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ABSTRACT. We use methods of algebraic topology to study when a connected topological space

admits an n-mean map.
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1. INTRODUCTION

Carath6odory and Aumann (see [1 ],[2]) were among the pioneers who first considered the question

of what path-connected regions X in ]R or C could support an n-mean, that is, a map # X A"

satisfying

(i) z/ 1" X X, where/ is the diagonal map & X X and

(ii) cr #" X X, where cr E S,, the symmetric group on n letters, acting on X by

permuting components One of their main concerns was to find out if the existence of such an n-mean,

n > 2, implied that X was simply connected

In 1954, Beno Eckmann [4] attacked the question with the tools of algebraic topology He supposed

X to be a polyhedron and only required conditions (i), (ii) above up to homotopy One of his principal

conclusions was that ifX is compact and admits a (homotopy) n-mean for a,ll n, then X is contractible

In 1962, Eckmann, together with Tudor Ganea and the author, returned to the study of n-means in a

more general setting (see [5]). Thus the n-mean defined in [4] was a morphism in the category T of

based connected CW-complexes and based homotopy classes of based maps In this generality one was

able to exploit the idea of mean-preserving functors. Thus if C, 79 are categories with products and

F C 79 is a product-preserving functor, then F# is an n-mean in 79 for any n-mean in C Moreover,

one could also examine the dual questaon of the existence of n-comeans

It turns out that the concept of P-local objects and P-locahzatzon, where P s a famdy ofprimes, and the

results related to these concepts in the categories Th and A/’, the category of ndpotent groups (see [6]), enable

one to mmplify many arguments m [5] and to extend the results ofthat paper

2. MEANS IN THE CATEGORY OF GROUPS

Let be the category ofgroups Let n be an integer, n > 2, and let P be the famdy ofprimes/9 such that

pn We then prove
THEOREM 2.1. The group G admits an n-mean # in : (7 is commutative and P-local In that

case, ifwe write G additively,/ is given by
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(2 1)

PROOF. Note first that if G is commutative, then G is P-local if and only if G admits unique

division by n It is then plain that (2 1) defines an n-mean on G

Conversely, let # be an n-mean on G For 9, h E G (at ths stage, we write G multiplicatively), set

(9, e,..-, e) ,, (h, e,..., e) (5 Then, by condition (ii),

(e, g, ., e) (e, e, ., g) ",

so that, by condition (i),

Similarly, h 6 But /(9, h,-.., e) 76, #(h, 9,’" ", e) 57, and #(9, h,.-., e) #(h, 9,’" ", e)

Thus 7 commutes with 5, so that 9 commutes with h and G is commutative To show that G s P-local

it remains to show that nth roots are unique in G. But, again using properties (i) and (ii), we conclude

that #(9’, e,-.., e) #(g, 9,’" ", 9) g, so that g is determined by 9 Thus G is commutative and P-
local and, writing additively, we have

(.qx if2, ",fin) (9, 0, -,0) -1 1
gt --(,ql -1- g2 "1-"’" - gn).

,=1 ,=1
n

COROLLARY 2.2. Let G be a group and let nl >_ 2, n2 >_ 2 be ,ntegers Then G admits an

n n2-mean if and only if G admits an n -mean and an n2-mean

3. MEANS IN TIlE CATEGORY T
Let X be a connected CW-complex with base point. We prove, with n, P as in Section 2,

THEOREM 3.1. Suppose X admits an n-mean #" X’ X in Th Then X is a P-local

commutative H-space
PROOF. We regard the th homotopy group rr, as defining a product-preserving functor from Th to

Then/. 7r,# (Tr,X) rr,X is an n-mean in It follows that 7r,X s commutauve (ths s only

sgmficant for 1) and P-local and that #. has the form (2 1).
Let i1" X--, X be the obxaous embedding. Then (il), IS the endomorptusm 9 !9 of the

commutative P-local group 7r,X It follows that (il). is an automorphism for all i, so that/z s a self-

homotopy-eqmvalence ofX Let p X X be homotopy reverse to #il. Let Zl X X be the obwous

embedding and let rn p/zz,2 X X. Then t s easy to see that m IS a commutauve H-structure on X

We conclude that X s a P-local commutativeH-space IZI

From Theorem 2.1 we deduce, more easily than in [5],
TIOREM 3.2. If a compact, connected polyhedron X admits an n-mean for some n > 2, then X

is contractible.

