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ABSTRACT. A simple one-dimensional non linear equation including effects of instability, dissipation, and

dispersion is examined numerically. Periodic solution of a non linear dispersive equation is presented for

different values of ct, 13, and y characterizing the constants for instability, dissipation, and dispersion

respectively. In this paper, the growth pattern for the wave at different time intervals is discussed. Various

equilibrium states with different initial configuration have been observed depending on initial conditions.
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1.0 INTRODUCTION

One of the intrinsic properties attributed to dispersion in a non linear system with instability and

dissipation has been pointed out by a numerical initial value problem concerning a simple one-dimensional

model equation [1], given by:

Dispersion works as an effective impedance in non linear mode coupling processes and results in saturation

at higher amplitudes for strong dispersion leading to a non linear equilibrium, i.e., a row of saturated soliton

like pulses. However, the wave evolutions are chaotic in the absence of sufficient dispersion [2,3].

It is interesting to notice from the linear dispersion relation, f2 txk yk + il3k, which is obtained

by substitution ofU exp(ikx + Qt) into the linear version ofEquation-I, small amplitude sinusoidal waves

with long wavelengths are linearly unstable. Thus small amplitude sinusoidal waves grow or damp according

to whether Re f>O or Re f<0. The maximum growth rate is always given at the wave number l=(a/2,

[4]. It is anticipated that these unstable waves may destroy a steady row of pulses when the distance between

adjacent soliton like pulses become too long [5].

One ofthe simplest non-linear effects which is capable of saturating the growth of a linearly unstable

wave or spectrum ofwaves is resonant mode coupling [6]. The existence ofboth instability and dispersion
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indicates the possibility of a steady state, because the energy influx due to the self excitation is transferred

through mode coupling to short wave length and is expected to be balanced by damping due to the fourth

order dissipation term. When the rate of energy influx from the linear instability is balanced by the rate of

outflow from mode coupling, the steady state is achieved.

Cohen et al. [7] applied the similar one dimensional partial differential equation as equation (1) in

analyzing the non-linear saturation of the dissipative trapped ion mode The dissipative trapped ion mode is

a low frequency, electrostatic drift wave propagating in the electron diamagnetic direction. The wave is

destabilized by ion collisional damping and Landau damping due to both circulating and trapped ions [8].

Equation (1) also represents the modified K-dV equation which includes the energy dissipation terms

Ott and Sudan [9] observed a solitary wave pattern for a small change in the amount of such dissipation Ott

and Sudan [9] modified equation (1) and investigated three cases, viz, (a) magnetic waves damped by

dectron-ion collisions, (b) ion-sound waves with electron Landau damping [8], and (c) shallow water waves

damped by viscosity.

A non linear evolution equation for the free interface displacement from planar shape is found to

possess classical form as Eq. (1), with interracial viscosities supporting the existence of a dispersive term 10-

12]. In such a system, u will represent the perturbed interface. Therefore, it is important to understand the role

ofdispersion in non linear systems, including both growth and damping mechanisms in relation to instability

waves in fluid systems.

2.0 NUMERICAL ANALYSES

Equation-1 with periodic boundary conditions on the interval [0,L] is integrated numerically by a finite

difference method in space and time. Five point, central difference approximations were used for spatial

derivatives so that possible leading errors were ofan order less than the fourth power ofthe spatial mesh size

Spatial mesh points were taken to be 150 in the periodicity length L=2, with the periodic boundary condition

at x=0 and x=L. Initial conditions assigned were (a) -cos(x), (b) -sin(rx)-cos(rrx), (c) step wave with a unit

amplitude, and (d) uniformly distributed random numbers.

For the case when 13u---UUx >> tu--y.u,o then the Eq.(1) describing slow changes of the amplitude

ofthe Koteweg de Vries solution may be derived by means oftwo-time asymptote equation expansion with

slow time scale defined by T=et (where e is a small perturbation parameter) The steady solution of equation

(1) is given asymptotically to be [5].

u=Asech2Bx [_
6

tanhBx ln(codaBx)l (2)
51/1 J

where A=(21 t fS/5y) and B=(7t/20y)t2. Temporal evolution of the solution of eq. (1) is also derived by Toh

and Kawahara [5]. The asymptotic solution (Eq. (2)) is used later for the qualitative comparison of our

numerical algorithm.
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3.0 RESULTS AND DISCUSSION

The results ofnumerical integration ofEquation-1 with the initial condition (a) is presented in Figure-

Values of a, 3, and y for the different cases I,II, and III are given in Table-1.

