
Internat. J. Math. & Math. Sci.
VOL. 21 NO. (1998) 107-116

107

INTEGERS REPRESENTABLE BY (x + , + z)31 x,z

SHARON A. BRUEGGEMAN

Department of Mathematics
University of Illinois
1409 W. Green Street
Urbana, IL 61801

(Received February 21, 1996)

ABSTRACT. In [1], A. Bremner and R. K. Guy discuss the problem of findin8 integers which may
be represented by (z + /+ z)/z/z where z, y, z are integers. To this end, they present tables of
solutions for integers n in the ranse -200 < n <_ 200 and offer severs/parametric solutions which
involve both positive and negative integers. We present four infinite families of solutions which
involve only positive intesers. Purthermore, these families contain sequences that are 8enerated
by linearly recursive relations.

AMS SUBJECT CLASSIFICATION CODE. 11D85.

1. INTRODUCTION

We make the following definitions.

.(-.,.) (" +" + )’ CA) =a ,(,,,) (" + + )’ ()
zyz zyz

where z, y, z are positive integers.

"vVe say that an integer n is representable by v2 (reap. vs) if there exists a triple of integers

(z,y,z) such that v2(z,y,z) , (reap. (z,/,z) n). On the other hand, we say that

triple of integers (z,y,z) is s solution to (A) (reap. (B)) H there sts integer n su that

r(z,,z) n (resp. r,(z,,z) n). Note that esch solution to (A) is o s solution to (B).
In 1993, R. K. Guy [2] proposed the problem of fining tegers n representable by

The foong ye [3], he sub,tied the problem of fining integers n representable by .
We attk the foyer problem om the opposite rection to find tples of teserswe

solutions to (B). To do ts we find tp]es of positive inteserswe solutions to (A
ft them to (B).

The solutions to (A) e found by constructing trs of tples der gebrc re. Then

we show that we have found such trs. So we have actuy found positive solutions

to (A). Then the fting producestymy solutions to (B). Morver, we show that the

gebrc res used to construct the trees e nely recursive. Hence we set recursive sequences

of integers n representable by .
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2. CONSTRUCTION OF THE SOLUTION TREES

First we demonstrate that there is no loss of generality in assuming that z, y, and z have no

common nontrivial factor.

Proposition 2.1. If (z,y,z) is a solution to (A), then there are only finitely many positive inte-

gers k such that (kz, ky, kz) is a solution to (A). These k are precisely the divisors of vz(z,y,z).

kkykz k" zyz "
Now we may assume that z, y, and z have no common nontrivial factor. This is equivalent to

z, y, and z being pairwise relatively prime because if a prime number p divides any two of z, y,

or z and vz(z, yrz) is an integer then p divides the third.

Next we need to find an efl’ective way of identifying triples which are solutions to (A) by using

only properties of z, y, z. In fact, three symmetric divisibility conditions axe sufficient.

Proposition 2.2. Suppose z,y, z are pairwise relatively prime. Then z divides (y+ z)2, y divides

(z + z), and z divides (z + y)2, if and only if, (z,y,z) is a solution to (A).

Proof. Since z, y,z axe pairwise rdatively prime, it suffices to cheek that z, y, and z divide the

numerator of v(z, y, z).

(z + y + z) (y + z) 0 (modulo z)

(z + y + z) (z + z) _= 0 (modulo y)

(z + y + z) _= (z + y) _= 0 (modulo z)

The converse is cleax.

By the converse to Proposition 2.2, finding all triples with this property, will yield all the

solutions to (A). Now suppose we axe given one triple that is a solution to (A). We want to find

other solutions using the given one.

Proposition 2.3. Suppose (z,y,z) is a pairise relatively prime solution to (A). Then

(a, y, z) where a

(z, b, z) where b

(z, y, c) where c

( + z)

are also pairwise relatively prime solutions to (A).

Furthermore, v2(=, !, z) v2(a, !, z) v2(z, b, z) v2(z, !, c).

/’roof. By Proposition 2.2, a, b, and c e integers. The new triples re pirwie relati..’ely prime

ince the two ftxed entrie tin h,ve no common rtor. By symmetry it ,mces to prove the lt

t,tement for the (,,,z) ca,e.



INTEGERS REPRESENTABLE BY (z + y + z)S/zyz 109

We denote the three transformations of triples in Proposition 2.3 as follows:

We say that two triples belong to the same family if there is a sequence of b which takes one

triple to a permutation of the other. Next we define a partial order on triples in the same family.

