α -DERIVATIONS AND THEIR NORM IN PROJECTIVE TENSOR PRODUCTS OF $\Gamma\text{-}BANACH$ ALGEBRAS

T.K. DUTTA, H.K. NATH and R.C. KALITA

Department of Mathematics Gauhati University Guwahati - 781 014 Assam, India.

(Received April 16, 1996 and in revised form December 10, 1996)

ABSTRACT. Let (V, Γ) and (V', Γ') be Gamma-Banach algebras over the fields F_1 and F_2 isomorphic to a field F which possesses a real valued valuation, and $(V, \Gamma) \otimes_p (V', \Gamma')$, their projective tensor product. It is shown that if D_1 and D_2 are α - derivation and α' - derivation on (V, Γ) and (V', Γ') respectively and $u = \sum_{i} x_i \otimes y_i$ is an arbitrary element of $(V, \Gamma) \otimes_p (V', \Gamma')$, then there exists an $\alpha \otimes \alpha'$ - derivation D on $(V, \Gamma) \otimes_p (V', \Gamma')$ satisfying the relation

$$\mathbf{D}(\mathbf{u}) = \sum_{\mathbf{i}} \left[(\mathbf{D}_{1} \mathbf{x}_{\mathbf{i}}) \otimes \mathbf{y}_{\mathbf{i}} + \mathbf{x}_{\mathbf{i}} \otimes (\mathbf{D}_{2} \mathbf{y}_{\mathbf{i}}) \right]$$

and possessing many enlightening properties. The converse is also true under a certain restriction. Furthermore, the validity of the results $||D|| = ||D_1|| + ||D_2||$ and sp (D) = sp(D₁) + sp (D₂) are fruitfully investigated.

KEY WORDS AND PHRASES : Γ - Banach algebras, projective tensor products, α - derivations. **1991 AMS SUBJECT CLASSIFICATION CODES :** Primary 46G05, 46M05; Secondary 15A69.

1. INTRODUCTION

 Γ - Banach algebras and α - derivations are generalisation of ordinary Banach algebras and derivations respectively. The set of all m x n rectangular matrices and the set of all bounded linear transformations from an infinite dimensional normed linear space X into a Banach space Y are nice examples of Γ - Banach algebras which are not general Banach algebras. Similarly a derivation can't be defined on these spaces as there appears to be no natural way of introducing an algebraic multiplication into these. So, a new concept of derivation known as α - derivation is introduced on a Γ - Banach algebra. Bhattacharya and Maity have defined a Γ - Banach algebra in their paper [1] and have discussed in their another paper [2] various tensor products of Γ - Banach algebras over fields which are isomorphic to another field with a real valued valuation by using semilinear transformations, [3]. Derivations and tensor products of general Banach algebras are discussed in many papers, [4.5.6,7.8]. Now there are some natural questions : Does every pair of derivations D_1 and D_2 on Gamma Banach algebras (V, Γ) and (V', Γ ') respectively give rise to a derivation D on their projective tensor product? If yes, then can one estimate the norm of D with the help of norms of D, and D, ? Can one evaluate the spectrum of D with the help

of those of D_1 and D_2 ? Are the converses of the above problems true? We give affirmative answers to some of these questions. The useful terminologies are forwarded below :

DEFINITION 1.1. Let X (F₁) and Y (F₂) be given normed linear spaces over fields F₁ and F₂, which are isomorphic to a field F with a real valued valuation, (refer to Backman's book [9]). If $u = \sum_{i} (x_i \otimes y_i)$ is an element of the algebraic tensor product X \otimes Y, then the projective norm p is defined by

$$p(\mathbf{u}) = \inf \left\{ \sum_{i} \| \mathbf{x}_{i} \| \| \mathbf{y}_{i} \| : \mathbf{x}_{i} \varepsilon \mathbf{X}, \mathbf{y}_{i} \varepsilon \mathbf{Y} \right\},\$$

where the infimum is taken over all finite representations of u. Further the weak norm w on u is defined by

$$\mathbf{w}(\mathbf{u}) = \sup \left\{ \left| \sum_{i} \zeta_{1} \left(f(\mathbf{x}_{i}) \right) , \zeta_{2} (g(\mathbf{y}_{i})) \right| : f \in X^{*}, g \in Y^{*}, \| f \| \leq 1, \| g \| \leq 1 \right\}.$$

[Here X^{*} and Y^{*} are respective dual spaces of X and Y; and F₁, F₂ are isomorphic to F under isormorphisms ζ_1 and ζ_2]. The projective tensor product X \bigotimes_p Y and the weak tensor product X \bigotimes_w Y are the completions of X \bigotimes Y with their respective norms. For details, see Bonsall and Duncan's book [10].

DEFINITION 1.2. Let (V, Γ) be a Γ -Banach algebra and α , a fixed element of Γ . Then α -identity, l_{α} , is an element of V satisfying the conditions $x\alpha l_{\alpha} = x$ and $l_{\alpha} \alpha x = x$ for every x in V.

DEFINITION 1.3. A linear operator D of (V, Γ) into itself is called an α - derivation if

$$D(x \alpha y) = (Dx) \alpha y + x \alpha (Dy), \qquad x, y \in V.$$

Every x ε V gives rise to an α - derivation D_x defined by $D_x(y) = x\alpha y - y\alpha x$. Such a derivation is called an α -inner derivation. Further, if (V, Γ) is an involutive Γ - Banach algebra with an involution * , then an α - derivation D is called an α - star-derivation if $Dx^* = -(Dx)^*$, x^* being the adjoint of x. Again, we define an operation o by xoy = $x\alpha y + y\alpha x$, x,y ε V. A linear map D on (V, Γ) is called an α -Jordan derivation if D (xoy) = (Dx) oy+xo (Dy) for all x and y in V.

