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ABSTRACT. Finite amplitude thermal convection with continuous finite bandwidth of long wavelength
modes in a porous layer between two horizontal poorly conducting walls is studied when spatially non-

uniform temperature is prescribed at the lower wall. The weakly nonlinear problem is solved by using

multiple scales and perturbation techniques. The preferred long wavelength flow solutions are

determined by a stability analysis. The case of near resonant wavelength excitation is considered to

determine the non-modal type of solutions. It is found that, under certain conditions on the form of the

’boundary imperfections, the preferred horizontal structure of the solutions is of the same spatial form as

that of the total or some subset of the imperfection shape function It is composed of a multi-modal

pattern with spatial variations over the fast variables and with non-modal amplitudes, which vary over the

slow variables The preferred solutions have unusual properties and, in particular, exhibit ’kinks’ in

certain vertical planes which are parallel to the wave vectors of the boundary imperfections. Along
certain vertical axes, where some of these vertical planes can intersect, the solutions exhibit multtple
’kinks’.
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1. INTRODUCTION
Recently Riahi [1] investigated the problem of finite amplitude discr,ete-modal convection in a

horizontal layer with boundary imperfections due to spatially modulated boundary temperatures For
resonant wavelength excitation case, regular or non-regular multi-modal pattern convection in the

discrete-modal domain are found to be able to become preferred in some ranges of the amplitudes of the

boundary temperatures, provided the wave vectors of such discrete-modal patterns are contained in

certain subset of the wave vectors representing some portion of the modulated boundary temperatures

The present paper extends the above work to the more complicated case of finite amplitude convection

with continuous finite bandwidth of modes in a horizontal layer. In order to make the problem

mathematically simpler, we consider a porous layer with boundary imperfections to be due to spatially

non-uniform temperature at the lower wall only and assume that the horizontal walls are poor conductors

of heat. Such later assumption provides the analytical method of approach due to Busse and Riahi [2]
and Riahi [3] to be used in the present problem.

The present investigation of the continuous finite bandwidth of convection modes applies the method

of approach due to Newell and Whitehead [4]. As was explained by Newell and Whitehead [4],
continuous-modal analysis of convection leads to a wider class of solutions which can describe adequately

the problem with the amplitude modulations which inevitably occur as a result of, for example, non-

uniform boundary imperfections



172 D N. RIAHI

Rees and Riley [5,6] investigated the effects of one-dimensional sinusoidal boundary imperfections
on weakly nonlinear th=rmal onv=ction in a porous mdium and dtermined, in particular, the nonlin=ar

system for the flow amplitudes, and the effects of the boundary modulations on the stability of different
roll cells, and the evolution of the unstable rolls were studi=d Rs [7] investigated the effect of one-
dimensional long wavelength thermal modulations on th= onset of Convection in a porous medium and

predicted, in particular, the preference of a mode in the form of rectangular cells for certain ranges of
values of the modulation wave number. The pr=sent paper is, in a sense, an extension ofRees and Riley’s
work [5] to more general two-dimensional imperfections and to more general and new three-dimensional
flows and is an =xample of an imperf=t bifurcation driven by imperf=t heating and/or cooling. There
have been literature associated with a number of authors whose works are all r=lvant to the present
problem and were reviewed in Riahi ].

Th= g=n=ral problem under onsid=ration Can have pra=ial values in that on= might want to make
the tmprature of a boundary non-uniform if th transport processes ar= enhanced [1 or if the flow
struCture ould b ontrolll.

The present paper onsid=rs continuous finite bandwidth of three-dimensional modes of convection

and arbitrary non-uniform t=mprature boundary ondition in the form of such continuous mods at the

lower wall. We hav found a number of imersting results. In parti=ular, we found stable nvlope
solutions whose flow patterns Can hav quite unusual behavior. For example, d=pending on the form of
the boundary imp=rf=tions, one suCh pattern couplets in different parts of space may be $0 out of

phase, and the solutions can =xhibit ’kinks’ in the horizontal structure

2. GOVERNING SYSTEM
We consider an infinite horizontal porous layer of average depth d filled with fluid and bounded by

two infinite half spaces with the thermal conductivity which is assumed to be small in comparison with

that of the porous medium. In the steady static state, a constant heat flux traverses the system such that
the mean temperatures Tt and T are attained at the lower and upper boundaries of the fluid. Introduce a