PROOF. Since the homotopy groups of X are P-local, so are the homology groups H,X, >

(see [6]). Now Browder has shown [3] that a compact, connected polyhedron X which is an H-space
satisfies Poincar6 duality. Thus, if X is not contractible, there exists a positive dimension N which

contains the universal class giving rise to the duality isomorphism H,(X) Hv-’(X). In particular,

HvX Z, but this is absurd, since Z is not divisible by n I"1

REMARK 1. We have not invoked commutativity of the H-structure in this argument If we do

so, we may apply a theorem of Hubbuck showing that X would be equivalent to a product of circles,

which is also impossible for a non-contractible P-local space



A NEW LOOK AT MEANS ON TOPOLOGICAL SPACES 619

REMARK 2. Theorem 3.2 is delicate The n-solenoid is compact and admits an n-mean but is not

a polyhedron The Eilenberg-MacLane space K(Q, m) is a polyhedron and admits an n-mean for every

n, but is not compact

We have not proved--and doubt the truth of--the converse of Theorem 31 However, one may

readily prove
THEOREM 3.3. If X is a P-local, connected, commutative, associative H-space, then X admits a

unique homomorphic n-mean. Further, if the connected H-space (X, m) admits a homomorphic n-

mean, then (X, m) is commutative and associative.

The case n 2 admits a very neat and precise statement. If/" X X is a 2-mean on X, we

define p as in the proof of Theorem 3.1 as homotopy inverse to #il, and rn p# is a commutative H-
structure on the P-local space X, where P is the family of odd primes Conversely, ifm X X is a

commutative H-structure on the P-local space X, we define 7- to be homotopy inverse to rnA X X
(notice that rnA induces doubling on the homotopy groups of X and is therefore a self-homotopy-
equivalence). Then/ 7-m is a 2-mean on X.

THEOREM 3.4. The function/ p# sets up a one-one correspondence between 2-means on the

P-local connected CW-complex X and commutative H-structures on X
PROOF. If m p/, then z/ p# p, so % defined above, is homotopy inverse to p and

7-rn # If 7-# =/, then 7- uil so, again, p is homotopy inverse to "r and p/.t m Thus the function

m 7-rn is inverse to the function

4. THE DUAL STORY
Whereas the product in a familiar category (like Th, ) takes a famihar form essenlaally independent of

the category, the form of the coproduct depends very much on the category m queslaon The three categories

whmh will come into queslaon here are Th, , and Ab, the category of abehan groups

Let C be a category adrmttmg finite coproducts, we will write C v D for the coproduct of C and D n C
and Cn for the coproduct of n copies ofC in C. Obwously, the symmetric group S,,, acts on C,.,, we will write

V C, C for the codiagonal, which is the morphism that coincides wth the identaty on each copy of C m

C, Then an n-comean on C s a morphsm
for all a E S, We prove

THEOREM 4.1. In
PROOF. Let G be a non-trivial group and let g E G, g e If # G G, is an n-comean, n > 2, then

it follows from (i) that #g - e Now G, is the free product of n copies of G, so a non-trivial element of G, s

umquely expressible as h,h,...h,, where G(,) ts the th copy of G in G,, h, G(,), h, :f: e, and iq iq+l,

q 1,2,..-,k- 1 Such an element is obviously moved under any permutation a winch moves il, so that

condition (d) s violated. I-I

THEOREM 4.2. In .Ab, the abelian group A admits an n-comean, n > 2, if and only if it admits an

n-mean In that case/ A A, is given by

#(a)= (a a, ,a). (41)

PROOF. We note first that, in .Ab, C y D C D, so that A, A If A admits an n-mean,

then, by Theorem 2.1, it is clear that (4.1) is an n-comean. Suppose conversely that # A A,, is an n-

comean It is then plain from (ii) that p(a) (c, a,.-., a) for some c A such that, by (i), nc a. It

remains to show that division by n is unique in A. But

,(,) (,,, r,...,,) (,, ,,..-,,),

so that a is determined by na
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REMARK. Note that the situations for means and comeans are very different Means in conclde

wath means in 4b, on the other hand, there are no non-tnwal comeans m but there are non-tnvaal comeans n

4b, and, moreover, the objects m A,b admttang n-comeans coincide wth those admitting n-means

We now study n-comeans m Th. Using the same notalaon as in Theorem 3.1, we prove

TItEORENI 4.3. Suppose X s a connected CW-complex admlttang an n-comean # X---, Xn n

Th, n > 9 Then X s a simply connected P-local commutative H’-space
PROOF. Now X, is just a bouquet of n copies of X Since 7rl Th s coproduct-preservmg,

7q# s an n-comean on the fundamental group 7qX, so that, by Theorem 4 1, X s smply connected Now the

homology groups H, > 1, are coproduct-preservng functors Th A,b, so that, by Theorems 2 and 4 2,

the homology groups HX are the P-local. Since X s smply connected, ths mphes that X s P-local

Finally we adopt a hne of reasomng entirely analogous to that m the proof of Theorem 3 to conclude that X
admits a commutative HI-structure m-X X2 (Notice that, since X is simply connected, a map

f X X inducing homology isomorphisms is a homotopy equivalence.)

Notice that there are straightforward and valid duals of Theorems 3.3 and 3 4 On the other hand,
Theorem 3.2 does not dualize. For example, the Moore space M(Z/2, m), rn > 2, characterized as the

unique simply connected homotopy type with H9_ Z/2, H, 0, > 3, is a compact (m + 1)-
dimensional polyhedron which admits an n-comean for every odd n
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