Since any two consecutive (under bi) triples share two entries, we may define an ordering on

triples in the following way. We say that (z,y,w) _< (z,y,z) if w _< z. The complete ordering

follows by transitivity. If (u,v,w) _< (z,y,z), we call (u,v,v) a predecessor of (z,y,z), and we

ca]] (z, 9, z) a successor of (u, v, u).
We will want to iterate these three transformations to generate more triples in the family of

solutions. First we see how a single transformation works in the context of the partial order.

Proposition 2.4. Suppose z,y,z,a, b, c satisfi./ Proposition t.3 and z <_ y <_ z, then y <_ z <_ a

and z <_ z <_ b. That i,, the triple (a,y,z) and (z, b,z) are greater than the original triple

(z,y,z). We have no information about the ordering with c.

Proof. This is clear from the definitions of a and b.

By iterating these transformations, we obtain a tree-like family of solutions to (A), since each

triple yields two succeeding triples. See Figure 2.1. We say that an ordered triple (z, y, z) is the

root of a family if it does not have a predecessor; that is, c >_ z.

Proposition 2.5. Each family/ of ordered triple forms a tree relative to the partial order on

triple.

Proof. Note that the construction above allows for at most one predecessor for any ordered triple

(z, 9, z), namely (z, y, c). Hence each triple has one unique root. There are no cycles for the same

reason. [

Next we consider the ordering of c (z + 9)2/z where z _< 9 -< z. There are three possible

situations.

c > z if and only if z + y > z if and only if (z, y, z) (1,1,1).
c z if and only if z + y z if and only if (z,y,z) (1,1,2),(1,2,3), or (1,4,5).
c < z if and only if z + y < z otherwise, that is, the triple (z,y,z) is not a root.

It remains to show that there are only four possible roots where the entries are pairwise relatively

prime.

Proposition 2.6. There are precisely four root triples (z,9, z) where z <_ 9 <_ z and z,y,z are

pairie relatively prime. They are: (1,1,1), (1,1,2), (1,2,3), and (1,4,5).

Proof. It suffices to find all z, y, z such that z + 9 _> z and v2(z, 9, z) is an integer. Suppose that

(a, b, b + d) is a solution to (A) where 0 _< d _< a _< b. We divide the proof into three steps.

Step 1. If d 0 or d a, then we obtain all four ordered root triples. Therefore we may assume

that0<d<a.
Step 2. Determine which pairs (a,b) yield v2(a,b,b + d) < 1 for all d. There can be no roots for

these pairs (a,b) since v(a,b,b + d) is not an integer.

Step 3. Eliminate all other (a, b, b + d) either by computer test or algebraic methods.
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(841, 25, 4)

(1,1,1)

(1,1,4)

(I, 25, 4)

(I, 25, 169)

(1,1,2)

(1,9,2)

(121,9,2)

(121, 1681, 2) (121, 9, 8450) (348 I, 9, 5O)

(1,9,50)

(1,289,50)

(1,2,3)

(25, 2, 3) (I, 8, 3)

(25,392, 3) (25.2,243) (121.8.3) (1,8,27)

(1,4,5)

(81,4,5) (1,9,5)

(81, 1849, 5) (81, 4, 1445) (196, 9, 5) (I, 9, 20)

Figure 2.1. The first generations of the four families of solutions to (A).
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(Step 1): Set d 0. Then (a,b,b 4- d) (a,b,b). By the relatively prime condition, b 1. Since

a < b, a 1 also. Note v(1,1,1) 9.

Set d a. Then

v(a,b,b + d) v(a,b,b + a) (a + b + b + a) 4(a+b) 4(a+b). b. (b + ) b( + b) b

Since (a,b) 1, (a,a+b) (b, a4-b) 1. Hence ab divides 2. By the relatively prime condition,
there are three possibilities:

a 1 b 1 v:(1,1,2) 8,
a-- 1 b 2 v(1,2,3) --6,
a 1 b 4 v(1,4,5) 5.

(Step 2): Now consider 0 < d < a. Note a 1 so a < b.

(, b, b + d) ( + b + b + d) ( + b + b + )
b (b+a)

< a.b.(b/O)
4(a 4- b) 4a 8 4

ab - + - + -,
We solve the inequality, 4 4

D- + + < 1, for a, b positive integers. The fonowing table lists values

of a and b that do not yield integer-valued vs.

a-5 b > 43 a-- 11 b > 17

a-6 b > 27 a: 12 b > 17

a- 7 b > 22 a-- 13 b > 17

a-8 b>20 a=14 b17

a--9 b > 19 a-- 15 b > 17

a 10 b > 18 a > 16

(Step 3): Now that we have eliminated the cases in Step 2, it suffices to show that none of the

remaining cases yield roots.

