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ABSTRACT. The paper discusses fully developed flow of viscous fluid through ducts of arbitrary
cross-section. The method uses a constant velocity contour line in a typical cross-section of the duch
as an independent variable. The amplitude of the oscillatory velocity is then obtained from an ordinary
integro-differential equation. Several examples of a practical nature are given, with some that have not

yet been discussed in the literature. All details are explained by graphs.
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1. INTRODUCTION
This paper is a further extension to previous work that has been done in the area of oscillatory fluid

flow in ducts. In a previous paper [9], a method was proposed for the study of fully developed parallel
flow of Newtonian viscous fluid in uniform straight ducsts of very general cross-section. The proposed
method is based upon the concept of a family of contour-lines of constant velocity, u(z, y) const., in a
typical cross-section of the duct and considering such line as an independent variable. Since the details

.,of the method used in this study have been discussed by the first author in an earlier publication [9], only
a brief discussion of the method is presented here.

According to the method, the governing equation for the axial velocity component w(z, y, 7-) at any
time r is given by

claW x/ds + ds iAW (1)
d -- - dz -where

(, u, -)= w(, u)’, p(z,) P(z)’, (2)

A2= w
t=ux+u*, and r,=-. (3)

t/ p

The above equation is the integral form of the momentum equation for unsteady flow, ignoring any
external forces. Here w represents the frequency of oscillation, and A is a reduced frequency.

The family of contour lines of constant velocity, C,,, are represented by u(z, ) constant (see Fig.
1). If the exact equation for u(z, y) is known, then the governing equation (1) yields the exact solution for
the velocity component w. If, however, the exact form of u(z, 1) is not known a priori, then the method
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’, -’l-_X,-" .- X. u(x,y]=O

u (x,y)= constant

FIGURE I. Isovelocity contour lines.

of conformal transformation can be used to obtain an accurate approximate solution for the velocity
distribution.

2. APPLICATIONS
2.1. Solving the unsteady equationfor a coaxial elliptical duct
As shown in [9], considering the contour function as u(z, y) x2/a y2/b2, the contour integrals
in the unsteady equation can be solved easily, so that Eq. becomes

(1 u)
daW dW iK:.

W
K dP

(4)
du du 4

where

Introducing a new variable f such that

Eq. 4 reduces to

dW
df

which has a solution that is given by

4#A dz

K (5)
(a + b)

f2 u (6)

dW K dP
+ -f’ iK2W

#A dz
(7)

dP
W AiIo(vzKf) + A2Ko(vKf) +-- (8)

#, dz

where A1 and A: are arbitrary constants and Io and/to are modified Bessel functions of the first and
second kind. The constants AI and A2 are found using the viscous no-slip boundary conditions that occur
at duct walls.

If the duct is simply connected, then the boundary values of u are

u=0 and u=u’=l (9)

at the outer boundary and the origin, respectively. This produces the corresponding boundary conditions

W(f)lf= 0 and W(f)l]=o 0 (10)

and so solving Eq. 8 for A1 and A we get

-i dP
A (11), d to(K)

and

A =0 (12)

and thus, Eq. 8 finally gives
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If we make the substitution

dP Io(x/Kf)W t.t-.,k dz Io(x/h’)

Io( v/x) berx + ibezx

then W can be given in the form

W= WI +,W2

=H)x+Wffe" cS:tan-1 -[
where 8 denotes the phe difference tween pressure d velity.
We thus have

dP (berKbeiKf- beiKberKf)

and

W t.tA dz
1-

The amplitude velocity, V, is given by

so

berKberKf + beiKbeKf)bet K + bei K

(13)

(14)

(15)

(16)

ber2K(berK berKf) + 3berZKbeiK ]-2bezKbeiKfber2K + bei2K(bezK beKf)

V
dP +beiKber2Kf- 2bei2KberKberKf (18)

IA dz (ber2K + bei2K)

u: constant

FIGURE 2. Cross-section of a doubly connected ellipse.
If, however, the duct is doubly connected (see Fig. 2), then the boundary values for u are

u=0 and u=u’=l-/32 (19)
on the outer and inner walls, respectively, where/3 is the similarity condition between the duct walls, ie.,

al

a b
0 </3 < 1. (20)

