SEPARABLE SUBALGEBRAS OF A CLASS OF AZUMAYA ALGEBRAS

GEORGE SZETO

Department of Mathematics Bradley University Peoria, Illinois 61625, U.S.A.

(Received July 15, 1996 and in revised form April 14, 1997)

ABSTRACT. Let S be a ring with 1, C the center of S, G a finite automorphism group of S of order n invertible in S, and S^G the subrug of elements of S fixed under each element in G. It is shown that the skew group ring S*G is a G'-Galois extension of $(S*G)^{G'}$ that is a projective separable C^G-algebra where G' is the inner automorphism group of S*G induced by G if and only if S is a G-Galois extension of S^G that is a projective separable C^G-algebra. Moreover, properties of the separable subalgebras of a G-Galois H-separable extension S of S^G are given when S^G is a projective separable C^G-algebra.

KEY WORDS AND PHRASES: Azumaya algebras, Galois extensions, H-separable extensions, Skew group rings.

1991 AMS SUBJECT CLASSIFICATION CODES: 16S30; 16W20.

1. INTRODUCTION

DeMeyer [1] and Kanzaki [2] studied central Galois algebras and Galois extensions whose center is a Galois algebra with Galois group induced by and isomorphic with the group of the extension. These two types of Galois extensions were recently generalized to a bigger class of Galois Azumaya extensions [3] where S is called a G-Galois Azumaya extension of S^G if S is a G-Galois extension of S^G that is an Azumaya C^G-algebra where C is the center of S and S^G is the subring of elements fixed under each element of G. Sugano [4] investigated a G-Galois H-separable extension of S^G, and recently, Szeto [5] proved that a G-Galois H-separable extension. It will be shown that the skew group ring S*G is a G'HS-extension if and only if S is a G-Galois extension of S^G that is a projective separable C^{G} -algebra, where G' is the inner automorphism group of S*G induced by G. Moreover, properties of some separable subalgebras of a GHS-extension are also given.

2. PRELIMINARIES

Throughout, S is a ring with 1, G a finite automorphism group of S of order n invertible in S, C the center of S, and S^G the subring of elements fixed under each element in G. S is called a separable extension of a subring T if there exist $\{a_i, b_i \text{ in } S / i = 1, 2, ..., m\}$ for some integer m such that $\sum a_i b_i = 1$ and $\sum sa_i \otimes b_i = \sum a_i \otimes b_i$ s for each s in S where \otimes is over T. We call $\{a_i, b_i\}$ a separable system for S. S is called an H-separable extension of T if S $\otimes_T S$ is isomorphic with a direct summand of a finite direct sum of S as a bimodule over S. It is known that an H-separable extension is a separable extension and an Azumaya algebra is an H-separable extension. S is called a G-Galois extension of S^G, if there exist $\{c_i, d_i / i = 1, 2, ..., k\}$ in S for some integer k such that $\sum c_i d_i = 1$ and $\sum c_i g(d_i) = 0$ for each $g \neq 1$ in G. We call $\otimes \{c_i, d_i\}$ a G-Galois system for S.

3. SKEW GROUP RINGS

In this section, we shall show that S*G is a G'HS-extension if and only if S is a G-Galois extension of S^G that is a projective separable C^G -algebra, and give some properties of the separable subalgebras of an G'HS-extension skew group ring.

THEOREM 3.1. By keeping the notations of section 2, S*G is a G'HS-extension if and only if S is a G-Galois extension of S^G that is a projective separable C^G-algebra, where G' is the inner automorphism group of S*G induced by G.

PROOF. Let S be a G-Galois extension of S^G that is a projective separable C^G-algebra. Noting that S is a subring of S*G, we have that S*G is also a G'-Galois extension of $(S*G)^{G'}$ with a same Galois system as S where G' is the inner automorphism group of S*G induced by G such that the restriction of G' to S is G. Hence S*G is an H-separable extension of $(S*G)^{G'}$ ([4], Corollary 3). Moreover, since n is a unit in S, S*G is a separable extension of S. But S*G is a free module over S and S is a G-Galois extension of S^G that is a projective separable C^G-algebra by hypothesis, so S*G is a projective separable C^G-algebra by the transitivity of projective separable extensions. Since the order of G' is n, it is easy to see that $(S*G)^{G'}$ is a direct summand of S*G as a two sided $(S*G)^{G'}$ -module. Noting that S*G is finitely generated and projective module as a right $(S*G)^{G'}$ -module or a left module, we have that $(S*G)^{G'}$ is a projective separable the same argument as given in the proof of Lemma 2 in [1]. This completes the sufficiency.

