (rr 1),

1
N(3N, + 1).E= ,=

The factorization ofthe partition functions in terms ofthe SU(2) partition functions reads as follows:

Kc(M,N,P) (- 1)N(u)
D1 !4 ml ,nl ,fro2 ,n2 ,m3 ,n3 ,p,q,r=O

K(ml, nl)K(rr,r)K(m3, n3)
K(M S(#) p- q ml m m3, r)
K(N M S(#) q r 2m nl n2 + m3 2n3, p)
K(P- 2M- S(#) p- r +m 2n + 2m 3n2 + 2m3 3n3, q), (4.9)

where
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We can again write the (9. partition function in terms of the partition function of ,.qU (3), the maximal

subgroup of the former and the other SU(2) partition functions. But we omit it as the point has already
been made in the case ofSP(4).
V. PARTrrION FUNCTION FOR A(22)

The Cartan matrix in this case is

A=(_12 -4)2 (51).

with the set ofthe positive roots given by

4no0 + (2n- 1)ol, 4(n- 1)a0 + (2n- 1)ol,
A+ (2n 1)a0 + hal, (2n 1)a0 + (n 1)al,

2ha0 + nl,

where n 1, 2, 3, and the pair s0 and O denote the simple roots. The generating functional for this

case is therefore

G(u, v) II(1 zt2n)n)-I (1 2n-lvn-l)-l(1 /,2n-lvn)-I
lul,lvl<l n=l

(1 U4n-4v2n-1)-l(1 U4nU2n-1) -1

K,)(,nl)UvTM (53)
,n

We nowu the qtuple produ idenfi Eq. (1.6) to derive the Cli-e recursive relation

1,,( a +, ? a +

I
(54)4,,( a’+-, (a ))

where the ments ofK mu be non-negative. TNs is to be comped t the foa obtn in

Ref. [7]

’ P(2:a)((2k- 1)no-4(k- 1)n:- (k- l)(3k I))
k:l

IP(a)(k (2k- 1)n, : k(ak I)). (5.5)
kl

CONCLUSION
We have disssed the mhod of computing the Kostt pition nions for Kac-Moody

gebr using eir generating nctios. We ve illurat ts mhod th sever exples. e
mod consists ofst enumating the positive d simple roots whch dkely shese generating
nio for the Kostt pition nion Number thretic identifies, such as, the Euler identity, the

Jacobi triple product idti d e quintuple produ idemi have been used to derive Clim-te
recursive relations. We have so the pition ncfions for the gher oups in tes of the

SU(2) ption ncfions. Kac d Peterson computed the pfion nctions some speci ses

ushg the Weyl youp. In ram, we may use their results to obtn the identities, whch may be ewed a

genertion of the T.M identity. The root stem (in pic, the positive roots) of the Kac-Moody
ite-dimension Lie gebras e expressible as itely repeat roots ofthe fite dimension Lie

gebra g contned in , e different sets relat by the imag roots. Ts bic fact underlies the

denotor identities d ables one to express the denonator in the chacter nion in tes of

Theta nctions d modul fos. Expres in these tes, the vous identifies (ite produs
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expressed as infinite sums) which have been used are immediate consequences of Macdonald identities

[11]).
The formalism developed here may be of relevance to the super Kac-Moody algebras. The

Freudenthal formula, and its extension to Kac-Moody algebras assume the existence of an invariant

bilinear form and hence that the algebra is symmetrisable. This is not the case for the formula ofBerman
and Moody [13] (B.M.) which is based on Kumar-Kac-Weyl formula [12]. Coleman and Howard [14]
have implemented a modified version of B.M formula on a computer. This, however, assumes that the

Cartan Matrix is non-degenerate and so cannot be used for the affine algebras considered in this paper If

somehow the program can be modified we have a fast method of calculating the Kostant function. Work

in this direction is in progress.
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