cartesian system, with the origin at the centerplane of the layer and with the z-coordinate in the vertical

direction anti-parallel to the gravity vector. We shall examine the effects of lower boundary temperature

perturbation variations at a fixed value of AT T T and represent the magnitude of such variation

relative to AT by . It is assumed that < o(1). We define a temperature relative to the conduction

state by

T,(x,y,z,t) - z + T(x,y,z,t) + T,,, (21)

where x and y are the horizontal variables and is the time variable It is convenient to use

non-dimensional variables in which lengths, velocities, time and temperature T are scaled respectively by

d, A/(dp,,c),d2p,,c/) and AT/R. Here R gKATdp,,c/(,) is the Rayleigh number, is the

coefficient of thermal expansion, g is acceleration due to gravity, K is the Darcy permeability coefficient,

po is a reference (constant) fluid density, c is the specific heat at constant pressure, ,k is the thermal

conductivity of the porous medium (fluid-solid mixture) and # is the kinematic viscosity. Then, with the

usual Boussinesq approximation that density variations are taken into account only in the buoyancy term,

the Darcy-Boussinesq-Oberbeck equations for momentum, continuity and heat in the limit of infinite

prandtl-Darcy number [8] are obtained, which are given in Riahi [3]. These are equations for 0

(dimensionless T), u (velocity vector) and P (modified deviation of pressure from its static value).
The governing equations are simplified by using the representation

u_ =f, 12 V x V x .z, (22)



FINITE BANDWIDTH, LONG WAVELENGTH CONVECTION WITH BOUNDARY IMPERFECTIONS 7 3

for the divergence free u_ [3] Here _z is a unit vector in the vertical direction. Taking the vertical

component of double curl of the momentum equation and using (2 2) in the heat equation yield the

following equations:

Ag_ (V2 + 0) 0, (2.3a)- 0- RA2 f-V0, (2.3b)

where A2 is the horizontal Laplacian These equations must then be solved subject to the boundary
conditions

1
=0 at z= +/-2,

O_O rlT[O 6Rh(x y)] at z
Oz

O0 1
Oz + rlT20=O at z= ,

(2 4a)

1

2’ (2 4b)

(2 4c)

where h(x, y) is a given spatially non-uniform function of x and y. The formulation of the boundary
conditions for 0 follows from those due to Kelly and Pal [9] and Riahi [1 for isothermal boundaries and

those due to Sparrow et al. [10], Busse and Riahi [2] and Riahi [3] for poorly conducting boundaries
’For further details regarding boundary condition alternative to (2.4b), the reader is referred to Riahi

1,11 ]. The parameter 72 given in (2 4b,c) is a Biot number, which is assumed to be small (7 << 1) in the

present paper. For problems treated in Riahi [1,11], 3’ oo. Additional parameter r/ introduced in

(2 4b,c) is related to the horizontal wave number for the classical linear problem (Busse and Riahi [2],
Riahi [3]) by the relation

c r/7, (2.5)

and its presence in (2.4b,c) is needed to cover the classical linear discrete modal results [3].

3. ANALYSIS
The case of near resonant wavelength excitation corresponds to the critical regime where R Rc

and, o() [,91. Here Re is the critical value of R below which there is no motion and E is the

amplitude of convection. We consider the following double series expansions for , O, and R in powers
of7 and 6

(3 1)

Because of the nature of the present thermal boundary conditions, it turns out that many of the

coefficients vanish and only systems to orders 61/3 "/61/3 7261/3 762/3 and 726 need to be analyzed in

order to determine the nonlinear properties of the system in the double limit of small 7 and small 6 [2,3
Upon inserting (3.1) into (2.3)-(2 4) and disregarding the quadratic terms, we find the linear problem
whose system is given in Riahi [3], and it is the classical linear system whose discrete modal solution was

determined by Riahi [3] up to and including order 72. In order to formulate the problem for a continuous

finite bandwidth of modes, we follow the method of approach due to Newell and Whitehead [4]
However, these authors formulated the problem with isothermal boundaries where they allowed an o(e)
band of modes in the x direction versus an o(e1/2) band of modes in the y direction centered around the
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critical two-dimensional mode in the form of rolls along the y-axis In the present problem, we need to

formulate the case for poorly conducting boundaries where the critical mode at the onset of convection,
based on the discrete modal analysis, is known to be three-dimensional mode in the form of square
cells [2,31. Hence, we need to allow an o(6a/a) band of modes in the z direction and an 0(61/3) band of
modes in the y direction centered around the critical three-dimensional mode in the form of squares
whose wave number vector is along the line y z in the horizontal plane. Thus, the general linear
solution of such finite bandwidth modes can be written as