The corresponding boundary conditions are then

W(f)lI=, 0 and W(f)ls= 0

Substituting these conditions into Eq. 8 we get

(21)

(22)

(23)



786 J. MAZUMDAR AND D. HOPKINS

0.3

0.2

0.1

0 0.2 O.Z. 0.6 0.8

0.16

0.12

V/W"
0.08

0.04

0

0.03

0.02

0.01

0.5 0.6 0.7 0.8 0.9 1.0
f

FIGURE 3. Amplitude distribution of oscillatory flow over the cross-section of a coaxial

elliptical duct for/ 0.0, 0.1, 0.5, r/= 1,2, 3, 4, 5 and f 0.0,.. 1.0.
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P’[GURE 4- Amplitude distribution of oscillatory flow over the cross-section of an annular

duct for/ 0.0,0.1,0.5, /= 1,3,5,8,10 and jr 0.0,..., 1.0.
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and thus Eq. 8 finally becomes

dP

#A dz

Io(vKf)[Ko(CA’) Ko(
+Ko(x/Kf)[Io(vK3) Io(x/K)]

Ko(v4K3)Io( v/{K) Ko( vSK)Io(vf{K3)

The amplitude velocity, V, in this case, then becomes

W
dP

#A dz

[L,.(fK,3K)- L,.(fK, K)- L,.(K,3K)]
+[L,(fK,K)- L,(fK, K)- L,(K,K)]

L(K,K) + L:, (K,K)

(24)

(25)

where L(a, r) is a new function of two independant variables a and r given by [11]

L(a, 7-) L,.(a, "r) + iL,(o’, "r)

,ro()Ko(’v)- to(’)Ko(V).
and

Lr(a, r) berakerr keraberr beiakeir + keiabeir, (26)

L,(a, r) beiakerr keiaberr + bercrkeir kerabeir. (27)

bet, be and ker, kei are the real and imaginary parts of Io and Ko respectively. The value, V, thus obtained
will give the amplitude distribution of the velocity in the doubly connected elliptical cross-section of a
duct.

Since according to the authors’ knowledge there is no published results for this problem we will for
the sake of comparison and confirmation of our approach, consider the limiting case when two ellipses
become two circles. It is interesting to note that if one puts a b and a bx so that the two ellipses
reduce to two circles, then the results obtained for this case coincide with the results given in 11 for the
case of an annular duct. We further note that in Eq. 7, the only quantity affected by this substitution is the

K. Fig. 3 shows the graphs of V/W* for a coaxial elliptical duct, where W" b P
-Y-a; I’ and forparameter

aspect ratio a/b 2, and for three different values of/3(0.0,0.1,0.5) and various values of the parameter
r/= bA. In Fig. 4 the graphs of V/W* are shown with a/b 1, fl(0.0,0.1,0.5) and a set of values of r/.
The results in Fig. 4 agree precisely with those of Tsangaris 11 ]. It is further interesting to note that the
graph in Fig. 3 corresponding to fl 0 coincides with the graph for an elliptical duct given in [9].

2.2. Conformal mapping technique
For more complicated cross-sections an exact equation for the isovelocity contours may not exist, so
conformal mapping can be used (see Fig. 5). This assumes a one-to-one correspondance between the
U(,) constant contours and the u(x,y) constant contours where z x + iy and
Therefore as long as a function exists to map the cross-section onto the unit circle, it is not necessary to
know u. The function U is represented as

u(, ) = (28)

and the contour integrals appearing in the unsteady equation (Eq. 1) are

fc v/ds=2fc V/-UedS=4r(1-U)’
U

ds d

where

4UUu + u

(29)

(30)

(31)

(32)
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z=x+[y

u:0 U :0

i-., Cu

u (x,y ]=constcnt U= constont

FIGURE 5. Conformal mapping geometry
So Eq. becomes

(1 U)d=W dW
iH(U)W

H(U) dP
dU dU #A dz

where

dz 12H(U) 8rv/l U
and z () is the mapping function for the cross-section.