2. THE MAIN RESULTS

Throughout our discussion, unless stated otherwise, (V, Γ) and (V', Γ') are Gamma-Banach algebras over F_1 and F_2 , isomorphic to F which possesses a real valued valuation; α and α' are fixed elements of Γ and Γ' ; and $l_{\alpha'}l_{\alpha'}$ are α - identity and α' -identity of V and V' respectively. Moreover, suppose that $\parallel l_{\alpha} \parallel = k_1 \neq 0$ and $\parallel l_{\alpha'} \parallel = k_2 \neq 0$.

The following proposition is fundamental for our purpose, and we refer to Bhattacharya and Maity [2] for its proof.

PROPOSITION 2.1. The projective tensor product $(V, \Gamma) \bigotimes_{p} (V', \Gamma')$ with the projective norm is a $\Gamma \otimes \Gamma'$ - Banach algebra over the field F, where multiplication is defined by the formula

 $(\mathbf{x} \otimes \mathbf{y})(\gamma \otimes \delta)(\mathbf{x}' \otimes \mathbf{y}') = (\mathbf{x}\gamma \mathbf{x}') \otimes (\mathbf{y}\delta \mathbf{y}')$, where $\mathbf{x}, \mathbf{y} \in \mathbf{V}; \mathbf{x}', \mathbf{y}' \in \mathbf{V}'; \gamma \in \Gamma; \delta \in \Gamma'$.

THEOREM 2.1. Let D_1 and D_2 be bounded α - derivation and α' - derivation on (V,Γ) and (V',Γ') respectively. Then

(i) there exists a bounded $\alpha \otimes \alpha'$ - derivation D on the projective tensor product $(V, \Gamma) \otimes_n (V', \Gamma')$ defined

by the relation

$$D(\mathbf{u}) = \sum_{i} \left[(D_1 \mathbf{x}_i) \otimes \mathbf{y}_i + \mathbf{x}_i \otimes (D_2 \mathbf{y}_i) \right], \text{ for each vector } \mathbf{u} = \sum_{i} \mathbf{x}_i \otimes \mathbf{y}_i \varepsilon (\mathbf{V}, \Gamma) \otimes_p (\mathbf{V}', \Gamma').$$

(ii) If D_1 and D_2 are α - and α' - inner derivations implemented by the elements $r_0 \in V$ and $s_0 \in V'$ respectively then D is an $\alpha \otimes \alpha'$ - inner derivation implemented by $r_0 \otimes l_{\alpha'} + l_{\alpha} \otimes s_0$.

(iii) If D_1 and D_2 are α - and α '- Jordan derivations, then D is an $\alpha \otimes \alpha$ '- Jordan derivation.

(iv) If (V, Γ) and (V', Γ') are involutive Gamma -Banach algebras, and if D_1 and D_2 are α - and α' - star derivations, then D is $\alpha \otimes \alpha'$ - star derivation.

PROOF. (i) We define a map $D: (V, \Gamma) \bigotimes_{p} (V', \Gamma') \rightarrow (V, \Gamma) \bigotimes_{p} (V', \Gamma')$ by the rule

$$D(\mathbf{u}) = \sum_{i} \left[D_{1} \mathbf{x}_{i} \otimes \mathbf{y}_{i} + \mathbf{x}_{i} \otimes D_{2} \mathbf{y}_{i} \right] \text{, for each vector } \mathbf{u} = \sum_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}.$$

Clearly, D is well - defined. Before establishing the linearity of D, we first aim at proving the boundedness of D. For any arbitrary element $u \in (V, \Gamma) \bigotimes_{p} (V', \Gamma')$ and $\varepsilon > 0$, the definition of the projective norm provides a finite representation $\sum_{i=1}^{n} x_{i}' \bigotimes y_{i}'$ such that $|| u||_{p} + \varepsilon \ge \sum_{i=1}^{n} || x_{i}' || || y_{i}' ||$. Therefore, for this representation of u, we obtain

$$\| \operatorname{Du} \|_{p} = \| \sum_{i} \left[\left[\operatorname{D}_{1} \mathbf{x}'_{i} \otimes \mathbf{y}'_{i} + \mathbf{x}'_{i} \otimes \operatorname{D}_{2} \mathbf{y}'_{i} \right] \right] \|_{p}$$

$$\leq \sum_{i} \left[\| \operatorname{D}_{1} \mathbf{x}'_{i} \otimes \mathbf{y}'_{i} \|_{p} + \| \mathbf{x}'_{i} \otimes \operatorname{D}_{2} \mathbf{y}'_{i} \|_{p} \right]$$

$$= \sum_{i} \left[\| \operatorname{D}_{1} \mathbf{x}'_{i} \| \| \mathbf{y}'_{i} \| + \| \mathbf{x}'_{i} \| \| \operatorname{D}_{2} \mathbf{y}'_{i} \|_{p} \right], \text{ (because a projective norm is a cross norm).}$$

$$\leq \left(\| \operatorname{D}_{1} \| + \| \operatorname{D}_{2} \| \right) \sum_{i} \| \mathbf{x}'_{i} \| \| \| \mathbf{y}'_{i} \|, \text{ (because D}_{1} \text{ and } \operatorname{D}_{2} \text{ are bounded } \right)$$

$$\leq K \left(\| \mathbf{u} \|_{p} + \varepsilon \right), \text{ where } K = \| \operatorname{D}_{1} \| + \| \operatorname{D}_{2} \|.$$

Thus, $\| \operatorname{Du} \|_{p} \leq K (\| \operatorname{u} \|_{p} + \varepsilon)$. Since the left hand side is independent of ε , and ε was arbitrary, it follows that $\| \operatorname{Du} \|_{p} \leq K \| \operatorname{u} \|_{p}$ for every $\operatorname{u} \varepsilon (V, \Gamma) \otimes_{p} (V', \Gamma')$. Consequently, D is bounded.

