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ABSTRACT. In order to have a topological category that contains both pMET and Unif in a

nice wy (and therefore combines quantitative and uniform concepts), approach uniformities are

introduced. Approach uniformities uniformize the so-called approach spaces, introduced in Lowen
[8]. Different characterizations of approach uniformities are formulated. Some natural examples
are presented, such as function spaces, hyperspaces, spaces of measures, and an example concern-

ing theoretical computer science.
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1 INTRODUCTION

Different results concerning completeness in the category AP (see Lowen [9]), imply that the

theory is loc For instance, the space of continuous functions between metric spaces, equipped

with the pointwise distance, turns out to be complete.

Also, AP seems not to be the right context for the quantification of uniform properties, such
as completeness and total boundedness.

Therefore, it is natural to seek a new category that combines the quantitative aspects of AP
(or p]VIET) and uniform concepts.

that an approach space is a set X equipped with a distance , i.e. a map

s: x [0, oo]: (, A). S(., A)

satisfying the following conditions:

(m) w x: (, {)) 0

(D2) Vx 6 X 5(z, ) oo

(D3) Vx X, VA, B C X: 6(x,A U B) min{5(x,A),6(x,B)}

(D4) Vx X, VA c X, Ve [0,o] $(x,A) _< i(x,A()) + e
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This description of approar spaces is intuitively the most appealing: the value 6(, A) is

interpreted as a distance from the point m to the set A.

For the sake of uniformizing the concept of approach spaces, let us consider the following

equivalent characterizations.

A collection of ideals (A(x))ex in [0, oo]x is caed an approach system on X iff for all x X

the following conditions are satisfied:

The value o(y) of a so-called local distance o 4(x) in a point y X, is interpreted as the

distance from x to y according to o.
A family of functions (t" 2x 2x)eR+ of pretopological closure operators is called a tower

on X iff the following conditions are satisfied:

(T1) VA 2x, Ve, "r R+ t,(t-(A)) c t,+(A)

(T2) VA 2x, Ve R+: re(A) t(A).

An approach space (X, 6) if called a uniform approach space if there exists a collection of

ocp-metrics D such that Vx X, VA c X- 6(x, A) sup :emf d(x, a).
dED

A function f (X, 6) (Y, r/) is called a contract/on iff } o (f x ]) _< 6. The topological

category of approach spaces together with contractions is denoted by AP. Its full subcategory of

uniform approach spaces is denoted by UAP.

2 APPROACH UNIFORMITIES

2.1 ITNIFORM APPROACH SYSTEMS AND TOWERS

In this section, we shall give two descriptions of what an approach uniformity might look like: the

uni]orm approach system (a uniformization of approach systems) and the uniform tower (the uni-

form counterpart of approach towem). Then we shall prove that there is a one-one correspondence

between both kind of structures. The reader may skip the proofs in this section.

If 7 [0, oo]xxx, then define for all x,y X (x,y) := 7(y,x).
DEI1NITION 2.1. Let X be a set. A uniform approach system on X is an ideal F C

[0,oo]xx such that

(AU1) W/ r, vx x 7(x, ) 0

(AU2) V [0, oo]xx. (Ve > 0, VN < ov "7 r ,.t. ^ g _< 7 + e) = r

(AU3) V7 F, VN < oo, 7N r s.t. Vx, y, z x: 7(x, z) A Y <_ N(x, y) + ,yN(y, Z)

(AU4) V7 r- r.
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An ideal r C [0, oo]xxx satisfying (AU1), (AU2) and (AU3) shall be caed an approach

quasi--uniformit.

If U C X x X then U- := {(y,z) (z,y) U} and Ax := {(z,z) z X}.
DEFINITION 2.2. Let X be a set. A unifom tower on X is a family of filters

on X x X, such that

(UT1) Vs R+, VU /,/e :Ax C U

(UT2) Vs R+, VU t& U-
(uT4) vs R+ :U, Uo>,t.

Thus, a uniform tower is a stack of semi-uniform satisfying (UT3) and (UT4). Also

notice that by (UT3), b/0 is a uniformity.

A family of filters (/), R+ on X X satisfying (UT1), (UT3) and (UT4) shall be cadled

a quasi--uniform tower.