If we again introduce a variable, F, such that

F= l-U,

then substitution into Eq. 34 produces

(33)

where

(34)

We note that

(35)

W dW
iH’(F)W H’(F)dP

dF F dF #A dz
(36)

H’(F)
2rrF

(37)

f3" [- dO
H’(F)

2rrF d(
(say), (38)

where a depends on the complex variable (. If we make the substitution H’(F) a in Eq. 37, then Eq.
37 will become identical to Eq. 7 where instead of K we have a, and instead of variable f we have F.
We therefore note that Eqn 24 gives the solution for any. duct of’arbitrary cross-section with a value of K;
depending on the geometry of the duct boundary. This also applies for the complex mapping technique
approach if we replace the parameter K by as.

3. ILLUSTRATIONS
3.1. Simply connected cross-sectional areas
(a) Flow through a duct ofsemi-elliptical cross-section

Consider the case of flow through a semi-elliptical-duct (Fig. 6). A complicated conformal mapping is
used to get the mapping function of this shape. First we have to map the unit circle onto a semi-circle of
radius r using 10]

t-1 t ((+1z =r-- (39)
t+l’ \--i--"]

then we map the semi-circle onto a semi-ellipse using the same function that maps the unit circle onto an
ellipse, given by 0]
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where

(40)

6 a
r=62+i, a=g>l. (41)

dzSubstitution of o azl i. o 8 wi, then give the appropriate velocity amplitude. The graphs for
V/W" are given in Fig. 7 with a/b 2 and various values of r/= aA, where W" I ael"aT"

b=====================FmuR. 6. Cross-section of a semi-ellipse.

V/W*

0
0 0.2 0.4 0.6 0.8 0

F
FmURE 7- Amplitude distribution of oscillatory flow over the cross-section of a simplyconnected semi-e]lipticaJ pipe for r/= 1, 2, 3, 4, 5, " 0.1 and F 0.1,..., 1.0.

(b) Flow through a simply connected square duct with rounded corners

%
--%

I’--"
-u constant

FmuRE 8. Cross-section of a square duct with rounded comers.
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Consider another example of a square duct with rounded corners (Fig. 8). The cross-section for this shape
also has a mapping function given by 10]

25 (( 2_2) (42)

where 2a is the length of the sides of the square. Hence, the quantity a becomes

625, - ff (43)

and again, by replacing K by a in Eq. 18 we get the solutions for V/W" displayed in Fig. 9 for side

length 2a and a set of values r/= a,, where W" -2-g

0.2

V/W

3
0.

0
O ’0.2 0.Z, 0.6 0.8 1.0

F
FIGURE 9" Amplitude distribution of the oscillatory flow over the cross-section of a simply
connected square with rounded corners for r/= 0, 1,2,3, 4, ( 0.1 and F 0.0,..., 1.0.

3.2. Doubly connected cross-sectional areas
(a) Flow through a doubly connected duct ofsquare cross section

f-/’

bl a

t -t.t conson

FIGURE IO. Cross-section of a doubly connected square.

First consider the case when both inner and outer boundai’ies have polygonal cross-section. Therefore
we want to map this shape onto a doubly connected annular region where the outer boundary is the unit
circle (see Fig. 10). We do this using the well known Schwartz-Christoffel transformation to approximate
the mapping function as it is not known [3].

z k() axF, + )-dt (44)

where a the apothem of the regular polygon,
n the number of sides on the polygon, and
F, is the mapping coefficient given by
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r=/ (+)--t.