N
,(0)
t +7b1) +0(72) fl(z) Wn(z,y)An(zs, y.,ts),

,:-N
(3.)N

0) +701) +0(72) gx(Z) W(z,)A.(zs,u,,t,),

where A, are functions ofthe slow variables formulated as

=2=’)’(5, =’76, L (5, (3 3)

the function W, has the representation

and satisfies the relation

W. exp(i.K, r_), (3.4a)

A2W, c2W,. (3 4b)

Here r_ is the horizontal position vector, x/c:’-, c is the horizontal wave number of the flow

structure, N is a positive integer, and the horizontal wave vectors .K, (Kx,K) of the flow
structure satisfy the properties

_K ._z o, I_KI- c, _K_ _K. (3 5)

The amplitude functions A, satisfy the condition

A A_, (3 6)

where the asterisk indicates the complex conjugate The expressions for fl (z) and gx (z) are given in

Riahi [3], and the details ofthe results for Ro and its minimum/ attained at c cc can also be found in

Riahi [3]. Here

Ro =- R(o) + 7R(o) + o(7) and cc r/,7’, where r/= and

2[ + s-/v,] + o(d)

In the order 76] equation (2.3b) yields

t9201)

where

02 2

(3.7)

The solvability condition for this equation is obtained by multiplying (3.7) with W,7 and averaging over

the whole layer Due to symmetric property ofthe layer and (2.4), this condition yields

I) o. (3 s)



FINITE BANDWIDTH, LONG WAVELENGTH CONVECTION WITH BOUNDARY IMPERFECTIONS 17 5

In order to determine the solution for (3 7), the boundary condition

1(1)/92 =0 at z= + (39a)

has been used for the horizontally averaged component of/91) because the horizontal mean of the

boundary temperature is given as an external parameter ofthe problem The remaining component of/91)
satisfied the boundary condition

0- =0 at z= -t-2, (39b)

where an over-bar in (3.9) denotes horizontal average [2] The system (3 7) and (3 9) then yield

N l,P=N N
9( D292(z) IArl AtAr,D2f2 (z, lp)WlWp + g3(z)E Ds,.,A,W,.,, (3 10a)

m=-N I,P=-N n=-N

where

lz, lz2 7 0 ( 0
g3(z) 5 + , D 0--’ Ds =_ 2i g-x + Kv $1 =- (K-I" K. ) /2

(3 Ob)

and the expressions for the functions f2 and #2 are given in Riahi [3]. In contrast to the discrete modal
analysis case [1], there is a need to determine the solution 1) for (2 3a) in the order 782/3. It is

I,P=N N N

1) E AtApf2(z,,p)WtWp + g2(z)E ]Aml2 + f3(z)E DsmAmWm,
I,P=-N rn=-N m=-N
t:-P

(3 10c)

where

f3(z) 6z6+ 4-z 53 z2 47
+ 3840"

In the order -8 equations (2.3)-(2 4) yield the following system for

(3 10d)

0/9(0 02/92)
Ot, Oz

(3 lla)

,1
(3 lb)

1
(3 11 c)

The function h given in (3.1 lb) actually is assumed to have the following arbitrary representation

N(b))

where

(3.12a)

W(b) exp(i_K). r.), (3.12b)

L are functions of x and y, N(b) is a positive integer which may tend to infinity, and the horizontal

wave number vectors Kb) /’rc() rc()’ for the boundary imperfections satisfy the properties\.......,w )

.K(d’) _z 0, _/’ft’) c’), _K’) _Kb). (3.13)

The function L, satisfy the condition
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L L_.