Next to establish the linearity, let $u = \sum_{i=1}^{n} x_i \otimes y_i$ and $v = \sum_{j=1}^{m} r_j \otimes s_j$ be any two elements of

$$(\mathbf{V}, \Gamma) \bigotimes_{p} (\mathbf{V}', \Gamma')$$
. Then $\mathbf{u} + \mathbf{v} = \sum_{j=1}^{n+m} x_{j} \bigotimes y_{j}$, where $\mathbf{x}_{n+j} = r_{j}$ and $\mathbf{y}_{n+j} = s_{j}$, $j = 1, 2, \dots, m$

Now, D (u + v) = D (
$$\sum_{i=1}^{n} x_i \otimes y_i$$
)

$$= \sum_{i=1}^{n} \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right]$$

$$= \sum_{i=1}^{n} \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right] + \sum_{i=n+1}^{m+n} \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right]$$

$$= \sum_{i=1}^{n} \left[D_1 x_i \otimes y_i + x_i \otimes D_2 y_i \right] + \sum_{j=1}^{m} \left[D_1 r_j \otimes s_j + r_j \otimes D_2 s_j \right] = D(u) + D(v)$$

The boundedness of D implies that the rusult, D (u + v) = D(u) + D(v), is also true for any infinite

representations of u and v. Similarly it can be shown easily that D(au) = aD(u) for any scalar a. Consequently D is a bounded linear map.

To show that D is an $\alpha \otimes \alpha'$ - derivation, we suppose that $u = x \otimes y$ and $v = r \otimes s$ are any two elementary tensors of $(V, \Gamma) \otimes_{n} (V', \Gamma')$. Then $u \alpha \otimes \alpha' v = x \alpha r \otimes y \alpha' s$. Now

$$D (u \alpha \otimes \alpha' v) = (D_1 x \alpha r) \otimes y \alpha' s + x \alpha r \otimes (D_2 y \alpha' s)$$
$$= \left[(D_1 x) \alpha r + x \alpha (D_1 r) \right] \otimes y \alpha' s + x \alpha r \otimes \left[(D_2 y) \alpha' s + y \alpha' (D_2 s) \right]$$
$$= \left[(D_1 x) \alpha r \otimes y \alpha' s + x \alpha r \otimes (D_2 y) \alpha' s \right] + \left[x \alpha (D_1 r) \otimes y \alpha' s + x \alpha r \otimes y \alpha' (D_2 s) \right]$$
$$= (Du) \alpha \otimes \alpha' v + u \alpha \otimes \alpha' (Dv).$$

Similarly, if $u = \sum_{i} x_{i} \otimes y_{i}$ and $v = \sum_{j} r_{j} \otimes s_{j}$ be any two elements of $(V, \Gamma) \otimes_{p} (V', \Gamma')$, then summing over i and j we can prove easily that $D(u \alpha \otimes \alpha' v) = (Du) \alpha \otimes \alpha' v + u \alpha \otimes \alpha' (Dv)$. so D is an $\alpha \otimes \alpha'$ - derivation. (ii) Let D_{1} and D_{2} be α - and α' - inner derivations implemented by the vectors r_{0} and s_{0} respectively.

So,
$$D_1(x) = r_0 \alpha x - x \alpha r_0$$
, $\forall x \in V$ and $D_2(y) = s_0 \alpha' y - y \alpha' s_0$, $\forall y \in V'$.

