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ABSTRACT. Let M be the set of all functions meromorphic on D {z E C [z[ < 1}.
For a E (0, 1], a function f e M is called a-normal function of bounded (vanishing) type or

f N (N), if supzeD(1 --[Z[)=f#(Z) < OC (limzl_.,(1 --[z[)=f#(z) 0). In this paper
we not only show the discontinuity of N and N relative to containment as a varies, which

shows 0<=<1 N= C UBC’o, but also give several characterizations of N and N which are real

extensions for characterizations of N and No.
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I. INTRODUCTION.
Throughout this paper, let D {z II < } be the unit disk in C and drn(z) the two-

dimensional Lebesgue measure on 0. Also let ,(z) (w- z)/(1 -z) to be a canonical

Mbbius map of D onto D determined by w e D, and let D(w,r) {z e D [,(z)[ < r}
a pseudohyperbolic disk with center w E D and radius r [0, 1]. Suppose that g(z, w)
-logldp(z)l is the Green function of D with logarithmic singularity at w e D. Also assume

that a (0, 1] and M is the class of functions meromorphic on D. For f M, let f#(z)
[f’(z)[/(1 + If(z)[2), which is the spherical derivative of f. Further we say f is an a-normal

function of bounded type if

IlfllN" sup(1- [zl)=f(z) < , (1.1)
zD

and f is an a-normal function of vanishing type if

lim (I -Izl)f(z) 0. (1.2)

The families of all a-normal functions of bounded and vanishing type are denoted by N and

N, respectively. It is easy to observe that N’ C N and that for a E (0, 1), N and N are

proper subsets of N and No, which are the classical sets of normal and little normal functions,

namely, N N and No NJ, respectively.
There has been much interesting research on N and No (see [1-3]), and hence we look for

N and N to have some analogous properties. In this paper, we first consider the continuity
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of the families N and N as a varies, and we find that both are discontinuous morever that

N and J /s<<1 N0<<1/2 are proper subsets of D# and UBCo respectively, where D# is

the family of functions f M satisfying

=/D If# (z)]s din(z) < x, (1.3)

and UBCo is the family of functions f M satisfying

lim f [f#(z)]Sg(z, w)din(z) O. (1.4)

Here, it is worth while mentioning that D# C UBCo and that UBCo is an important meromor-

phic counterpart of VMOA--the space of analytic functions with vanishing mean oscillation on

D (see [4,8]). We then characterize functions in N and N’ and obtain three criterions which

are extensions of criteria for N and No.
2. CONTINUITY OF N AND N’.

In this section, we pay attention to the continuity of N and N’. Firstly, we see the mono-

tonicity of N and N’. More precisely we have

TI-IEOREM 2.1 Let al, as (0, 1]. If al < a2 then

(i). Y’ C N2.

(ii). N2’ C N’2.
PROOF. It sufficies to prove N C N’ for a < as. Let f N then I[f][N, < X and

This gives f N’, i.e., N1 C_ N2. As to the strict inculsion, we take a function f(z)
(1 z)-3, a3 (a,a2). A simple computation just gives f N\N’. In fact,

At the same time,

(1 -Izl)-, I1 zl-I1,11-, ( =)sup
D l+[l--z[

Jim (1 --Izl)fF(z) (1 as)i!}m,
(1 -Izl)’ll zl -’

Izl"-’l + I1 zls’-’’3)
Thus, f, N’2 \ N’ So, N’ C N’.

Denote by D the class of functions f M with

=0.

II/11 spf*()< . (..1)

For a (0, I), it is easy to see that D C N. Furthermore, Theorem 2.1, together with

N C N, N C N0 and [3,4] suggest that we coider the continuity of N and N;. For th
ppo, we need a corollary which can be viewed an application of Theorem 2.1.

COROLLARY 2.2 Let a, b (0, i]. Then

(i). U<N U<N.
(n). N<N N< g,
PROOF. (i). On the one hand, the relation: U< N$ U<g is clear. On the other

hand, if f U< N, then f mu be in some N, saying, N, where a E (0, b). However,
for a’ (a,b) we have f N’ by the proof of Theorem 2.1. So f U<N, and hence

U<N =U<N.
(ii). This part can be proved similarly.
Now, we c state the dcontinty of N and of N
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THEOREM 2.3 Let a, b E (0, 1]. Then

(i). U,<,, g c No.
(ii). F’I,<,, N0 D N.
PROOF. Owing to Theorem 2.1 and Corollary 2.2, we only requke provhg (1). U< N{

N and (2). n<Y # g-

First, let us consider (1). ]f f(z) =, :
:(_,) then we get that f is bounded on D.