In the sequel we shall show that there exists a one-one correspondence between uniform

approach systems and uniform towers. A set X, equipped with one of these structures will be

called an apIxroach uniform spaee Analogously, a set X equipped with a quasi-uniform approach
system or a quasi-uniform tower, will be called an approach quasi--niform space.

But firstly we shall investigate what is the relationship between approach uniformities and or-

dinary approach spaces. Next proposition shows that an approada uniformity induces an approada

PROPOSITION 2.3. Let F be a quasi--uniform approach system on a set X. Then the

famit (A(z)Lx, where

() {7(,-)I e r)

is an ap system on X.
PROOF. We shall show (A2) and (A3).

(A2) Let o [0, oc]x be such that Ve > 0, VN < oo, :19 ,4(z) o ^ N < o + . Then for

ea e > 0 and N < o there is some 7 r such that o 3rv (z,-). Define- x x [0, oo]- { (’ ) ()
(z,y),-.O if z #x.

For all e > 0 and N < oowehaveVyq. X"

(x,y) Ag o(y) AY

< ,() +
(,) +

and for all z z and y e X by definition

(, ) ^ < %(,) + s.

By (AU2), , r. Thus f(x,-) .A(x).
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(A3) Let o ,4(x), let > 0 and N < . Choose r such that o -(x,-) and choose

such that

Vx, y, z X /(x, y) A N < "N(x, z) + 7N (z, y).

Define for each z X the function oz 7N(z,-). Then we have Vy, z X

o(y) AN 7(x,y) AN

< #(x,z) +#(z,)
() + ().

If (b/)el+ is a quasi-uaifom tower, then each semi-quasi-uniformity/g induces a pre-

topological closure operator t, yielding a tower (t)R+. It is shown later in the text that, if

(/g)l+ and F describe the same approach uniformity, then the tower (t)a+ and the approach

system in the previous proposition define the same approach structure, which will be denoted by

A(r).
Before we can move on to the proof of the equivalence of (quasi-)uniform towers and (quasi-

)unifom approa systems, we require some information about the basis of a (quasi-)uniform
approach system. We start with the following proposition.

PROPOSITION 2.4. Ilr : [0, oo]xxx s an ideal, then the .following are equivent.

(AU2) V7 F, VN < oo,f r s.t. vx, y, z x. 7(x, z) ^ N < 7N(x, y) + 7
N(y, z)

(AU2’) V/ r, VN < oo, Ve > 0, e r s.t. vx, y,z e X’/(x,z)AN < /(x,y)+?(y,z)+e.

PROOF. We only need to show that (AU2’) (AU2). To that end, let / r and N <
For ea n No, choose 7 r such that

Define ,.N by

Vx, y, z X" (x, z) A N _< "),ff (x, y) +"(y, z) + 1.

From (AU2) we deduce that ,),N r. Further, we have that

(,+-"(, i i p- (, + +p-,"(,l +,o ,neNo k =

(x, z) A N.

DEFINITION 2.5. Let X be a set and let r c [0, oo]xx. Then r is called a uniform
approach bazis on X iff F is an basis (i.e.: V71, 72 r }73 F s.t. 71 v 72 < 73) satisfying

If F is a uniform approa basis, then

<r) := { e [0, oo1 V > 0, VN < oo, 3" r s.t. " A N _< C + e}
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will be called the saturution of F.
If is a uniform approach system and F is a uniform approach basis such that <F>, then

r is called a basis for .
PROPOSITION 2.6. If r is a uniform approach basis, then <r> is a uniform approach

system with r as a basis.

PROOF. By saturation it is immediately clear that (r) is an ideal. We only have to show

that <F> satisfies (AU1) (AU4).

(AU1) If7 (r>, thenVe > 0,9"y rsuchthat 7^1 _< 7+- ThusVx X, Ve > 0"

7(x,x) ^ 1 <_ 7(x,x) + e. Therefore Vx X" 7(x,x) O.

(AU2) Let [0, oo]xxx be such that

Ve > 0, VN < oo, t7 <r>- ^ N < 7 + e_
2"

Fix > 0 and N < oe. Then thee me e F sutt AN + dcouently

AN 7AN+
+e.

(AU3) Let 7 (r), e > 0 and N < oe. Then there is some 7 r such that 7 A N _< + ,
and there is some F such that

Consequently

Vx, y,z X 7(x,z) A N <_ (x,y)+ eft(y, z)+ ].