Now, $D(\mathbf{u}) = \sum_{i} \left[D_{1} \mathbf{x}_{i} \otimes \mathbf{y}_{i} + \mathbf{x}_{i} \otimes D_{2} \mathbf{y}_{i} \right]$ $= \sum_{i} \left[(\mathbf{r}_{o} \alpha \mathbf{x}_{i} - \mathbf{x}_{i} \alpha \mathbf{r}_{o}) \otimes \mathbf{y}_{i} + \mathbf{x}_{i} \otimes (\mathbf{s}_{o} \alpha' \mathbf{y}_{i} - \mathbf{y}_{i} \alpha' \mathbf{s}_{o}) \right]$ $= \sum_{i} \left[\mathbf{r}_{o} \alpha \mathbf{x}_{i} \otimes \mathbf{y}_{i} - \mathbf{x}_{i} \alpha \mathbf{r}_{o} \otimes \mathbf{y}_{i} + \mathbf{x}_{i} \otimes \mathbf{s}_{o} \alpha' \mathbf{y}_{i} - \mathbf{x}_{i} \otimes \mathbf{y}_{i} \alpha' \mathbf{s}_{o} \right]$ $= \sum_{i} \left[(\mathbf{r}_{o} \otimes \mathbf{1}_{\alpha})(\alpha \otimes \alpha')(\mathbf{x}_{i} \otimes \mathbf{y}_{i}) - (\mathbf{x}_{i} \otimes \mathbf{y}_{i})(\alpha \otimes \alpha')(\mathbf{r}_{o} \otimes \mathbf{1}_{\alpha'}) + (\mathbf{1}_{\alpha} \otimes \mathbf{s}_{o})(\alpha \otimes \alpha')(\mathbf{x}_{i} \otimes \mathbf{y}_{i}) - (\mathbf{x}_{i} \otimes \mathbf{y}_{i})(\alpha \otimes \alpha')(\mathbf{1}_{\alpha} \otimes \mathbf{s}_{o}) \right]$ $= \sum_{i} \left[(\mathbf{r}_{o} \otimes \mathbf{1}_{\alpha'} + \mathbf{1}_{\alpha} \otimes \mathbf{s}_{o})(\alpha \otimes \alpha')(\mathbf{x}_{i} \otimes \mathbf{y}_{i}) - (\mathbf{x}_{i} \otimes \mathbf{y}_{i})(\alpha \otimes \alpha')(\mathbf{r}_{o} \otimes \mathbf{1}_{\alpha'} + \mathbf{1}_{\alpha} \otimes \mathbf{s}_{o}) \right]$ $= D_{\mathbf{v}}(\mathbf{u}), \text{ where } \mathbf{t}_{o} = \mathbf{r}_{o} \otimes \mathbf{1}_{\alpha'} + \mathbf{1}_{\alpha} \otimes \mathbf{s}_{o}.$

Consequently, D is an $\alpha \otimes \alpha'$ -inner derivation implemented by t_o.

(iii) The proof is routine.

(iv) Let D_1 and D_2 be star derivations. If $u = \sum_i x_i \otimes y_i$ is an element of $(V, \Gamma) \otimes_p (V', \Gamma')$, then the adjoint of u is given by $u^* = \sum_i x_i^* \otimes y_i^*$ Now,

$$Du^{*} = D\left(\sum_{i} x_{i}^{*} \otimes y_{i}^{*}\right)$$
$$= \sum_{i} \left[D_{1} x_{i}^{*} \otimes y_{i}^{*} + x_{i}^{*} \otimes D_{2} y_{i}^{*} \right]$$
$$= \sum_{i} \left[-(D_{1} x_{i})^{*} \otimes y_{i}^{*} + x_{i}^{*} \otimes \left\{ -(D_{2} y_{i})^{*} \right\} \right], \text{ because } D_{1} \text{ and } D_{2} \text{ are star derivation.}$$

$$= -\sum_{i} \left[(D_{1}x_{i})^{*} \otimes y_{i}^{*} + x_{i}^{*} \otimes (D_{2}y_{i})^{*} \right] = - (Du)^{*}.$$
 So, D is a star-derivation. Q.E.D.

REMARK 2.1. (i) The above theorem can be extended to the projective tensor product of n number of Γ - Banach algebras.

(ii) If $u = x \otimes l_{\alpha'} \varepsilon (V, \Gamma) \otimes_{p} (V', \Gamma')$, then from the definition of D, we get

$$Du = D_1 \mathbf{x} \otimes \mathbf{1}_{a'}, \text{ because } D_2 \mathbf{1}_{a'} = 0 \qquad \dots \qquad (2.1)$$

From this result, we can ascertain that for each derivation D on $(V,\Gamma) \otimes_p (V',\Gamma')$, there may **not** exist derivations D₁ and D₂ on (V,Γ) and (V',Γ') respectively such that D, D₁ and D₂ are connected by the relation given in Theorem 2.1. For example, let D' be an $\alpha \otimes \alpha'$ - inner derivation implemented by an element $r_{\alpha} \otimes s_{\alpha}$, where s_{α} is not a scalar multiple of the identity element 1_{α} . Then

D' u=
$$(r_0 \otimes s_0) (\alpha \otimes \alpha')$$
 u – u $(\alpha \otimes \alpha') (r_0 \otimes s_0)$, for every u $\varepsilon (V, \Gamma) \otimes_n (V', \Gamma')$. Now if u= $x \otimes l_{\alpha'}$, then

$$D'u = (r_0 \otimes s_0) (\alpha \otimes \alpha') (x \otimes l_{\alpha'}) - (x \otimes l_{\alpha'}) (\alpha \otimes \alpha') (r_0 \otimes s_0)$$

$$= r_{o}\alpha x \otimes s_{o}\alpha' l_{\alpha'} - x\alpha r_{o} \otimes l_{\alpha'}\alpha' s_{o} = (r_{o}\alpha x - x\alpha r_{o}) \otimes s_{o}$$

=
$$(D_1, x) \otimes s_0$$
, where D_1 is a derivation on (V, Γ) implemented by r_0 ... (2.2)

From the results (2.1) and (2.2) we can conclude that unless s_o is a scalar multiple of the identity element $l_{\alpha'}$, D' ($x \otimes l_{\alpha'}$) may not be of the form $x_1 \otimes l_{\alpha'}$, where $x_1 \in V$, $[x_1$ may be different from x]. This implies that D' may not equal D in general. However, we have a converse of Theorem 2.1 as follows. Recall that an element $x \in V$ is called an α - idempotent element if $x \alpha x = x$.