Table-1 Instability, Dissipation and Dispersion coefficients for three cases

0.01

0.1

0.001

2.0e-03

5.0e-04

5.0e-04

III

5.1 e-06

50e-04

5.0e-04

It is evident from Figure-1 that case-I grows at the fastest rate as compared to the other two cases,

this is attributed to the fact that it had the largest value of a. Figure (b) depicts the moderate growth ofthe

wave, and Figure (c) shows a stable wave form. The stable wave form is predicted because of very small

value of a. It is seen from Figure- (a) that the temporal evolution develops to a solitary wave form after 2

’seconds for case-I, while the case-II is under damped and case-III has a stable amplitude. As decreases

(refer to Figure-l(a) through l(c)) stability ofthe wave increases. This is also qualitatively observed by Toh

and Kawahara [5], who used the steady solution as given by equation 2. The other case with the periodic

bounda condition of(-sin(x) cos(nx) is presented in Figure-2 (the , 13, and y values for this case and

the rest ofthe other boundary condition cases are the same as I). It grows to the waves of constant amplitude

after 1.2 seconds. Similar trends were also observed by Oron and Edwards 10] and Cohen et al. [7]. It is

interesting to notice from Figure-3, if the step wave is taken to as the initial disturbance, then after t=0 4

seconds, it also converges to the cyclic wave Last case was tried by taking random variables as an initial

condition. It is inferred from Figure-4 that it also grows to a stable wave form after an elapse of initial 2 0

seconds

A wave with sufficiently small amplitude and large width grows because the growth term a U,,x is more

important than the damping term yUfor small wave numbers. Meanwhile, th,e dispersion can inhibit mode

coupling and result in saturation at higher amplitudes for sufficient dispersion; for which the growth just

balances the damping and also the dispersion balances the non linearity.

Computer solutions [5,7,10,12] indicate that the growth of an initial perturbation is followed by

formation of a row of solitons for the strongly dispersive case Also, it is interesting to notice that the

existence of a dispersive effect can bring about a kind of organization in the system that exhibits a turbulent

like behavior if the effect of dispersion is completely neglected. Numerical results revealed, that the number

of pulses increases as the amplitude ofthe initial disturbance increases Thus, the equilibrium state is initial

condition dependent. The intervals between pulses are not regular at the stage when the saturated pulses are

first developed but become regular at later time.

Equation (1) with 13=0 reduces to that equation describing the chemical reactions which exhibit a

turbulent like behavior 13] A time evolution ofeq.(1) with 13=0 for arbitrary initial disturbances was pursued
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S(c)

Figure Temporal evolution ofU for initial
condition -cos(x) for (a) Case-I’,
(b) Case-H*, and (c) Case-HI*.

Figure 2 Temporal evolution of U for
initial condition -cos(rrx)-sin(rrx) at

(a) t--.0 see, (b) t---0.4 see (C) w0.8 see

Refer to Table
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t-O.|

U

3(a) 4 (b)

t--l.2

U

3(b) 4 (c)

Figure 3 Temporal evolution ofU for initial ,-2.,,,c

condition of step wave at (a) 0.0 sec,
and (b) 0.4 sec

U
t’O

(a) 0.0 sec, (b) 0.4 sec, (c) 1.2 sec,
and (d) 2.8 sec

4 (a)
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numerically by Yamada & Kuramoto 13 ]. It was concluded, at an early stage of evolution, that a spatially

periodic structure determined by the maximum growth rate develops but it finally breaks into a turbulent state

4.0 CONCLUSIONS

Short wavelength components due to initial uniformly distributed random variables assigned at

individual mesh points quickly damp out and soon generate a wave form. It should be emphasized that not

all of the young humps generated at the initial stage grow up to saturated soliton-like pulses. It should be

noted here that the number of solitons which emerge from a given initial condition in the purely dispersive case

has no direct relation to the final number of soliton like pulses in the case with non zero t and y.
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