For the necessity, S*G is a projective separable C^G-algebra by the transitivity of projective separable extensions because S*G is a G'-Galois extension of $(S*G)^{G'}$ that is a projective separable algebra of C^G. Hence S*G is an Azumaya algebra of its center Z. But S is a free module over S and n is a unit in S, so S is a finitely generated and projective left S*G-module by the proof of Proposition 2.3 in [6] where gs = g(s) for each s in S and g in G. Thus S is a finitely generated and projective modules. Noting that 1 is in C^G and that C^G is contained in Z, we have that S is a faithful Z-module. Thus S is a progenerator over Z. Since S*G is an Azumaya Z-algebra, S is a progenerator over S*G. Therefore, S is a G-Galois extension of S^G. Moreover, since S is a direct summand of S*G as a C^G-module and S*G is a finitely generated and projective C^G-module. Now n is a unit in S, so S^G is a S^G-direct summand of S. This implies that S^G is a finitely generated and projective C^G-module. Now n is a unit in S, so S^G is a S^G-direct summand of S. This implies that S^G is a finitely generated and projective C^G-module. Now n is a unit in S, so S^G is a S^G-direct summand of S. This implies that S^G is a finitely generated and projective C^G-module. Now n is a unit in S, so S^G is a S^G-direct summand of S. This implies that S^G is a finitely generated and projective C^G-module. So, it sufficés to show that S^G is a separable C^G-algebra. But S^G \approx Hom_{S*G}(S,S) = the commutator of S*G in Hom_{CG}(S,S), so S^G is a separable C^G-algebra (for so is S*G) by the commutant theorem for Azumaya algebras ([6], Theorem 4.3).

Next we give some properties of the separable subalgebras of S*G.

COROLLARY 3.2. If S*G is a G'HS-extension, then, for any subgroup K of G, S*K is a K'-Galois extension of $(S*K)^{K'}$ that is a separable C^G-algebra where K' is the inner automorphism group of S*K induced by K.

PROOF. By Theorem 3.1, S is a G-Galois extension of S^G that is a projective C^G-algebra, so S is a K-Galois extension of S^K. Hence S*K is a K'-Galois of $(S*K)^{K'}$. Noting that the order of K' is a unit in S, we have that $(S*K)^{K'}$ is a direct summand of S*K as a $(S*K)^{K'}$ -module. But S*K is a projective separable C^G-algebra, so $(S*K)^{K'}$ is a separable C^G-algebra by the same argument as given in the proof of Lemma 2 in [1].

Let $V_S(T)$ be the commutator subring of the subring T in S, and Z the center of S*G. We give an expression of the commutator subring of $(S*G)^{K'}$ in S*G.

THEOREM 3.3. If S*G is a G'HS-extension, then (1) for any subgroup K fo G, $V_{S*G}((S*G)K')$

= ZK, and (2) ZK is an Azumaya algebra over its center D such that D = DK'.

PROOF. (1) By Theorem 3.1, S*G is a separable C^G-algebra, so S*G is an Azumaya Z-algebra. Since n is a unit in S, the order of K is a unit in S; and so ZK is a separable Z-algebra contained in S*G. Noting that $V_{S*G}(ZK) = (S*G)^{K'}$, we have that $(S*G)^{K'}$ is a separable Z-subalgebra of S*G such that ZK = $V_{S*G}((S*G)^{K'})$ by the commutant theorem for Azumaya algebras ([6], Theorem 4.3).

(2) Since S*G is a separable C^G-algebra, Z is a separable C^G-algebra. Hence ZK is a separable C^G-algebra (for the order of K is a unit in Z). Thus ZK is an Azumaya D-algebra. It remains to show that $D = D^{K'}$. Clearly, $D^{K'} \subset D$. Conversely, let d be an element in D. Then gd = dg for each g in K, so $gdg^{-1} = d$ for each g in K. Hence d is in $D^{K'}$.

The follwoing consequences are immediate.

COROLLARY 3.4. Let S*G be an G'HS-extension. If K is an abelian subgroup of G, then $(S*G)^{K'}$ is an Azumaya ZK-algebra.

PROOF. By the proof of Corollary 3.3, $(S*G)^{K'}$ and ZK are separable subalgebras of the Azumaya Z-algebra S*G such that $V_{S*G}(ZK) = (S*G)^{K'}$ and $V_{S*G}((S*G)^{K'}) = ZK$, so ZK is contained in the center of $(S*G)^{K'}$ and the center of $(S*G)^{K'}$ is contained in ZK. Thus ZK is the center of $(S*G)^{K'}$.

COROLLARY 3.5. Let S*G be a G'HS-extension. Then (1) if $(S*G)^{K'}$ is a commutative ring, then ZK is an Azumaya $(S*G)^{K'}$ -algebra, and (2) if $(S*G)^{K'}$ and ZK are commutative, then ZK is a splitting ring for the Azumaya Z-algebra S*G.

PROOF. (1) It is immediate by the same argument of Corollary 3.4-(1). (2) Since $(S*G)^{K'}$ and ZK are separable subalgebras of the Azumaya Z-algebra S*G such that $V_{S*G}((S*G)^{K'}) = ZK$ and $V_{S*G}(ZK) = (S*G)^{K'}$, $(S*G)^{K'} = ZK$ (for $(S*G)^{K'}$ and ZK are commutative) such that $V_{S*G}(ZK) = ZK$. Hence ZK is a maximal commutative separable subalgebra of S*G. Thus ZK is a splitting ring for the Azumaya algebra S*G ([6], Theorem 5.5).