We shall assume that c(b) ac
Multiplying (3.1 la) by W,, averaging over the whole layer and using (31 lb,c) yields

(3 14)

where an angular bracket indicates an average over the fluid layer.
Using (3 15), doing some scalings on t, Lm and A, (for all possible m) and applying the conditions

given in Riahi [3] for the non-zero average product, we end up with the following simplified form for
(3 15)

s--1)- K,-x+K,"y A= -A. IA[2+ lain

N()

+ L(W)), (n= -N,-..,-1,1,..-,N). (316)
-N()

The above system is a collection of 2N paifl differemifl equations for the 2N uo nions

A(n= -N,..., 1,1,---,N)
To distinish the physicflly reliable solution (s) ong fll the study solutions of (316), the

stability of A(m=-N,...,-1,1,-..,N) th respe to disturbces B(x,y,t) are

investigated The system of equations for the time dependent dismrbces th addition of a time

dependence ofthe fo exp(at) e given by

=.(A.A=B + A.AB= + B.IAI)
N

+ (A.A=B + A.AB= + B.A[) O, (n N,..., 1,1,...,N), ( 17)

where B. satis conditions of the fo (3.6) for a " Tng complex conjugate of (3,17)
d replacing the subscript n by -n, it then c be seen er sgme remangement that B.
exp(at.) B:.exp(a’) wMeh implies that a is reM It is cle from (3.16)-(3 17) that the bound
imperfection ects the steady solutions directly as a sourcet in (3.16), wMle the imperfection affects

the disturbces indirectly tough the study solutions

4. SOLUTIONS
We consider the system (3.16) for the cases where

A. t(. + v.) + i.[cosh(. + V.)]-’ +, (a.a)
where

d U. d V. e the reM d ima#n pros of A., resptively Such assumption (4.1) is suested
by the emension of the simple one-dimensionM envelope solution due to Newell d tehead [4] in

their studies of fite bddth, fit plitud rolls convection in a layer th isotherm boundmes

The coefficients d b. given in (4.1a) e rl constts We e assung here that (4.1) is

suggested due to the follong fo ofthe bound imperfection netion L



FINITE BANDWIDTH, LONG WAVELENGTH CONVECTION WITH BOUNDARY IMPERFECTIONS 177

L, =gm tanh(z, + y’,) + ih,,[cosh(x, + yn)] -1 (4 2)

where gra and h,, are real constants. The justification for such assumption was confirmed by using (4 1)-
(4 2) into (3 16) which led to the following algebraic system.

N
-..2Pl)an an 2a2n "q’- (1 + emn) a2m grn(WW2)), (4 3a)

m=-N m=-N(b)

N
^2

m=-N -N()
(4 3b)

N
---22(1 0, (4 3c)

N
--.2

b’, 2(1 + a, -b’,) + (1 + ,’,’,)(b2m a) =0, (n= -N,-.., -1,1, ., N). (43d)

This is a system of 8N equations for 4(N + N(b)) unknown coefficients ara, bin, gm and hm. Generally,
’solution for N > N(b) is not possible, unless a b, 0 for rn > N(). Non-trivial solutions

(a, g: o, bra -7/: 0) are always possible for N < N() Of course we are assuming the cases of significant
boundary imperfections, so that the last terms in the right hand sides of (4 3a,b) are non-zero

It should be noted that one could, in general, consider any solution of the form A, F, (x,, y,) for

(3.16), for given functions F,,, where the functions L are to be so chosen to satisfy (3 16) However,
detailed investigation of stability of such solution requires a knowledge of particular forms of F,,
although, as we shall see later in this section, all such type of solutions can become stable for sufficiently

large [R’) and R’)< 0, provided the horizontal averages of functions involving the base flow and

disturbance quantities and/or their first or higher derivatives remain finite. The main reason for assuming

(4 1) is the rather unusual non-modal properties ofthe real parts U’, of such solutions Where U, is weak

namely at x, y, 0, V, is strong and vice versa For large Ix,], the solutions (3.2) for y’, o are of

scale 27r/a,: except that the sense of rotation of the corresponding pattern couplets due to is reversed

on the opposite sides ofthe xs 0 axis.