Since lim_ (-) for b > a, f2 <Nd from [7, Theorem 1]. But it follows that

6 N again from [7, Theorem 1]. Note that we have here used a fact: f# equivalent to lf’[
once f is bounded and analytic on D. The above facts tell us that <N # N is true.

It clear that f isSecond, let us consider (2). For this, we pick fa(z) =bounded on D. Moreover f N by using [7,Theorem 1]. However, lim_ 0 as

b > a, and then e <N. That is to say, <N # N.
Ts completes the proof.

Finally, we discuss a special ce of Theorem 2.3. Theorem 2.3 implies that 0<<] N C

N0. Noting the inclusion: UBCo C No [8], we will naturally ask what connection between

N is a proper subset of0<<N and UBCo It is a little bit surpring to us that 0<<
UBCo. This result shows that there is a big gap from 0<<] N" or 0<<] N to N or N.
Exactly speaking, we obt

THEOREM 2.4
y(i) U0<.<,/ c O,.

(iii). 0<<N D
N. Indeed,PROOf. First of all, settg (z) log(1 z) we check that

we hve

(2.2)

and

(l-t)-1IIAIIo > li_m, + Zo:(_ t)
oo

for any a E (0, 1).
Now we turn to the proofs of (i), (ii) and (iii).

N then there is an a 6 (0, 1/2) such that f N and thus(i). If f e Uo<<,/

(2.3)

II111 =, _< II711,o fo (1- llzl)= din(z). (2.4)

(2.3) and (2.4)imply that (i)is true.

(ii). From Theorem 2.1, (2.1), (2.2) and (2.3) it is seen that we only have need to demonstrate

(1). U1/=_<<1 N" D# and (2). U/=s=< N c UBCo. For (1), we take a function f(z)
"=" It is clear that A is bounded and also in N=D# a e [1/2,1) from [7, Theorem=0"1]. Thus (1) holds. For (2), we may a e [1/2, 1). For w e D and f e N=, we have
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By noting that -Zoll _< 8(1 -Il) fo I1 >- , we also get

-Zogll Z I1)
\(o,I) (- I1)1 -1(’-) rim(z) <_ 8

I 2z-i din(z)

and

/D --log]z] fO1/4
dt

(o,1/4) (1- I1)=1- 1(,-=) a.() _< )-=. tZog7
Furthermore, we can obtain a constant C > 0 so that

[Y# ()]=g(, 0) am() _< CllIIl= (1 Iwl):(1-) (2.5)

Here we have used Lemma 4.2.2 in [101. The above (2.5) gives f e UBCo, other words, (2)
holds.

(iii). We pick fs(z) = By [7,Theorem 1] it follows that fs e 0<<, N2. However,
it is ve ey to observe that fs D. So, 0<<, N D.
3. CHACTERIZATIONS OF N AND N.

In this section, we chartere functions in N d N for a (0, 1] in terms of the weighted
average, the pudhyperbolic dk and the Green function, respectively. We use [EI to denote
the meure of the set E D relative to din(z), i.e., IEI f din(z).
THEOREM 3.1 Let f M,a (0,1] and p (1,). Then the following statements are

equivalent"

(i). I e g.
(ii). There is an r0 e (0, 1) such that for any r e (0, r0],

sup Ire(z)] din(z) < .
(iii). There is an r0 e (0, 1) such that for any r e (0, r0],

[ [l(z)l( -Izl)(-) din(z) < .sup
wed J D(w,r)

(iv).
f
][f#(z)](1 Izl)(=-’)g,(, )din(z) < x.sup

wED JD

PROOF. We prove this theorem in accordance with the order (i) (ii) (iii) (i)
(iv) (iii).

Step 1. (i) (ii). Let f E N, then Ilfllo < o. For w E D and r (0, 1) we have

(i -I1) (3.1)ID(,r)l-- (1 11);
and

7Fr
din(z) < (3.2)

(o,) (1 Il)li zl(-=) (1 r)"
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Purther, we readily get

j I*()]:’()I,(w,r) [D(w,r)[,_ ....
r(4r)
(1 rP II/11" (3.3)

From (3.3) it follows that there exists an ro (0, i) for which sup,e l, (w, r) < for any

(0, 0], i.., (ii) hogan.

Sep 2. (ii) (iii). For w D and r e (0, 1), by (3.1) we have

(3.4)

Once assuming (ii), we can choose ro e (0, 1) such that

sup
,e Im(w,

[f#(z)] din(z) < zr

for any r (0, ro]. Further, when r (0, to], we have

r-(4r)’-
sup I(w, r) < (3.5)

(1 r)(’-)"
Thus, there exists an r, (0, ro] such that sup,heD I2(w, r) < r for any r (0, r,], and hence

(iii) holds.