7(x,z) AN _< 7ff(x,z) AN+
< Cg(,y) + Cg(y,) + s.

(AU4) If 7 r then obviously

whence T

We now turn to a lemma that will be of paramount importance in proving the one-one

relationship between systems and towers.

For any N < oo, we define a ($-)net on [0, N] to be a finite collection (a0,..., a,} such that

a0 =0, a, N and Vi {1,...,n} :o -a-i =$ N/n.
If U C X x X, then we define

o (,) e uOv" X x X {0, oo}" (x, y) - oe otherwise.

If 7 [0, oe]xxx and a > 0 then we write {7 < a} := {(x, y) X X IV(x, Y) < a} for

short.

LEMMA 2.7. Let (bl) be a quasi-uniform tower. If

r := { [0, ooVx v R+,v > - { < } e u,}
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and

:- (o_ + 0.) ^ N N < o, > 0, (o,..., =) a -net on [0, N],
Vie {1,..., n}" Ui bt. and U,_ C U,

m r <,>.
PROOF. Firstly we show that @ C F, and therefore (@> C (F>. Suppose 7 __(a,-z +

Ov,) A N @ and le R+ and a > . If >_ N, then {7 < } X x X b,. If [c,_,, o[
for some {1,..., n}, then {7 < a} D Ui /ga. G h,, whence {’7 < a} hi,.

Secondly, we show that F is saturated, and therefore (> C r. Let (F>. Fix e R+ and

Then there exists some ? r such that

Then we have Vz, . X-
v(,u) < --U- (’ u) +

= (z,u)^ <

Therefore { < a} l) {’y < } b/, whence { < } b/ Hence, { r.
Finally, we shall show that F (l (>. To this end, we shall prove that for any F, and for

any e > 0 and N < oo, there is some -ff such that ^ N _< -ff + e. Fix F, e > 0 and

N < c, and some 6-net {ore,... ,c,} on [0,N] such that 6 < /2. Put Vi {1,... ,n}’Ui :=

{ < o + 6/2} L. and

:= (_ + Ou.) A N.

Let =, l/ X. If .N (Z, Z/) + e > N, then there is nothing to prove. Suppose %N (X, /) + e < A

Ira, m+[ for some e {0,...,,- }. Ten

#(=, u) + 2 _< a e Ira, m+[
#(=,u) <_ a- 2 e [o_2,a,_[

(=,u) < a,_ + 6/2 < o < A.

PROPOSITION 2.8. I (I),R+ is a (quo.si-)uni.form tower, then

r .-= { [0, ooF" v e +,v > - { < } e u, }
is a (quasi-)uniform approach stem.

PROOF. By proposition 2.6 it sutliees to show that @ (defined as in lemma 2.7 satisfies

(AU2’). Le

Since 7 is botmded, it sutces to prove that

ve > o- 33, " vz, u, z X. 3,(z, z) < 3,,(z, u) + 3,(u, z) + e.
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Fix E > 0 and x, y, z X. Refine he net {ao,..., ak} into a 6-net {,..., k,} on [0, N] such

that

V{0,...,k}:jn=a and 6</2.

If {1,... ,k}, then V3p,/3q such that 3p + 3q a and 3 [0, aj/2], there are V//do and

V & such that V o V C . Define Vp {1,..., kn}:

and

Notice that W e L/. Define

Now suppose that (x, z) U otherwise there is nothing to prove. Then -(x, z) a1 for

some j {1,...,k}. If %(x,y) >_ a or %(y,z) >_ a, then again there is nothing to prove.

Therefore suppose that %(x,y) &_ <_ in) and %(y,z)

_
(q <_ in). Now suppose that

_
+_ /e < a. Then

Then there would exist some r > p such that & +/ ai. Since/ _< a= and ] _< a, we have

(,) e w c w c v, c v/

and

(,) e w, c y c Vq’
and thus (x, z) e U. Hence, /(x, z) <_ a_, which is a contradiction. Therefore p_ +

_
+

a, which is exactly what we had to prove.

If F is the (quasi-)uniform approach system induced by a (quasi-)uniform tower (/g), then

we denote this by F To ((/)).
If " is a filter basis then we denote (’) := stack ’.
PROPOSITION 2.9. IfF is a (quasi-)uniform approach system, then the family (bl

defined by Ve e R+

is a (quasi-)unt’o tower.