THEOREM 2.2. The following results are true :

(i) If D is a derivation on $(V, \Gamma) \otimes_p (V', \Gamma')$ such that D $(\sum_{i} x_i \otimes y_i) = \sum_{i} z_i \otimes y_i$, $z_i \in V$ and y_i 's are α' -idempotent elements of V', then there exists an α' -derivation D_i on V defined by the rule $D_i x \otimes y = D$ ($x \otimes y$) for all $x \in V$ and for every α' - idempotent element $y \in V'$;

(ii) If D is bounded, so is D_1 ;

(iii) If D is an $\alpha \otimes \alpha'$ -inner derivation implemented by an element w of the form $w = \sum x_i \otimes y_i$, where y_i 's are α' - idempotent elements, then D_i is also an α - inner derivation implemented by the element $\sum x_i$;

(iv) If (V,Γ) and (V',Γ') are involutive Gamma-Banach algebras, and D is a star derivation, then so is D₁:
(v) If D is an α⊗α' - Jordan derivation then D₁ is an α- Jordan derivation;

(vi) If D is an $\alpha \otimes \alpha'$ - derivation on $(V, \Gamma) \bigotimes_p (V', \Gamma')$ such that $D(\sum_{i,j} \bigotimes y_i) = \sum_{i,j} x_i \otimes s_i$ for α -idempotent elements x_i's in V, and s_i $\varepsilon V'$, then there exists an α' - derivation D₂ on (V', Γ') given by the relation $x \otimes D_2 y = D(x \otimes y)$ for every α - idempotent element $x \varepsilon V$ and for all elements $y \varepsilon V'$. The above results (ii). (iii), (iv) and (v) are also true for D₂.

PROOF. (i) We define a map $D_1 : V \rightarrow V$ by

 $D_1 x \otimes y = D(x \otimes y)$, for all $x \in V$ and for every α' -idempotent element $y \in V'$.

Clearly, D_1 is well-defined. In particular, we have $D_1 \ge 0$ ($x \otimes l_{\alpha} = D$ ($x \otimes l_{\alpha}$), $\forall x \in V$. We first establish the linearity of D_1 . Let $x_1 \ge v_2 \in V$.

Then $D_{1} (x_{1} + x_{2}) \otimes l_{\alpha} = D((x_{1} + x_{2}) \otimes l_{\alpha'})$ $= D (x_{1} \otimes l_{\alpha'} + x_{2} \otimes l_{\alpha'})$ $= D (x_{1} \otimes l_{\alpha'}) + D((x_{2} \otimes l_{\alpha'}))$ $= (D_{1}x_{1} \otimes l_{\alpha'} + D_{1}x_{2} \otimes l_{\alpha'})$ $= (D_{1}x_{1} + D_{1}x_{2}) \otimes l_{\alpha'}$

So, $(D_1(x_1+x_2) \otimes 1_{\alpha'})(f,g) = ((D_1x_1+D_1x_2) \otimes 1_{\alpha'})(f,g), \quad \forall f \in V^*, \forall g \in V^{*}.$

This gives, $f(D_1(x_1+x_2)) g(1_{\alpha}) = f(D_1x_1+D_1X_2) g(1_{\alpha}), \quad \forall f \in V^*, \forall g \in V^*.$ The Hahn-Banach theorem provides a functional $g_0 \in V^*$ in such a way that $g_0(1_{\alpha}) = ||1_{\alpha}|| = k_2$.

Then,
$$f(D_1(x_1 + x_2)) = f(D_1x_1 + D_1x_2), \forall f \in V^*$$
. This yields, $D_1(x_1 + x_2) = D_1x_1 + D_1x_2$.

By appealing to the same mechanism, we can show that $D_1(ax) = aD_1(x)$ for any scalar a. So D_1 is linear. Next, to show that D_1 is an α - derivation.

$$\begin{split} D_{1} & (x_{1}\alpha x_{2}) \otimes 1_{\alpha'} = D & (x_{1}\alpha x_{2} \otimes 1_{\alpha'}) & (x_{1}, x_{2} \in V) \\ & = D \left[& (x_{1} \otimes 1_{\alpha'}) & (\alpha \otimes \alpha') & (x_{2} \otimes 1_{\alpha'}) \right] \\ & = (D & (x_{1} \otimes 1_{\alpha})) & (\alpha \otimes \alpha') & (x_{2} \otimes 1_{\alpha}) + (x_{1} \otimes 1_{\alpha'}) & (\alpha \otimes \alpha') & D & (x_{2} \otimes 1_{\alpha}) \\ & & (because D is an & \alpha \otimes \alpha' - derivation) \end{split}$$

$$= (\mathbf{D}_1 \mathbf{x}_1 \otimes \mathbf{I}_{\alpha'}) (\alpha \otimes \alpha') (\mathbf{x}_2 \otimes \mathbf{I}_{\alpha'}) + (\mathbf{x}_1 \otimes \mathbf{I}_{\alpha'}) (\alpha \otimes \alpha') (\mathbf{D}_1 \mathbf{x}_2 \otimes \mathbf{I}_{\alpha'})$$
$$= (\mathbf{D}_1 \mathbf{x}_1) \alpha \mathbf{x}_2 \otimes \mathbf{I}_{\alpha'} + (\mathbf{x}_1 \alpha (\mathbf{D}_1 \mathbf{x}_2)) \otimes \mathbf{I}_{\alpha'} = \left[(\mathbf{D}_1 \mathbf{x}_1) \alpha \mathbf{x}_2 + \mathbf{x}_1 \alpha (\mathbf{D}_1 \mathbf{x}_2) \right] \otimes \mathbf{I}_{\alpha'}$$

So, $D_1(x_1 \alpha x_2) = (D_1 x_1) \alpha x_2 + x_1 \alpha (D_1 x_2)$. Therefore, D_1 is an α -derivation. The rest of the results are routine. **3. THE NORM OF D**

We now shift our attention to study the possibility of the result . $\| D \| = \| D_1 \| + \| D_2 \|$, when D, D_1 and D_2 are related as in Theorem 2.1.