Consider the above table. A finite computer check, with a varying from 5 to 15 and b varying

from a + 1 to 42, determines that there are no roots with a 4. The algorithm is simple. If

(a,b, c) solved (A), then c would divide (a + b) by Proposition 2.2. So, for each pair (a,b), it

suffices to test v(a, b, c) for each divisor c of (a + b). But each such v(a, b, c) is not an integer.

It remains to show that there are no triples which are solutions to (A) with the property that

a 1,2, 3, 4 and 0 < d < a < b. We have the following cases:

a 1, no d are possible.

a=2, d=l:
(2 4- b 4- b 4- 1) (2b 4- 3)

2b(b + 1) 2b(b + 1

a=3, d=l"
(3 4- b 4- b 4- 1) 4(b 4- 2)

3b(b 4- 1) 3b(b 4- 1

a 3, d 2:

(3 + b + b + 2) (2b + 5)
3b(b 4- 2) 3b(b + 2)

is not an integer since 2 does not divide 2b + 3.

is not an integer since (b + 1, b + 2) 1 and b + 1 > 4.

is not an integer since b + 2 does not divide (2(b + 2) + 1).
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a=4,d=l:
( + b + b + a)’ (2b + )’

4b(b + 1 45(b + 1

a 4, d 2:

(4+b+b+2)
4b(b + 2)

is not an integer since 2 does not divide 2b + 5.

(b + 3)
b(b +’) is not an integer since b + 2 does not divide (b + 3)2.

a 4, d 3:

(4 + b + b + 3)2 (2b + 7)2
4b(b + 3) 4b(b + 3)

is not an integer since 2 does not divide 2b + 7.

This completes the proof of Proposition 2.6. D

Finally we remove the relatively prime condition. We get 8 possible vaJues for v2 and 13 trees

of solutions. This result is a subcase of a problem [2] in the Amer. Math. Monthly. I state it

here for completeness.

Proposition 2.7. The positive integers 1,2,3, 4,5, 6, 8, and 9 are the only positive integers that

are representable as

(z + y + z) where z, y, z are positive integers.
zyz

Proof. We have already seen that each triple (z,y,z) in tree (1,1,1) yields v2(z,y,z) 9. The

other trees yield v2(z,y,z) 8, 6, and 5 respectively. Then the appropriate multiples of the

above trees yield v2(z,y,z) 1, 2, 3, and 4. See Proposition 2.1. [

For example, the tree with root (1,2, 3) may be multiplied by 1,2,3 or 6.

v2 (1, 2, 3) 6; v2(2, 4, 6) 3; v2(3, 6, 9) 2; v2(6,12,18)--1.

3. LIFTING FROM (A) TO (B)

As stated eaxlier, each solution to (A)is also a solution to (B). But since v(z,y,z)
(z + y + z). v2(z,y,z) the function value statements need to be altered. So we repeat the

previous propositions with appropriate changes.

Proposition 3.1. I[ (z,y,z) is a solution to (B), then vs(kz, ky, kz) vs(z,y,z) .for each

integer k. Hence we may assume that z, y, z are pairwie relatively prime.

,,,(,,) ( +u + z)’ ( + u + ) ,,,(,,).
kzkykz k zyz

Proposition 3.2. Suppose z, y, z are pairwise relatively prime. If z divides (y + z)2, !t divides

(z + z)2, and z divides (z + y)2, then (z,y,z) is a solution to (B).

Note that the converse to Proposition 3.2 is not true since we are only checking the squares,

not the cubes.
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Proposition 3.3. If (z,y,z) is a pairwise relatively prime solution to (A) and (B), then

(a, 1, z) where

(z,b,z) where b

(z, y, c) where c

( + z)
Z

(z + z)
are pairwise relatively prime solutions to (A} and

Furthermore,

vta, + z = + z
C,,z), (,b,z) (,,z),

(,-:,’ )’++z ((+ +C+)) +v(a,,z) (’+’)’z ( + z)=z =

vs(z,b,z) and vs(z,!/,c) follow similarly.

We denote the three transformations of triples in Proposition 3.2 as follows:

Proposition 3.4. Suppose z,y,z,a,b,c satisfy Proposition 3.3 and z < y < z, then y < z < a

and z < z < b. That is, the triples (a,y,z) and (z,b,z) are greater than the original triple

(z,y,z). We have no information about the ordering with c.