PROOF. We shall only prove (UT3) and (UT4).
In order to prove (UT3), fix e i R+, a > e, ff F, and e,e R+ such that e +e e. We have

to show that there exist q/e F, a > e, a= > e such that

To this end, pick a > e and a > e such that a + a a, and take 0z F such that

w.,y,z x ..(z,z) ^ a < ’(.,y) +(y,z).
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To prove (UT4), notice that if {7 < } E H, then {7 < } E H for all p ]e,a[. Hence

nvely, if {7 < } H for me > , then clly { < } e H, d thefore U>,H C

If () the (qui-)o tour induc by a (qui-)osem , then denote

The foHong propitio show that d Tt de a onne pondce ben

otodoappr ste.
PROPOSION 2.10. Le () iifoter, and let (V) :=oT (()),

PROOF. By detion ha Ve R+

{U C X x X [O,]XX su tt Ve’ R+,Va’ > e’ }
To prove that V C/, let U V,. Then

() , [o, oo]xx sueah’ R/,, > ’ { < ,’}

(2) > - { < } c u

Let a be as in (2), then applying (1) for g := e and a’ :-- a, yields {7 < a} e L/,, and thus, by

(2), u u.
To prove that L/ C ),, let U H,. By (UT4), there is some 6 > e such that U E/. Define

7 := 0u ^ 6. Let g > 0, then if g > 6, we have Va’ > e’ {7 < a’} X x X e, and if

then we haveVa’ > g- {7 < ’} D U /A C/, Leta := > e. Clearly we have that

{ < a} U.
PROPOSITION 2.11. Let F be a quasi-uniform approach system, and let 9 :=

Then r 9.

PROOF. By deYmition, we have that

{, e [o, o] v e R+, v’ > , r, = > - { < } c { < ’}}.
In order to prove that F C 9, let 7’ F, e’ R+ and cg > e. If 7 := 7’ and a := a’, we clearly

have {7 < a} C {’ < a’}. Therefore q/E 9.

To prove that 9 C F, suppose that (L/), T,(F). Then 9 has a basis consisting of functions

of the form b := inf=(o_ + Ou,) ^ N satisfying the conditions of lemma 2.7. If { 1,..., n}
and U /., then there are F and a+ > o such that {7 < a+} C U,. We shall show that

P <_ V= 7i F, and therefore b E F. Suppose b(x, !/) o. Then (x, V) Ui D { < oq+ }, thus

(x,y) {7, < a,+}- Then 7,(, y) >_ ,+ > o and (x, y) < 7,(x, y).
We already mentioned that every uniform approach system induces an ordinary approach

system. On the other hand, every uniform tower has an underlying tower. These two underlying

structures define the same approach space.

PROPOSITION 2.12. Let F be a uniform approach system, and let (bl,), be the induced

uniform tower. If (t), is the tower defining A(F), then Ve R+, t is the pre-dosure operator

induced by the semi-uniformity bt,, i.e. Ve , R+, VA c X t,(A) fqvc-u. U(A).
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PROOF. Let (5 R+ and A C X. Then

() { s x v s () () -< }
(x (5 X lsup 7(x, y) <_ e}

n{XlW>e,A’(,u)<}

n{veXlxea’(x,vleU}

N the nonetfic , have ogo rt. One eily that

+,VA C X t(A) U-(A).

2.2 UNIFORM CONTRACTIONS

DEFI1WITION 2.13. Let (X, r) and (Y, t) be approach (quasi-)uniformities, and let f X Y
be a function. Then f (X, 7) (Y, ) s a uniform contraction iffY (5 @ o (f x f) (5 r.

PROPOSITION 2.14. Let (X,F) and (Y, ) be app (quasi-)uniformities, and let

(He) and Ode)e be their (quasi-)uniform towers. Then the following are equivalent.

(1) f is a uniform contraction

(2) Ve (5 R+: f: (X, He) (Y, ’,) is unifotrnly continuous.

PROOF. In order to prove that (1) (2), let e (5 R+ and V (5 Ve. Then there are (5 @

and a > e such that {7 < a} C V. Since o (f f) (5 F, we have that (f f)-t({7 < a})
{b o (f f) < a} e/, and thus (f f)-t(V) (5 hie.
To prove that (2) = (1), let (5 . Then Ve (5 R+,Va > e { < a} (5 Ve, and therefore

{ o (f x f) < a} (f x f)-l({q., < a}) (5 He, and thus o (f x f) (5 r.