Next, we investigate stability ofthe solutions of the form (4.1) with respect to disturbances B’, of the

general form
B,., U,., + iV,,, (4 4)

where U’, and V,, are the real and imaginary parts of B,, respectively. Using (4.1) and (4.4) and (3 17)
lead us the following systems for U, and V,,:

a-R) +32",+V, --xn +--yn V’,+2U’,VnV,.,+ (1-t-2’,) (4.5a)

2-,VraUra + 2V,V,Vra + + Vm ,, 0, (n N,..., 1,1,...,N). (4.5b)

Multiply (4.5a) by U’,, (4.5b) by V,, add the two resulting systems of equations and average over the

slow variables. The resulting system has the property that a <0 for sufficiently large
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/I) < 0, provided the horizontal averages which involve n, , n, n and their first or higher order
derivatives remain finite This result holds for general base flow solutions which include those considered

in (4 1), provided that the boundary imperfections are significant so that the last terms in the fight hand
sides of (4 3a,b) are non-zero. For the cases of insignificant boundary imperfections, where none of the

wave vectors _Kn are along any of the wave vectors _K/, then the last terms in the fight hand sides of

(4.3a,b) vanish It is then not difficult to show from (4.3)-(4 5) that the base flow solutions with kinks, a, tanh(x, + /,) and , 0 for all n, are unstable and pl) 2 and a 1 follow For the

cases of significant boundary imperfections, such solutions can be stable as the following examples
indicate

Let us consider now the following specific examples for significant boundary imperfections cases in

order to illustrate the inter-relations between the boundary imperfections and the resulting preferred flow

patterns and to demonstrate specific conditions on pl) under which absolute stability of different

solutions with kinds are possible.

EXAMPLE N() 1. Consider the case N 1 first. Suppose g 0 and hi # 0 Then (4 3)
implies that both a, and b, are non-zero and pl) 2(1 + h). Assume that the disturbance quantities

U and V, in general, are functions of slow variables. Multiply (4.5a) (for n 1) by U, (4 5b) (for
n 1) by V1, add the two resulting systems and average over the slow variables The resulting system

then yield the result that no stable solution is possible for sufficiently large h, while stable solution may
be possible for sufficiently small h though such possibility cannot be proved rigorously It is implied
from these results that smaller P) cases are favored over larger pl) cases. Suppose now that g :/: 0
and h 0. Then (4.3)implies that non-zero value for b is possible for pl) > 1 since R1) 2a 1

and a > 1, while P) can be small for bl o. For bl o, we find

12 1, Vt1) 2 .ql/l, 2-1 al. (4 6)

Hence, z I is preferred for 9 < 0, while I is preferred for 1 > 0 Forming again the

integral system for the averaged amplitude of the disturbances, we find that b 0 solution for (4.5) is

stable for P < 1. Apply the same method of approach as the one described above for the 1 0

and h 0 case, we find

a =l+b], P]) =2a-gt/a], bz =ah/(gt-at), a_ -at, b_t -bt, (4.7)

so  on ,y I l’l < 0. ,oo 

preferred for 91 < 0, while the opposite is true for al > 0. As can be seen from (4.6)-(4.7), the solution

for the case g :# 0 and/zz 0 is preferred over the one for non-zero gl and h since it leads to smaller

P) for given gz and h.
We now consider the case of arbitrary N > 1 for the particular values of gl and hz where (4.6)

holds for N 1, that is gz 0 and/z 0. Using (4.3a) for n 1, it follows that al : 0 since g 0

The equations (4.3a,c) then yield

P) 2 g--L + 2b + E (1 + b,,)b,,, al :/: 0. (4.8)

Comparing (4.8) to (4.6), it follows that the solution for N 1 is preferred over the one for N > I if at

least one b 0 for one particular value of n (n 1,-.., N) since pl) for N 1 is less than the one

for N > 1 in such situation. If all the coefficients b, for n 1,-.., N are zero, then (4.3) implies that

such case is possible only if all the coefficients a for n 2,---, N are zero. But, this result then implies

that no non-trivial solution for N > 1 case can be preferred. The results discussed above thus indicate

that the preferred horizontal platform function H(x,V;x,$t), for either b or 0, for the case, where the

boundary imperfection function h(x, Zt; x, lit) is ofthe form
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(4 9a)

is the following function

H WnAn 2al tanh(xl + Yl)cos(.K1" r’_), a 1, (4 9b)
n=-a

where the wave vector _K is along the wave vector _Kb) and cb) a ac. It is seen from (4 9) that

the preferred horizontal structure of the solutions for N(b) 1 case is a copy of the boundary
imperfection shape. It is a long wavelength pattern composed of a modal roll with periodicity over the
fast variables (z, y) and a non-modal amplitude which varies over the slow variables (z 1, Yl) and exhibits
kinks locally in the horizontal plane. The function H can exhibit unusual behavior due to the function

tanh(zx + Yl). For example, the sign of this function for (z + Vx) oo is opposite to that for

(z + y) -c, and tanh(z + x) 5:0 as (z + y) 5:0 Thus, in the local regions where

(Zl + 1) is close to zero, H can be 180 degrees out of phase from one location to another one within

such local regions.