The numerical values of the mapping coefficients for some regular polygons are given in Table 1,

(45)

TABLE I. Numerical values for mapping coefficients of regular polygonal transformations.
# Sides, n
3 (triangle)
4 (square)

5 (pentagon)
6 (hexagon)
7 (heptagon)
8 (octagon)

Mapping Coefficient,
1.135
1.079
1.052
1.038
1.028
1.022

and from other results in the literature [3] we know that for a polygon of 4 sides, the mapping function

can be approximated by

z a [1.0807 0.1081( + 0.045 0.0242(43 + 0.0174v 0-012624] (46)

This function can be used to map the unit circle onto the outer boundary square. Now we need to map
another concentric circle of radius, ’7 < 1, onto the inner boundary square. The value of the side length,
b, in this square can be denoted by

so

b aF4 t4)-dt (47)

b0.0126331 0.017’7 xr 0.0242"743 0.045"79 + 0.1081"75 1.0807"7 + 0 (48)

must be solved to obtain the concentric inner circle radius, 3’. We can then completely map this cross-
section using the mapping function (Eq. 48) to obtain H’(F) after integrating across the contour integrals
from 0 to x/1 "- 72. The unsteady equation can then be solved, and Fig. 11 shows the graphs of V/W" for

side ratios/3 "7/1 < and values oft/= aA, where W* 1aP I. The results in Fig. l(a) forvarying
the limiting case,/3 0 are also in excellent agreement with the results for a simply connected four-sided
polygon given in [9].

(b) Flow through a ductofdoubly connected cross-section with apolygonal outerboundary
and a circular inner boundary

In this case we again want to transform the cross-section (see Fig. 12) onto an annular region. We know

the mapping function for the outer boundary can be approximated by

z a [1.0219 0.0282( + 0.00929 0-00482a 0"0008(ar + 0"002644] (49)
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FIGURE I. Amplitude sitribution ofthe oscillatory flow over the cross-section of a doubly-

connected square for 3 0.0, 0.0925, 0.4648, r/ 1,2, 3, 4, 5, ( 0.1 and F
0.0,..., 1.0.
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FIGURE 13. Amplitud,e distribution f the oscillatory flow over the’cross-section ofthe doubly connected duet with polygonal outer boundary and inner boundary for/3 0.0, 0.09786, 0.48928, r/= 1,2, 3, 4, 5, " 0.1 and F 0.0,..., 1.0.
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We also know from Laura [7] that circles in the (-plane will map into approximate circles in the z-plane,
with radius of the inner boundary given by

3 (50)
C1

where c is the first coefficient of the mapping polynomial, and R is the radius of the inner boundary in
the physical plane. So

(51)
1.0219a

and similarly to part (a) we integrate across the contour integrals from 0 to v/1 3= and then use the
mapping function, z, to solve the unsteady equation and obtain the graphs of V/W" displayed in Fig. 13.

(c) Flow through a duct ofdoubly connected cross-section with a corrugated outer bound-
ary and a circular inner boundary

"-.’f’.." J"-u=consonl

IIGUI- I4. Cross-section of a doubly connected duct with circul inner bound d
co.gated outer bounds.

Consider the diagr in Fig. 14. To solve is ce we adopt the se meth in p (b), except
the mpping Nnction for a co.gated bound is

z ( + m+x) (52)
l+m

where n the number of es of syet,
a the radius ofe circumbing circle, d

m<
-n+l

d the radius of the inner concentric circle will be

( + )

The results e given in Fig. 15.
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FIGURE I5. Amplitude distribution of the oscillatory flow over the cross-section of the
doubly connected duct with circular inner boundary and corrugated outer boundary for
3=0.0,0.11,0.55, ,= 1,2,3,4,5, =0.1 andF 0.0,...,1.0.
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4. CONCLUSION
We have thus obtained an accurate approximate solution for the analysis of a wide spectrum of fully
developed fluid flow problems in simply and doubly-connected ducts of arbitrary cross-sections. The
essence of the present approach is to reduce the partial differential equation for the transverse velocity
component to an ordinary second order differential equation using the concept of contour lines on a typical
cross-section of the duct. Next, the method of conformal transformation is applied to find the velocity
distribution in a typical cross-section for a number of duct shapes. The approach presented is quite simple
and straightforward.
The examples discussed show a very good agreement between the calculated values and the values

existing in the literature, and confirm the usefulness of the method.
Furthermore, the present study has been limited to the study of velocity distribution in a duct flow.

Many other problems, for example the dynamic response of MHD (magnetohydrodynamic) flow in
conduits when subjected to pressure gradient can be analysed in a like manner, which is to be carried out
in subsequent papers in this series.
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