2.3 THE TOPOLOGICAL CATEGORY AUnif

One easily verifies that approach uniformities, together with uniform contractions form a category,

which we shall denote as AUnif. The category of approach quasi-uniformities shall be denoted

by AqUnif.

PROPOSITION 2.15. AUnif s a topological category.
PROOF. Let (f# X (X#, F#))sea be a AUnif-source. Then the initial structure is

:=/sup% o(f x f)ldo (5 2(J),Vj (5 J0 "75 (5 ri.
kJo

Initial structures can be described with tmiform towers too. In fact, a AUnif--source is initial

iff for any level (5 R+ the induced sUnif-source is initial.

PROPOSITION 2.16. Let J be a set, let (X,(He)e) and for all j (5 J, (Y,(l])t) be

ap uniformities, and let for all j (5 J, f X Y be a run,ion. Then the following are

equivalent.

(1) (L: (x, (U))

(2)
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PROOF. Let YV denote the initial semi-uniformity for the source

Let F Tt.((U)) and , T.((V)). We have 1)g ({{7i < } 13i E i, a > e}), and thus

3 bIETRIC AND UNIFORM APPROACH UNIFORMITIES

3.1 METRIC APPROACH UNIFORMITIES

Metric spaces can be interpreted as approach uniformities in the following manner.

PROPOSmON 3.1. Let (X, d) be a p-metric space. Then r(d) := {7 [o, ]xx
"y < d} is a uniform approach system on X.

Approach uniformities induced by a cx)p-metric will be called metric approach uniformities.
PROPOSITION 3.2. Let (X,I’) be an approach uniformity. Then the following are

equivalent.

(1) (X, F) is a metric approach uniformity.

(2) sup c r

(3) F is closed under the formaon of (arbflrary) suprema.

We now describe metric approach uniformities in terms of uniform towers.

PROPOSITION 3.3. /f (/) is the tower of a metric approach quasi-uniformity F(d),
then Ve e R+:/4 ({{d < a}la > }).

PROOF. Immediate, since {d} is an approach basis for F.
PROPOSITION 3.4. Let (X, d) and (Y, d) be oop-metric spaces and let f X Y be a

function. Then the following are equivalent.
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(1) f: (X, d) (E d’) i non-expansive

(2) f: (x, r(a)) (Y, r(a’)),. .fo. ctctio.

This means that proposition 3.1 yields a full embedding functor pMET AUnif. We
have more.

PROPOSITION 3.5. pMET is a full bicoreflective subcategory of AUnif.

PROOF. If (X, ) is an approach uniformity, then define

dr := sup’),.

It is easy to verify that dr is a oop-metric.

Clearly id (X, r(dr)) (X, r) is a uniform contraction, since V7 E F 7 o (id id) <_ supper 7
dr.
Now suppose that f (X’,r(d)) (X,) is a uniform contraction for some oop-metric d. Then

f: (X’, r(d)) (X, r(dr)) is a uniform contraction too, since

EF(dr) <sup7

o (y ) r(a).

3.2 UNIFORM APPROACH UNIFORMITIES

PROPOSITION 3.6. Let (X, Lt) be a uniform space. Then 1"(/2):= ({0t U e/2}) is a

uniform approach system on X.
PROOF. If L/is a uniformity on X, then (b/) (that is, L/on every level), is a uniform tower.

The associated uniform approach system clearly is

Approach uniformities induced by a uniformity will be called uniform approach uniformities.
PROPOSITION 3.7. Let (X,F) be an approach uniformity. Then the following are

equivalent.

(1) (X, r) is a uniform approach uniformity.

(2) r ({0u c x x s.t. o r}>

(3) F has a basis consisting of.functions into {0, x}.

Uniform approach uniformities have trivial uniform towers.

PROPOSITION 3.8. If (bl) is the tower of a uniform approach uniformi r(L/), then

V e R+ :L/ =/2.

PROPOSITION 3.9. Let (X,Z) nd (Y, r) be qasi-niorm sces nd let f X Y
be a nction. Then the following are equivalent.