EXAMPLE 2 N1) ---2. For significant imperfection case, we assume _K1 .Kb) and

.K _Kb) Consider first N 1. Using (4.3), we find the results (4 6)-(4.7) and, thus, the results of

,the type for N() I case (example 1) follow, so that two solutions satisfying (4 6) one for which (4.9)
holds and another one for which (4 9) with _K and .K) replaced respectively by .K and .Kb) holds
Following the results for N 1, we consider the case 9, 0 and h, 0 for arbitrary

N(m 1, 2, ., N). For the case where N 2, (4.3) yield the following results for the solutions

corresponding to the smallest/)

%,= 2+9, 5r=O, -m=--a, b_,=-b, rn=l,2 (410a)

Pt1) 2 gl/a 2 g2/a,’2. (4 lOb)

These results imply that there is no solution, unless

g g. (4 11)

We shall assume that the given constants gl and g satisfy (4.11). Here b21 is the cosine of the angle
between the wave vectors _K/and _K). It is seen from (4.10) that the negative root for a is preferred
for g, < 0, while the positive root for a is preferred for g,,, > o (m 1, :) Using (4.6) and (4.10),
we find that the solution for N 2 corresponds to smaller value of/1, for any value of, than the

one for N 1 case Applying the same stability analysis as the one described in example 1, we find the

solu-tion (4.10) is stable for/1) < 1. For the case/g 1, we found that the solution (4.6) is stable

for P) < -1. Of course, these stability conditions were determined based on upper bounding type

approach, and it is possible that the solutions for N 1 and N 2 still remain stable if/l is bigger
than -1 and -2, respectively. For the case where N > 2 and for significant boundary imperfection
where _/’f, .Kl(n 1,2), we find from (4.3) that no such solution can exist which admits value of

PI smaller than those for N 1 and N 2 since a b, o(n 3, .-., N) follow. The results

discussed above indicate that the preferred solution corresponds to N 2 case if (4.11) holds and to

N 1 case if (4.11) does not hold. In the later case the results (4.9) follow, while in the former case we

have

gl g,h (6r/)- [gl tanh(z + yl)cos(_Kb). .r) + g2 tanh(x + y)cos(.K1- r)], (4.12a), o : +e [,tar(: + Ul)eOS(_. ,’.) + o tanl,(: + u)eos(., t)],
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where _K _K(nb) (n-- 1, 2). Again, the same results as in the case N(b) 1 presented in example
follow The preferred horizontal structure of the solutions is a copy of the total imperfection shape (case
where (4 I) holds) or copy of a subset ofthe imperfection shape (case where (4 I) does not hold) The

long wavelength pattern exhibited by (4 12) is composed of a modal rectangular pattern with periodicity

over the fast variables and with non-modal amplitudes, which vary over the slow variables and exhibit

’kinks’ locally
The two examples presented above indicate a general theory for arbitrary N) and for the case

where the wave vectors of the flow pattern coincide with a subset of the wave vectors of the boundary

imperfection. Such a theory, to be discussed below, is consistent with the results for Nb/ 1,2

presented in the above two examples. For significant boundary imperfection, _K., _K (for
N()) wem 1, .., N()), and for h, o (m 1, N()) and given real constants g, (i 1, -,

have without loss of generality, the following relation

g g,, ,..., (/, (4 3)

where 1 <_ M(/ _< N() If (4 13) holds for M(b) N(), then the preferred horizontal structure of the

solutions is of the same spatial form as that of the total imperfection shape function. It is composed of a

multi-modal (N N() pattern with spatial variations over the fast variables (x, y) and with non-modal

amplitudes, which vary over the slow variables (x,.,, ,) (n 1,..., N). If(4.13) holds for M() < N(’,
then the preferred horizontal structure of the solutions is of the same spatial form as that of a subset of

the imperfection shape function. It is composed of a multi-modal (N M(bl) pattern with spatial

variations over the fast variables (x,l) and with non-modal amplitudes which vary over the slow