THEOREM 3.1. If D, D_1 and D_2 are related as in Theorem 2.1, then

$$\| \mathbf{D} \| \le \| \mathbf{D}_1 \| + \| \mathbf{D}_2 \| \le 2 \| \mathbf{D} \|.$$

PROOF. For each $u \in (V, \Gamma) \bigotimes_{p} (V', \Gamma')$ with $||u||_{p} = 1$ and for each $\varepsilon > 0, \exists a \text{ (finite) representation}$

$$\mathbf{u} = \sum_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \text{ such that } \|\mathbf{u}\|_{p} + \varepsilon \ge \sum_{i} \|\mathbf{x}_{i}\| \|\mathbf{y}_{i}\|.$$

Now, $||D|| = \sup_{u} \{ ||Du||_{p} : ||u||_{p} = 1 \}$

$$= \sup_{\mathbf{u}} \{ \| \sum_{i} [D_{1} \mathbf{x}_{i} \otimes \mathbf{y}_{i} + \mathbf{x}_{i} \otimes D_{2} \mathbf{y}_{i}] \|_{p} : \| \mathbf{u} \|_{p} = 1 \}$$

$$\leq \sup_{\mathbf{u}} \{ \sum_{i} [\| D_{1} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \|_{p} + \| \mathbf{x}_{i} \otimes D_{2} \mathbf{y}_{i} \|_{p}] : \| \mathbf{u} \|_{p} = 1 \}$$

$$= \sup_{\mathbf{u}} \{ \sum_{i} [\| D_{1} \mathbf{x}_{i} \| \| \mathbf{y}_{i} \|_{p} + \| \mathbf{x}_{i} \| \| D_{2} \mathbf{y}_{i} \|_{p}] : \| \mathbf{u} \|_{p} = 1 \}$$

$$\leq \sup_{\mathbf{u}} \{ \sum_{i} [\| D_{1} \| \| \mathbf{x}_{i} \| \| \| \mathbf{y}_{i} \|_{p} + \| \mathbf{x}_{i} \| \| D_{2} \| \| \mathbf{y}_{i} \|_{p}] : \| \mathbf{u} \|_{p} = 1 \}$$

$$\leq (\| D_{1} \| + \| D_{2} \|) \sup_{\mathbf{u}} \{ 1 + \varepsilon : \| \mathbf{u} \|_{p} = 1 \}$$

 $= \left(\| D_1 \| + \| D_2 \| \right) (1+\varepsilon)$ Since ε was arbitrary, it follows that $\| D \| \le \| D_1 \| + \| D_2 \|$ (3 1) Next, let $x \varepsilon V$ be such that $\| x \| = 1$. Then $\| x/k_2 \otimes 1_{\alpha'} \| = \| x/k_2 \| \| 1_{\alpha'} \| = 1$

Now, $\|D\| = \sup_{\mathbf{u}} \{\|D\mathbf{u}\|_{p} : \|\mathbf{u}\|_{p} = 1\}$ $\geq \|D(\mathbf{x}/\mathbf{k}_{2} \otimes \mathbf{1}_{q'})\|_{p} = \|D_{1}(\mathbf{x}/\mathbf{k}_{2}) \otimes \mathbf{1}_{q'}\|_{p} (\operatorname{Since} D_{2}(\mathbf{1}_{q'}) = 0) = \|D_{1}\mathbf{x}\|$

Thus, $\|\mathbf{D}_1 \mathbf{x}\| \le \|\mathbf{D}\|$ for every $\mathbf{x} \in \mathbf{V}$ with $\|\mathbf{x}\| = 1$. This gives $\|\mathbf{D}_1\| \le \|\mathbf{D}\|$. Similarly, we can prove that $\|\mathbf{D}_2\| \le \|\mathbf{D}\|$. Hence, we have $\|\mathbf{D}_1\| + \|\mathbf{D}_2\| \le 2 \|\mathbf{D}\|$. (3.2) The inequalilies (3.1) ard (3.2) together imply $\|\mathbf{D}\| \le \|\mathbf{D}_1\| + \|\mathbf{D}_2\| \le 2 \|\mathbf{D}\|$. Q.E.D.

Our next question is - can one improve the above result - ? We illustrate the possibility with the help of examples :

Let V be the set of 2 x 3 rectangular matrices and Γ be the set of all 3 x 2 rectangular matrices with real (or complex) entries. Then V and Γ are Banach spaces under usual matrix addition, scalar multiplication, and the norm defined by $\|A\|_{\infty} = \max_{i,j} |a_{ij}|$, where $A = (a_{ij})$. Then (V, Γ) is a Γ -Banach algebra Now the following result is true:

THEOREM 3.2. For a fixed $\alpha \in \Gamma$, each α - derivation on V is inner.

Since α -derivations on a finite dimensional Γ -Banach algebra are all inner, the result follows immediately, see [10].