(1) f: (X, Lt) (Y, V) is uniformly continuous

(2) f: (X, l"(/,/ (Y,r(v)) s a niform contruction.
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PROOF. We immediately see that

f (X, L4) (Y, ) is uniformly continuous

: v,u : (//)(u) c v

o /: (x,r(u)) (r(v)) om conrion.

Tm
more.

PROPOSION .10. Uf a bimea:WeutO o/AU.

PROOF.
dee r := d

foi on X.
The f id (X,F(Mr)) (X,r) fom conrion foHolyom

propiion 2.14. Now supp f (X’,F()) (X,F) a omnrion for me or-
y on X’.
(X, F()) aom COheSion.

The f (X,P) (X,F(r)) a om conrion, a couence of

propiion .14. Nowp
foy on X’. Th fory R+ have ha f (X,) (X’,) foyninuo.

Hence : (X,+) (X’,U) oynuo,dh:: (X, r(ur)) (x’,r(u))
aomnrion.

3.3 METRIC AND TOPOLOGICAL APPROACH SPACES

Let T- Unif Top and A" AUnif AP be the natural forgetful functors. Then the following

diagram is commutative.

Unif

Top

AUnif

A

PROPOSITION 3.11. Let (X, d) be a oop-metric space, then A(r(d)) d-
PROOF. Let 6 denote the distance defining A(r(d)). Recall that Vx E X, VA C X

6a(x, A) i,,enf d(x, a) and 6(x, A) su<_p 7(x, a).

It is easy to see that 6 _< 6d. On the other hand, we have for any x E X and A c X that

’Ca a.. A, Ve > O, B.y < d "r(x, a) + e > d(x, a)
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and hence Ve > 0 sup inf 7(x, a) + e > inf d(x, a), which, by arbitrariness of e, proves the other
"<_d a.A aEA

PROPOSITION 3.12. Let (X, F) be an approach uniformity. Then the underlying topology

of blr coincides with the topological reflection of A(r).
PROPOSITION 3.13. Let (X, F) be an approach uniformity. Then the underlying topology

of lgr coincides with the topological coreflection of A(F).

4 NATURAL EXAM1aLES

4.1 THE FINE APPROACH UNIFORIVHTY

A uniform approach space (X, (a4(x))Ex) is (by definition) generated by a gauge of pseudo-

metrics T) in the sense that for all x 6 X A(x) ({d(x,-) d 6 :D}}. It is easily verified that the

underlying approach space of the approach uniformity generated by D is again (X, (A(x))xx).
Therefore, every uniform approach space is compatible with some approach uniformity. There

We need the following preliminary result.

PROPOSITION 4.1. Let (f (X, F) (X, F))j be an initial AUnif-source. Then

(/i: (X,A(r)) (X,A(D)))es is

PROOf. Let (()),x, denote te approac syste of A(F,) (j e J) ad et (X()).x
be the initial approach system for the given AP--souree. Then Vz X1

X(z) {(,-) e D}

and therefore Vx 6 X-

which dearly coincides with the approach system of A(F).
DEFINITION 4.2. Let (X, 6) be a uniform approach space. Then we call FINE(6) :=

V{F IAUni A(r)= 6} the fine ap niformit compatible with 6.

Because of the previous proposition, A(FINE(6)) 6.

As a matter of fa, FINE UAP %Unif is a functor.

PROPOSITION 4.3. Let (X, 6) and (Y, 6’) be apprtmh spaces and let f X Y be a

function. If f: (X,6) (Y, 6’) is a contraction, then f: (X, FINE(6)) (Y, FINE(6’)) is a

uniform conw.tion.

PROOF. Let F be the initial AUnif-structure for the source of all contractions X

(Y, FINE(6’)). Every 6-6’-contraction is a F-FINE(6’)-uniform contraction, and thus a A(F)-
6’-contraction, whence A(F) is finer than 6.

Conveme]y, proposition 4.1 implies that the source of all 6-6’-contractions (X, A(F)) (X, 6’) is

initial, and therefore A(F) is coarser than 6. Thus A(F) 6.

FINE(6) is the finest structure compatible with 6, thus FINE(6) D F. Therefore, every 6-6’-

contraction is a FINE(6)-FINE(6’)-uniform contraction.
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4.2 SPACES OF MEASURES

Let X be a separable metrizable topological space. Let A/I(X) denote the set of all probability

measures on X. We define for every finite set C of continuous functions from X into I := [0,1]
(equipped with the usual topology) the map

Since eacJa dc is a p-metric, we have the following result.

