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ABSTRACT. In this paper we will show how to generate Akn+i and S.+! using a copy of S.
and an element of order k in Akn+i and Sk,,+ respectively, for all positive integers n > 2 and all

positive integers k > 2. We will also show how to generate A,,+ and S,,,+ symmetrically using n

elements each of order k, for all n > 2 and all even integers k > 2.
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1. INTRODUCTION
Hammas 1] showed that A2n+l can be presented as

G=A2,+I= <X, Y, TI<X.Y>=S,e T2 [T,S,,_] =I >

for n 4, 6, where [T, Sn_ means that T commutes with Yand with X"2yx, (the generators of S._i).
The relations of the symmetric group S. < X, Y > of degree n are found in Coxeter and Moser [2].

Some relations must be added to the presentation that generates A2.+I in order to complete the coset

enumeration. Also Hammas [1] showed that, for n 4, 6, the group A2.+l can be symmetrically

generated by n elements each of order 2 and of the form To, T T._,, where T T)/= XiT and

T, X satisfy the relations of the group A2,,+. The set {T0, T T._l} is called the symmetric

generating set ofA2.+I see the Definition 2.1 in Section 2 ).

Hammas [3] showed that A2n+l can be presented as

a2,+l <X,Y,TI <X,Y> S,,T2 [T,)] =[TuY’2YX] (X/)
2"+’ (YT,.2)’>

when n is an even integer and S2n+I can be presented as

s,+= <X.r.T, <X.r> S..T =tr,r =trX= (xr)
’’(’’+’) (rr,,.p’>.

when n is odd. Note that the order of the third generator, T, was always 2.
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Also, it has been shown by Hammas [3] that for all ,z > 2 the groups A2.+I and $2,,+ can be

symmetrically generated using ,z elements each of order 2, and of the form T0, T T._ I, where

T T )iT and T, X satisfy the relations of the groups A2.+t. and $2,,+ 1.

In this paper, we give a generalization of the results obtained by Hammas 1-3]. We will show

that, for all k > 2 and for all n > 2, the group generated by X, Y and T is the alternating group

when n and k are all even integers and is the symmetric group St,.+ otherwise. Moreover, relations

will be given to show that, for all k > 2 and for all n > 2, the group

G= <X, Y, TI<X, Y> =S., T =[T,S._]=I >

is Ab,+ when n and k are both even and St,,,+ otherwise. We give permutations that generate A.b,+l

and Sb,+ which satisfy the conditions given in the presentation of the group G. Further, we prove

that, when k is an even integer, G can be symmetrically generated by n permutations each of order k

of the form T0, T! T._ l, where T 1
"f X-iT, satisfying the condition hat TO commutes with

the generators of the group S...
2. PRELIMINARY RESULTS

THEOREM 2.1. Let < a b < n be any integers. Let G be the group generated by the

c3(cle (1, 2 n) and the 3-cycle n, a, b where the highest common factor hcf( n, a, b 1. If n is

an odd integer then G A while, if n is even, then G S..
DEFINITION 2.1. Let G be a group and F T0, T T,,_ be a subset of G where

Ti Tx XiTX for all 0, n-1. Let S. a copy of the symmetric group of degree n be the

normalizer in G of the set F. We define F to be a symmetric generating set of G if and only if G </">

and S. permutes F doubly transitively by conjugation, i.e., Fis realizable as an inner automorphism.

3. PERMUTATIONAL GENERATING SET OF A,,,+ AND SI.+
THEOREM 3.1. For all n > 2 and all k > 2. At,,+ can be generated using a copy of S. and

an element of order k in Ab,+l when n and k are both even and St,,+l can be generated using a copy

of S,, and an element of order k in St,,+ if n or k is odd.

PROOF. Let X (1,2 n)(n+l,n+2 2n)...((k-l)n+l,(k-l)n+2 kn), Y (n-l,n)...(kn-l,kn)

and T (1, n+l, 2n+l, 3n+l (k-2)n+l, kn+l)(2, n+2, 2n+2 (k-l)n+2)...(n, 2n k-) be three

permutations; the first of order n, the second of order 2 and the third of order k. Let H be the group

generated by X and Y. By a result of Burnside and Moore, see Coxeter and" Moser[2] ), the group

H is the symmetric group S.. Let G be the group generated by X, Y and T. We have two cases

Case Let k be an odd integer. Let o: IX, T]. Then /z 1, (k-l)n+l, kn+ 1, (k-l)n+2, 2 ). Let

] tX aT. Then
] I, (k-l)n+2)( 2, kn+l )( n+l, (k-l)n+l, .+2 ).