,-- M(/) Such solutions can exhibit kinks in spatial locations wherevariables (x,,y,) (n 1 .,
(x, + ,)- o (n 1, ...,M()) These kinks are in certain vertical planes which are parallel to

significant wave vectors of the boundary imperfections The preferred solutions are stable for sufficiently

large [R)[ andP1)

5. DISCUSSION
Due to the fact that the present investigation is based on the assumption that the amplitude of

convection is of order 6 and 6 << 1, the present results do not change qualitatively from those for the

problem where the lower boundary’s location is at z + 6h(x, $1). This conclusion actually proved

by Riahi [11] for the discrete-modal case and appears to be followed here, as well. The boundary

corrugated problem, whose location is described above, can incorporate the, effects ofroughness elements

of arbitrary shape h, provided N() may tend to infinity for arbitrary functions L, and that a may not

all have the same value as a. The discussion and results presented in Riahi 11 indicate that the case

with a > 2a is expected to lead to zero contribution on various flow features and, thus, is irrelevant

for the present problem. However, the case with a < 2a is expected to be relevant for the non-

resonant wavelength excitation system which is presently under investigation by the present author, and

the results will be reportexi in the near future.

An important demonstration carried out from the present investigation is that the convective flow

can be admitted, by the boundary imperfections, certain solutions which exhibit kinks in certain vertical

planes within the fluid layer. Each of these vertical planes is parallel to one active wave vector of the

boundary imperfections. Here by an active wave vector, we mean one which coincides with one wave

vector of the preferred flow solution. All such vertical planes intersect each other at oz-as Thus along

oz-arAs there are multiple kinks in the solutions. It is possible to increase the complexity in the solutions

by replacing the argument (x,, + /,,) in (4.1a) and (4.2) with the expression (x,, + /,, + c), where

are some arbitrary chosen real constants. With such new forms of the arguments (for rz 1,..., N) we

find the same types of results as before, except that the preferred solutions now exhibit kinks in different
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vertical planes, parallel to the active wave vectors, and these planes can intersect each other at vertical

axes Along these vertical axis solutions can exhibit multiple kinks of various degrees S, where S
indicates the number of planes that intersect each other at one vertical axis

The results presented in this paper regarding the preferred solutions, their stability and the roles

played by the boundary imperfections indicate that the constants 9,, representing the maximum amplitude

of the imperfection components, control the stability of the solution, that is sufficiently high values of 19,
lead to stability The imperfection wave vectors K control the directions of the wave number vectors

of the flow solutions. The spatial forms of the amplitude functions L,, for the boundary imperfection

lead to unusual behavior of the solutions with kinks. The importance of problems ofthe type considered

here, thus, should not be underestimated In addition, to demonstrate existence and preference of new

and unusual types of solutions, we provided a way to control instabilities and the flow structures which

can be of significance in flow control applications.
The problem studied here deals with poorly conducting boundaries. This problem, as we have shown

in this paper, admits slow horizontal variables :rs and /s of orders "/6 due to the fact that for R just

beyond Pc, in the absence of imperfections, three-dimensional solutions in the form of squares are

preferred [2,3] The resulting amplitude system is then a system of non-linear partial differential

equations where each equation is second order in derivative with respect to either a: or /s. Another

equally important problem is one for the case of high conducting boundaries. This problem, as Newell

and Nhitehead [4] demonstrated, has the property that it admits slow horizontal variables a: and /s of

orders 6 and 6, respectively, and :rs dependence is more important than ]/s dependence. This property

is due to the fact that for R just beyond Re, in the absence of imperfections, two-dimensional rolls are

preferred [3,4], where it is assumed that :r-axis is along these rolls The resulting amplitude system will

then be a system of nonlinear partial differential equations where each equation is second order in

derivative with respect to z, and fourth order in derivative with respect to /s Although the results for

such a system will be reported elsewhere, it is of interest to note here that such a system can admit non-

modal solutions with kinks, different from those discussed in the present paper, and the resulting

preferred patterns will be affected accordingly.
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