We show below with an example in the Γ - Banach algebra of 2 x 3 rectangular matrices that the equality $\|D\| = \|D_1\| + \|D_2\|$ holds.

AN EXAMPLE 3.1.

Let
$$\alpha = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix}$$
 be a fixed element in Γ , and let $D_{1\alpha}$ and $D_{2\alpha}$ be two α - derivations on V

implemented by A_o and B_o respectively, where $A_o = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ and $B_o = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix}$

Now $\|A_{\circ}\| = 2$ and $\|B_{\circ}\| = 3$. and $D_{1\alpha}(A) = A_{\circ}\alpha A - A\alpha A_{\circ}$, $\forall A \in V$. Then $\|D_{1\alpha}A\| \le 2 \|A_{\circ}\| \|\alpha\| \|A\| = 2 \|A_{\circ}\| \|A\|$, because $\|\alpha\| = 1$. Hence, $\|D_{1\alpha}\| \le 2 \|A_{\circ}\| = 2.2 = 4$. Next, suppose that $X_{\circ} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ Then $\|X_{\circ}\| = 1$.

Also
$$||A_0 \alpha X_0 - X_0 \alpha A_0|| = ||\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}|| = 4.$$
 Hence $||D_{1\alpha}|| = 4$

Similarly we can show that $\| D_{2\alpha} \| = 6$. So $\| D_{1\alpha} \| + \| D_{2\alpha} \| = 4 + 6 = 10$. If D is the derivation defined by the relation as in Theorem 3.1, then we always have

$$\| \mathbf{D} \| \le \| \mathbf{D}_{1\alpha} \| + \| \mathbf{D}_{2\alpha} \| = 10$$
 (3.1)

Next, consider the element $u_0 = e_1 \otimes e_1$, where $e_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then $||u_0||_p = 1$.

Now, $\| \mathbf{D} \| \ge \| \mathbf{Du}_{\mathbf{o}} \|_{\mathbf{p}}$

$$= \| \mathbf{D}_{1\alpha} \mathbf{e}_1 \otimes \mathbf{e}_1 + \mathbf{e}_1 \otimes \mathbf{D}_{2\alpha} \mathbf{e}_1 \|_{\mathbf{p}}$$

 $\geq \mathbf{D}_{1\alpha} \mathbf{e}_1 \otimes \mathbf{e}_1 + \mathbf{e}_1 \otimes \mathbf{D}_{2\alpha} \mathbf{e}_1 \parallel_{\mathbf{w}}$

(because the projective norm is always greater than or equal to the weak norm)

$$= \sup \left\{ \left| f(D_{1\alpha}e_{1})g(e_{1}) + f(e_{1}) g(D_{2\alpha}e_{1}) \right| \colon f, g \in V^{*}, ||f|| = ||g|| = 1 \right\}.$$
 (32)

$$\begin{aligned} & \text{In} \qquad \mathbf{D}_{1\alpha} \, \mathbf{e}_{1} = \mathbf{A}_{0} \alpha \mathbf{e}_{1} - \mathbf{e}_{1} \alpha \mathbf{A}_{0} \\ & = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix} \\ & = \begin{pmatrix} -4 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} \\ & \mathbf{D}_{2\alpha} \, \mathbf{e}_{1} = \mathbf{B}_{0} \alpha \mathbf{e}_{1} - \mathbf{e}_{1} \alpha \mathbf{B}_{0} \end{aligned}$$

$$= \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix}$$
$$= \begin{pmatrix} -6 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$

We know that if we define

 $f_{i}(e_{j}) = 1 \text{ if } i = j \text{ and } = 0 \text{ if } i \neq j, \text{ then } \left\{ f_{1} \ f_{2} \ f_{3} \ f_{4} \ f_{5} \ f_{6} \right\} \text{ is a basis for V*}$ In (3.2) put $f = g = f_{1}$. Then we find that $|| D || \ge 10$ (3.3) The inequalities (3.1) and (3.3) combinedly give || D || = 10. Hence $|| D || = || D_{1\alpha} || + D_{2\alpha} ||$ **ANOTHER EXAMPLE 3.2.**

Next we wish to illustrate that the result in Theorem 3 1 cannot be improved in general. If we assume V and Γ represent the same set of all 2 x 2 real matrices, then (V, Γ) is a particular Γ - Banach

algebra with the usual operations. The ordinary identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity of (V, Γ) under multiplication.

If $\mathbf{e}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{e}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\mathbf{e}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then $\beta = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ is the standard basis for (\mathbf{V}, Γ) . For a simple example, let \mathbf{D}_1 and \mathbf{D}_2 be derivations on (\mathbf{V}, Γ) implemented by the matrices $\mathbf{A}_0 = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{B}_0 = \begin{pmatrix} 4 & -7 \\ 0 & 2 \end{pmatrix}$ respectively. Then the matrix representations of \mathbf{D}_1 and \mathbf{D}_2

with respect to the basis β are respectively

$$\begin{bmatrix} D_{1} \end{bmatrix}_{\beta} = \begin{pmatrix} 0 & 0 & 3 & 0 \\ -3 & 1 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -3 & 0 \end{pmatrix} \text{ and } \begin{bmatrix} D_{2} \end{bmatrix}_{\beta} = \begin{pmatrix} 0 & 0 & -7 & 0 \\ 7 & 2 & 0 & -7 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 7 & 0 \end{pmatrix}$$

So, $||D_1|| = 3$ and $||D_2|| = 7$. Again, $\gamma = \{e_i \otimes e_j \mid i, j = 1, 2, 3, 4\}$ is a basis for $(V, \Gamma) \otimes_p (V, \Gamma)$ and the matrix representation of D with respect to the basis γ is

Hence $|| \mathbf{D} || = 7$. Thus the strict inequality $|| \mathbf{D} || < || \mathbf{D}_1 || + || \mathbf{D}_2 || < 2 || \mathbf{D} ||$ holds.