PROPOSITION 4.4. (dc C is a finite subset oflC(X,[)} is a basis for some approach

The approach uniformity F in the previous proposition, shall be called the weak approach

mtiformit on A/I(X). The following proposition motivate this terminology.

It is a well-known result (see e.g. BiIIingsley [i]) that the weak opology on M(X) is initial

for the Top-source

(w/ M(X) [O, oc] P f fdP)
/ lec(x,I)

Here we have an analogous result.

PROPOSITION 4.5. The weak approach uniformity on NI(X) is initial for the AUnif-

(where [0, ] is equipped with the usual approach uniformity).
PROOF. Let dE denote the euclidean metric on [0, oo]. Then the initial structure of the

given source

(supd o (wj, x wl) IC C C(X,I) finite })t’ec

(suplffd.-ffd.llCCC(X,l) finite})
which is clearly the weak approach uniformity.

If f" X Y is continuous, then ]" A/I(X) A/I(Y) defied by ](P)(S) := P(f-(B))
for every Borel-set B in Y, is continuous with respect to the weak topologies. Here we have an

analogous result.

PROPOSITION 4.6. Let X andY be separable metrizable topological space. If.? :X Y
s continuous, then 1-((x),r)- (M(Y),r) a uniform

PROOF. For every C c C(Y, I) finite, we have that dvo(] x/) e Fx since VP, Q e A/I(X)

dv(/(P),/(Q))

In Lowen [9] the set A4(X) is equipped with the so-called weak approach distance.

PROPOSITION 4.7. The underlying distance of the weak approach uniformity is the we
distance.
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4.3 HYPERSPACES

Let (X, d) be a metric space. The collection of all non-empty closed subsets of X is denoted by

CL(X). For every fmite subset F c X we define

dR: eL(X) CL(X) [0, oo]: (A, B) sup Id(x, A) d(x,

Since all dF are p-metrics, we have the following result.

PROPOSITION 4.8. The collection {dR F E 2(x)} is a basis for some approach unifor-
mity on CL(X).

The approach uniformity in the previous proposition shall be referred to as the Wijsman

approach uniformity on CL(X). The following propositions motivate this terminology and enhance

the canonicity of the example.

It is known (see e.g. Beer [3]) that the Wijsman topology on CL(X) is initial for the Top-

(d(x,-) eL(X) [0, oo]: A d(x, A))zex
In AUnif we have an analogous result.

PROPOSITION 4.9. The Wijsman approach uniformity is initial .for the source

(d(x,-) CL(X) [0, oo]: A -, d(x, A))eX

(where [0, oo] is equipped w/th the usual approach uniformity).
PROOF. Let dE denote the euclidean metric on [0, oo]. The initial structure for the given

source has a basis consisting of functions

supdE o (d(x, .) d(x, -)) sup Id(x, .) d(x, .)[
x.F .F

where F E 2(x), which clearly determine the Wijsman approach uniformity.

The Wijsman topology on CL(X) is also initial for the singleton source

eL(X) [0, oo]X: A d(.,A)

where [0, oo]x is equipped with the product topology (see Beer [3]).
In AUnif too, we have the following.

PROPOSITION 4.10. The Wijsman approach uniformity on CL(X) is initial .for the

singleton source

: CL(X) [0, o]X: A d(-, A)

where [0, oo]x is equipped with the product approach uniformity.

PROOF. Let d denote the euclidean metric on [0, o]. The approach uniformity on

[0, o]x 1-ex [0, o] has a basis consisting of functions of the form

supdE o (r r)
zEF

where F 2(x). The initial structure of the given soume is therefore determined by functions of

the form

supdE o (r: X 7r) o ( X b).
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We finish the proof by noticing that VA, B E CL(X)

supdE o (r x r) o ( x )(A, B)

supld(x,A)-d(x,S)l.
zEF

The following result also illustrates that the definition for the Wijsman approach uniformity

PROPOSITION 4.11. The cp--metric corefleztion of the Wijsman approach uniformity

on CL(X) is the Hausdorff-metric ha.
PROOF. We have VA, B CL(X)

sup dr(A, B) sup d(A, B) h,(A,B).
F2(x) X

On the analogy of the de/tuitions in the topological and the uniform case, we define the

following notion of admissibility.