Step 3. (iii) = (i). If (iii) holds, then there exists an ro (0, 1) satisfying

Co =sup /Dwed 7r (,,r0)

Consequently, for all w D,

[/#(z)]2(1 --Izl2)(-’) din(z) < 1. (3.6)

S(ro, f w)= _I/7r
[f#(z)] din(z)<_ Co 1.

Dufresnoy’s lemma [5,Lemma I], p.216] then yields that

(3.7)

Also

(1 --Iwl=)==[f*(w)] _< S(ro, f, w, )(1 I,1=)-’)

rg(1 S(ro, /, w, ))
(3.8)

(3.9)
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From (3.7), (3.8) and (3.9) it derives that for all w e D,

( -Il)f() < [o( Co)( o)’-o
]1/2’

namely, f N.
Step 4. (i) =), (iv). Under f N, we have

I3(w) JD [f#(z)]2(1 IZl2)2(-’)g’(z’ W) din(z)

< Cllfll N

where C’ 27r f0 t(1 t)-21ogP dt < 0 for p (1, x)). So, (iv) follows.

Step 5. (iv) (iii). If (iv) holds, then, for w D and r (0, 1), we have

(3.11)

[f(z)]=(1 -Izl=)-’ din(z) <
I3(w) (3.12)

(,) logr

That is to say, we can choose an ro (0,1) so that sup,eDI2(w,r < r for any r (0, r0].
This completes the proof.
For N’ we have a similar result.

THEOREM 3.2 Let f M, a (0, 1] and p (1, oo). Then the following statements are

equivalent:

(i). f N.
(ii). There is an r0 (0, 1) such that for any r (0, r0],

lim,,,- ID(w, r)l- [f# (z)] am(z) O.

(iii). There is an r0 (0, 1) such that for any r (0, r0],

[f# (z)](1 Iz[)z(-) din(z) O.

(iv).

lim /[f*(z)]( Izl)(-’)g(z, w)din(z) O.
JD

PROOF. We show this theorem according to the order (i) (ii) (iii) (i) (iv)
(iii).

Step 1. (i) (ii). Suppose that f N’. Then for any compact subset E C D and all z E E,
such a function f satisfies

,lm(1 -I,,,(z)12)f#(,(z)) O.

Thus, for any e > 0, there exists a p (0, 1) such that for Iwl > ,

As its consequence,

If# (z)] din(z) < e/o I zl’(-)
(0,> lu)T (=L’-iS " izl)=

din(z).

(3.13)

I,(w,r) < (-_ )),:,o, (3.4)

and hence it turns out that there is an r0 (0,1) to make I(w,r) < e for all w D \ D(O,p)
and any r (0, r0]. i.e., (ii) holds.
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Step 2. (ii) =. (iii). This follows readily from (3.4).
Step 3. (iii) =. (i). Assuming that f E M is of (iii), for any e E (0, 1), we can find p (0, 1)

to make I(w, ro) < zre, and consequently S(ro, f,w,)

_
e < for all w D\D(O,p). Combining

(3.8) and (3.9) we get

(1- [w[2)f# (w) <_ [(1--ro)(-4)1 (3.15)

for all w e D O(0, p). Therefore f N.
Step 4. (i) (iv). Provided that (i) is true. Since C < , for any > 0 there is an

r (0, 1) such that

log
(3.16)

(o, (-) d(z) < .
Also, for this r: and all w 6 D,

+/D )[f#(,(Z))]2 (1 IW]2)2=(1 IZ]2)(=-1)
logp

1
din(z)

\(o,) Ii-zl’ N
=(/o +/ )(---) ()-

(o,r2) \D(0,r2)

F-om the condition: f E N’ it follows that there exists a pl (0, 1) such that for [w[ > pl,

r216 2{2
(0,2)

(’’’) din(z) <_ (-) lgP-t dt (3.17)

and

f log

D
(...) rim(z) < [Ifllv,/D din(z). (3.18)

\D(O.,) \D(o.,:) (1 --Izl)

Combining (3.16), (3.17) and (3.18) deduces (iii) right away.

Step 5. (iv) (iii). This is a simple consequence of (3.12).
This completes the proof.
REMARK. (i). A special case of (i) => (iii) in Threm 3.1 w stated by Wulan and

Yah [6]. (ii). The ce: a 1 of (i) (iv) in Theorem 3.1 and n Theorem 3.2 was given
by Aulri and Lappan [3]. (iii). The ide and examples of this paper are suitable for the
a-Bloch and little a-Blo fuctio (e [7,9]). (iv). It is an open question to which of the

results from th paper are lid for a (1, ). Similar questions may also be ked about

corresponding cls of harmonic functions (Cf [3]).
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