4. THE SPECTRUM OF D

We next devote to studying the validity of the result sp (D) = sp (D₁) + sp (D₂). Recall that sp (D₁) consists of all scalars λ_1 such that D₁ - λ_1 I₁ is singular. Analogous definitions apply to sp (D₂) and sp (D) Further, for the singularity and invertibility of a rectangular matrix, see . Joshi [11].

THEOREM 4.1. The derivations D, D, and D, are defined as in Theorem 2.1. Then

$$sp(D_1) + sp(D_2) \subseteq sp(D)$$

PROOF. Let $\lambda_1 \varepsilon$ sp (D₁) and $\lambda_2 \varepsilon$ sp (D₂).

 \Rightarrow D₁ - $\lambda_1 I_1$ and D₂ - $\lambda_2 I_2$ are singular

 $\Rightarrow \exists \text{ nonzero vectors } x_o \in V \text{ and } y_o \in V' \text{ such that } (D_1 - \lambda_1 I_1) x_o = 0 \text{ and } (D_2 - \lambda_2 I_2) y_o = 0$ Now, $x_o \otimes y_o$ is a non-zero element in $(V, \Gamma) \otimes_o (V, \Gamma')$. Again, $[D - (\lambda_1 + \lambda_2) I] (x_0 \otimes y_0) = D (x_0 \otimes y_0) - (\lambda_1 + \lambda_2) (x_0 \otimes y_0)$ = $D_1 x_0 \otimes y_0 + x_0 \otimes D_2 y_0 - (\lambda_1 + \lambda_2) x_0 \otimes y_0$ = $(D_1 - \lambda_1 I_1) x_0 \otimes y_0 + x_0 \otimes (D_2 - \lambda_2 I_2) y_0 = 0$

So, D - $(\lambda_1 + \lambda_2)$ I is singular and hence $\lambda_1 + \lambda_2 \varepsilon$ sp (D). Thus, we obtain sp $(D_1) +$ sp $(D_2) \subseteq$ sp (D). Q.E.D.

REMARK 4.1. (i) We conjecture that the above result cannot be improved in general. (ii) However, the equality holds in finite dimensional Γ - Banach algebras. For, if dim $(V, \Gamma) = m$, dim $(V', \Gamma') = n$, then dim $((V, \Gamma) \otimes_p (V', \Gamma')) = m$. So, sp (D_1) , sp (D_2) and sp (D) have m,n and mn eigenvalues respectively. Again, sp $(D_1) + sp (D_2)$ gives mn values which are precisely the eigenvalues of D.

Further, we have the following illuminating result.

THEOREM 4.2. As usual, let D_1 , D_2 and D be derivations connected by the relation as in Theorem 2.1(i). If (V, Γ) and (V, Γ') are finite dimensional Gamma-Banach algebras, D_1 and D_2 are implemented by r ε V and s ε V' respectively, then

$$sp(D_1) = \{ a = \lambda - \mu \mid \lambda, \mu \varepsilon sp(r) \},\$$

$$sp(D_{\lambda}) = \{ b = \lambda' - \mu' | \lambda', \mu' \varepsilon sp(s) \}$$

and $\operatorname{sp}(D) = \{a+b \mid a \varepsilon \operatorname{sp}(D_1), b \varepsilon \operatorname{sp}(D_2)\}$.

PROOF. The first two results will follow from Propostion 9,§18, Ch2 in [10], and the last result will follow from Remark 4.1 (ii). Q.E.D.

REFERENCES

- BHATTACHARYA, D.K. and MAITY, A.K., Regular representation of Γ-Banach Algebra, J. of Pure Mathematics, Calcutta University, India, (To appear).
- [2.] BHATTACHARYA, D.K. and MAITY, A.K., Semilinear tensor product of Γ-Banach algebras, Ganita Vol. 40. No. 2, (1989), 75-80.
- [3] GREUB, W.H., Multilinear algebra, Springer Verlag, 1967.
- [4.] BADE, W.G. and DALES, H.G., Discontinuous derivations from algebras of power series, Proc. London Math. Soc. (3), 69 No. 1 (1989), 133 - 152.
- [5.] CARNE, T.K, Tensor products of Banach algebras, J. London Math. Soc. (2), 17 (1978), 480-88
- [6] CHUANKUN SUN, The essential norm of the generalized derivation, Chinese Anna. Math., 13A :2 (1992), 211-221.
- [7] KYLE, J., Norms of derivations, J. London Math. Soc. (2), 16 (1977), 297-312
- [8] VUKMAN, J., A result concerning derivations in Banach algebras, Proc. Amer. Math. Soc., Vol 116, No. 4 (December 1992), 971-975.
- [9] BACKMAN, G., Introduction to p-adic numbers and valuation theory, Academic Press, 1964
- [10]. BONSALL, F.F. and DUNCAN, J., Complete normed algebras, Springer Verlag, 1973
- [11] JOSHI, V.N., A determinant for rectangular matrices, Bull. Austral. Math. Soc., (Series A), Vol 21 (1980), 137-146