DEFINITION 4.12. Let (X, d) be a metric space. An appoach uniformity F on CL(X) is

called admissible iff (x,r(d)) (CL(X),F) x -, {x} is a well-defined embedding.

While the Wijsman topology and the Wijsman distance are always admtible, this is not the

case for the Wijsman uniformity and for the Wijsman approach uniformity. But we do have the

following partial result.

PROPOSITION 4.13. If (X, d) is totally bounded, then the Wijsman approach uniformity

is admissible.

PROOF. Since the underlying topology of (X, d) is Hausdorif, (as in definition 4.12) is

well-defined.

Clearly

dF({X}, {y}) supld(x,z) -d(y,z)l
zeF

<_ supd(x,y)
zeF
d(x,y).

Conversely, fix e > 0 and let F 2(x) be such that Bd(z, /2) X. We shall show that
zEF

Vx, y e X" d(x, y) <_ dF({X}, {y}) + e.

Let z, y X, and choose z F such that d(y, z) <_ el2. If d(z, y) < , then there is nothing to

prove. If d(x, y) > e/2, then

d(x, y) < d(x, z) + d(y, z)
<_ d(x, z) d(y, z) + e

_< sup Id(x, z) d(y, z)l + e.
zeF

The following example shows that the total boundedness is a necessary condition.

EXAMPLE 4.14. Let d be the usual metric on R and let Fw denote the Wijsman approach

uniformity on eL(R2). Then (R,r(d)) (CL(W-),rw).x {z} is not an embedS.
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4.4 FUNCTION SPACES

Let X be a set. Let X be a collection of subsets of X such that X covers X and such that
is closed under the formation of finite unions. Let (Y, d) be a metric space. For any A E X, we

define

dA yX x yX [0, oc] (/,g) -, supd(f(x),g(x)).

Since each da is a p-metric we have the following result.

PROPOSITION 4.15. Fx := ({da A X})/s an approach uniformity on yx.
Let us start with an example.
PROPOSITION 4.16. If x 2x), then (yx, rx) coincies with the AUnif-product

(rx, ILx r(d)).
PROOF. The uniform approach system of 1"I F(d) is given by

which clearly coincides with

The uniform and the metric coreflection of rx are well-known.

PROPOSITION 4.17. The, uniform coreflechon ofrx is the uniformity o.fX-convergence.

PROOF. This is clear, since the uniformity of X-convergence has a basis consisting of

entourages of the form

PROPOSITION 4.18. The c-metric coreflection of rx is the uniform metric.

PROOF. If f g yx, then

d(rx)(f,g) supsupd(f(z),g(x))
A6.,Y zEA
sup d(f(x), 9(x)).

t denote the tMt
PROPOSON 4.19.

PROOF. For bitr A

dA(kx, k) supd(kx(z), k(z))
z.A

d(x,y).

4.5 IMPLEMENTATION OF pq-METRICS

qMET is considered to be a suitable category for domain theory. A well-known example is the

quasi-metric

d X x X R+ ( (x,y) O if z y
(x, y) 2- if x y and k min{n Ix, # y,}

on X {0,1 }*, the set of all infinite strings of zero’s and one’s. that x U_ y means x is a

prefix of y ".
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If one wants to implement d, one will not implement the function d itself, since its domain

consists of infinite (!) strings. One would rather implement a series of test functions (f.). on

X x X, that check whether d(x, y) <_ 2-" or not, say

f." X x X {0, c}- { (x,(x’ Y)Y) .-.-’ Ooo otherwise’ifd(x, y) < 2-"

PROPOSITION 4.20. {f- n fi No} is a basis for an approach quasi-uniformity F on

S.

PROOF. This follows from the observations that Vn, m No f. V f= f.v= and

Vn No "Vz, V,z X" f.(x,z) <_ f.+l(Z,/) + f,+l(/, z)-
The quasi-uniform coreflection of F is the quasi-uniformity L/d, which was studied by e.g.

Smyth (Smyth [lO]) d Sndhau (Sdeh Ill]).
The pqoo--metric eoretiection dr expresses the prefix-order, in the sense that dr(x, y) 0 ,

x

_
y, since

sup f,(x,y) O = Vn d(x,y) < 2-" # d(x,y) 0.
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