4. SEPARABLE ALGEBRAS

In this section, we shall give a property of a separable subalgebra of any GHS-extension similar to Theorem 3.3. Let T be a subalgebra of S over C^{G} . The commutator subring of T in S is denoted by T'.

THEOREM 4.1. Let S be a GHS-extension and T a separable C^{G} -subalgebra of S, and K = {g in G / g(t) = t for each t in T}. Then T' is invariant under K and an Azumaya $D^{K''}$ -algebra, where D is the center of T' and K'' is the restriction of K to T'.

PROOF. Since tt' = t't for each t in T and t' in T', tg(t') = g(t')t for each g in K. Hence T' is invariant under K.

Next, since S is a GHS-extension, $V_S(V_S(S^G)) = S^G([4], Proposition 4-1)$. Hence $C = V_S(S) \subset V_S(V_S(S^G)) = S^G$. This implies $C = C^G$. Noting that S is a separable C^G -algebra (for S is a GHS-extension), we have that S is an Azumaya C^G -algebra. But T is a separable subalgebra of S, so T' is also a separable subalgebra of S such that $V_S(T') = T$ by the commutant theorem for Azumaya algebras ([6], Theorem 4.3). Let D be the center of T'. Then $D \subset V_S(T') = T \subset S^K$. Thus $D = D^{K''}$ where K'' is the restriction of K to T'. The proof is complete.

COROLLARY 4.2. Let S be a GHS-extension, T a separable C^G-algebra of S, and N = $\{g \text{ in } G / g(t') = t' \text{ for each } t' \text{ in } V_S(T)\}$. Then T is invariant under N and an Azumaya E^{N"}-algebra, where E is the center of T and N" is the restriction of N to T.

PROOF. By the proof of Theorem 4.1, T and T' (= $V_S(T)$) are separable subalgebras of the Azumaya C^G-algebra S such that T = $V_S(T)$, so the corollary is immediate by Theorem 4.1.

By Theorem 3.1 in [5], Corollary 4.2 implies the following consequence.

COROLLARY 4.3. By keeping the notations and hypotheses of Corollary 4.2, T is a N"HS-extension.

We conclude the paper with two examples: (1) S is a G-Galois extension of S^G that is a projective separable C^G -algebra, but not an H-separable extension of S^G , and (2) S is a GHS-extension.

Example 1. Let Q be the rational field, $Q[\sqrt{2}]$ the G-Galois extension of Q with Galois group $G = \{1, g\}$ where $g(\sqrt{2}) = -\sqrt{2}$ and $S = M_2(Q[\sqrt{2}])$, the matrix ring of order 2 over $Q[\sqrt{2}]$. Let $G' = \{1, g'\}$ where $g'([a_{ij}]) = [g(a_{ij}] \text{ for all } [a_{ij}] \text{ in S}$. Then

- (1) S is a G'-Galois extension of SG',
- (2) $S^{G'} = M_2(Q)$, the matrix ring of order 2 over Q,
- (3) SG' is a projective separable Q-algebra,
- (4) the center C of S is $Q[\sqrt{2}]$ and $C^{G} = Q$, and
- (5) S is not an H-separable extension of S^{G'} because $C \neq C^G$.

Example 2. Let S and G' be given by Example 1. Then S is a G'-Galois extension of $S^{G'}$ that is a projective separable C^{G} -algebra by properties (1) through (4) in Example 1. Then the skew group ring S*G' is a G'HS-extension by Theorem 3.1.

ACKNOWLEDGMENT. This work was done under the support of a Caterpillar Fellowship at Bradley University. The paper is revised under the suggestions of the referee. The author would like to thank him for his valuable suggestions.

REFERENCES

- DEMEYER, F. R., Some Notes On The General Galois Theory Of Rings, Osaka J. Math. 2 (1965), 117-127.
- [2] KANZAKI, T., On Galois Algebra Over A Commutative Ring, Osaka J. Math. 2 (1965), 309-317.
- [3] ALFARO, R. and SZETO, G., Skew Group Rings Which Are Azumaya, Comm. In Algebra 23 (6), (1995), 2255-2261.
- [4] SUGANO, K., On A Special Type Of Galois Extensions, Hokkaido J. Math. 9 (1980), 123-128.
- [5] SZETO, G., On A Class Of Azumaya Algebras, Math. Japon. (to appear).
- [6] DEMEYER, F. R. and INGRAHAM, E., Separable Algebras Over Commutative Rings 181, Springer-Verlag, Berlin, 1971.
- [7] IKEHATA, S., Note On Azumaya Algebras And H-Separable Extensions, Math. J. Okayama Univ. 23 (1981), 17-18.
- [8] OKAMOTO, H., On Projective H-separable Extensions Of Azumaya Algebras, Results In Mathematics 14 (1988), 330-332.