Note that, in this situation, the partial order has a double meaning. Consider the above relation

that (z,y,z) < (a,l,z). Since z < y _< z, we also have that > 1. So that vs(z y,z) <
vs(a,y,z). Hence we may regard the partial order as being defined by either the differing entry

or by the resulting values of vs.

Proposition 3.5. Each family of ordered triples forms a tree relative to the partial order on

triples.

Proposition 3.6. There are precisely our root triples (z,y,z) where : <_ y <_ z and z,y,z are

pairwise relativel!/ prime. They are: (1,1,1), (1,1,2), (1,2,3), and (1,4,5).

Now we have four infinite two-leaf trees of solutions to (B). We can list these special families

up to any finite point. But we do not have an effective algorithm to determine if a given positive

integer occurs in the vs values of these families. These trees however do give us infinite sequences

of integers representable by vs based on linearly recursive relations.
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4. INFINITE SEQUENCES

We construct these sequences as follows. Take any triple in a tree and write it in the form

(a, bz0,cy0) where b and c axe squaxefree. Applying the maps b2 and bs following Proposi-

tion 3.3 in alternating fashion, we obtain a sequence of triples of the form (a, bz0, cy0), (a, bz], cy0),
(a, bz, cy),... where

( + c)

(+ )bzn+l

or bznzn+l a + qt

or Cyny,+l a + bz+l.
The forms bz, and c1/ axe okay since b and c are squaxefree.
We seek a simplified value formula for vs in terms of z, aaxd I/-. Define

( + b0 + 0).

Proposition 4.1. Uain9 the notation above,

(,b,) i-
aa a,+:,) +un.

P[. By detion of A,, ) + +)

Apply Proposition 3.3.

A c1/o A A
(,b 0) T00

+ +
zy0 by (1)

bz 0" bzo
A bz] A bz] A

,d ,(,b. ) 0.
+ +z. o zy by (2).

(1)

(2)

(3)

(4)

The proposition follows by induction on the subscripts. F1

Finally we determine the lineaxly recursive relation on z," and 1/,,. First we need a 1emma.

Rearrange (3) and (4) as fallows:

a + bz + cy Azny," (3’)
a + bz,+ + cy. Az,+11/,. (4’)

Lemma 4.2. Udng the notation above,

(n+ + .) (A/)+
and

()

(6)

Prooi. Consider equations (3’) and (4’). To show (5), first subtract a + bxn+ .+. C1/n AXn+lYn
from a + bz+ + c1/,’+1 Az,’+l 1/,’+. Then remove the factor 1/.+1 1/. and square, yielding

c2(1/,+1 + 1/,’)2 A z,+1. Similaxly, to show (6), subtract a + bz+
from a + bz,+2 + cy+ Azn+11/n+a. Then remove the factor zn+a Zn+l and square, yielding

b (z.+ + z.+ ) A U.+.
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Proposition 4.3. Usitql the notation above,

z.+2 (A2/bc- 2)z.+i z.

and Yn+ (A/bc- 2)yn+1 Y.

where A/bc-2 is an integer.

(7)

(8)

Pro@ First note X2/be a. v2(a, bzo,Cl) is an integer. Consider bz,,+lz,,+2 a +
By adding 0 a- a + 2bz+ 2 cy cj, we2bz,,+1 + find that

2(a cy 2bz,+z (a 4- c).bz,+az,+2 c+1 + + bz+a) +

By (2) and (1), we find that

Now by (5), it is easy to see that

z.+ (Albc)z.+ 2z+i z. (A2lbc- 2)=,,+, =,,.

A similar argument works for y,+ (A/bc 2)y,+ y,. Consider cg,+ay,+ a + bz,+.

Add 0 a a+ bz=+ bz.+ Apply (6) instead of (5).2CYn+l 2Cyn+l +

Since these sequences are linearly recursive, it is easy to find formulas in terms of n to satisfy

each sequence. Note also that the order of the entries is irrelevant as long as we do not start the

recursion by replacing the largest one. So we get 4 increasing sequences starting from a triple

(a,b,c) with a _< b _< c. They are achieved as follows: (1) Fix c and start by replacing a. Think

(c,a,b). (2) Fix c and start by replacing b. Think (c,b,a). (3) FIX b and start by replacing a.

Think (b,a,c). (4) Fix a and start by replacing b. Think (a,b,c). Note that sequences (2) and

(4) agree at the second triple as do sequences (1) and (3) although they all differ after that. If we

traverse by replacing the largest entry first, the sequence decreases initially until it reaches the

"oldest ancestor" containing the fixed entry and then it increases. If that ancestor is the root,
the sequence will turn around at the root and will give no new values as it will eventually repeat

one of the increasing sequences above.
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