0 2 k-3

Let 5 xX ]r r r o ’x. Hence
dr= 1, kn, 3n, n+2 2n-l, n+l, 2n+2 3n-l, 2n+l, 2n, 5n, 3.+2 4n-l, 3n+l, 4n+2

5n-1, 4n+ 1, 4n, 7n, 5n+2 6n-1, 5n+1, 6n+2 7n-1, 6n+ 1, 6n,9n (k-6)n+2

(k-5)n-1, (k-6)n+l,(k-5)n+2 (k-4)n-l,(k-5)n+l, (k-5)n, (k-2)n, (k-4)n+2

(k-3)n-l, (k-4)n+l, (k-3)n+2 (k-2)n-l, (k-3)n+l, (k-3)n, (k-2)n+2

(k- l)n- 1, (k-2)n+ 1, (k- l)n, kn+ 1, (k- l)n+3

kn-l, (k-l)n+l,., 2, (k-l)n+2, 3 n-I
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which is a cycle of length kn+ 1. Let K < t, fl 2
>. We claim that K is either At,,,+ or S,,+. To show

this, let 0 be the mapping which takes the element in the position of the permutation fl into the

element in the permutation 1, 2 kaz+ ). Under the mapping 0, the group K will be mapped

into the group

O(K)= <( 1,2 /o+1 ), (n+l, 4, (k-l)n+l)>.

Since k is an odd integer the highest common factor hcf(n+1,4,(k-l)n+ 1) 1. Hence by Theorem 2.1,

if n is an odd integer then 0( K is Skn+l. Hence G is Sk,,+ I. But if n is an even integer then 0( K

is Ak,z+ . Since k is an odd integer, Y is an odd permutation. The action of the generators of Akn+ on

Y is not trivial and therefore G is the symmetric group St,,z+.
Case 2 Let k be an even integer. Let a IX, T]. Then ct 1, (k-l)n+l, kn+l, (k-l)n+2, 2 ). Let

fl aactT. Then
fl 1, (k-1)n+2)( 2, kn+l )( n+l, (k- l)n+l, n+2 ).

(k-4)/2

Let = OtX flTflT fiT a Hence

6= 1, 2, 2n, n, n+2 2n-l, n+l, kn, 4n, 2n+2 3n-l, 2n+l, 3n+2

4n-1, 3n+ 1, 3n, 6n, 4n+2 5n-1, 4n+ 1, 5n+2 6n-1, 5n+ 1,5n, 8n

(k-6)n+2 (k-5)n- 1, (k-6)n+ 1, (k-5)n+2 (k-4)n- l,(k-5)n+ 1, (k-5)n,

(k-2)n, (k-4)n+2 (k-3)n-1, (k-4)n+l, (k-3)n+2 k-2)n-1, (k-3)n+ 1,

(k-3)n, (k-2)n+2 (k- l)n- 1, (k-2)n+ 1, (k- )n, kn+ l,(k- )n+3

kn- 1, (k- l)n+ l,(k- l)n+2, 3 n-

which is a cycle of length kn+ 1. Let K < t, fl >. Using the same method used above we can easily

show that K is the alternating group A+. Now, since k is an even integer, then, if n is an even

integer too, G has to be the alternating group An+ or a proper subgroup of it. Since K is the

alternating group A,+t then G is the alternating group Akn+r But if n is an odd integer then T, the

third generator of G, is an odd permutation. Since the action of the generators of the group K on the

element T is not trivial, the group < d;, fl 2, T > is the symmetric group St<,+. Hence G is the

symmetric group Skn+.
4. SYMMETRIC PERMUTATIONAL GENERATING SET OF An+l and Sn+

THEOREM 4.1. Let X, Y and T be the permutations described in Theorem 3.1 where

T I. Let/" {T0, T Tn_ }, where T T. Let k be an even integer. If n is an even integer

too, then the set F generates the alternating group A+ symmetrically, while, if n is an odd integer,

then the set F generates the symmetric group Skn+ symmetrically.

PROOF. Let To (1,n+l,2n+l,3n+l kn+l)(2,n+2,2n+2 (k-l)n+2)...( n,2n kn ),

T 7
/

1, n+l, 2n+l (k-1)n+l)( 2, n+2, 2n+2 kn+l )...( n, 2n kn T,_ Tx*’-I=
(l,n+l, 2J+l (k-l)n+l)( 2,n+2,2n+2 (k-l)n+2)...(n,2n kn+l ). Let H < F >. We claim that

k k
H _= Akn+t or Skn+ i. To show this, suppose first that n is an odd integer. Let g if is even and

k k kg= +1 if - is odd and let r e if is odd and r + if is even. Consider the element

(TIT2...rn.2)
tZ (TO )Tn_. We find that

tz 1, 2n+l, 4n+l e+l, (-l)n+l, (e.3)n+l (k-l)n+l, n+l, 3n+l, 5n+l

rn+l, (r+l)n+2, (r+3)n+2 (k-l)n+2, n+2, 3n+2, 5n+2 ,rn+2, (r+3)n+2, (r+5)t+2
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(k-2)n+2, 2, 2n+2, 4,,+2 (2)n+2, et+3, (e,+2)n+3 (k-2)n+3, 3, 2,,+3, 4n+3

(e,-2)n+3, (+l)n+3, (+3)n+3 (k-l),,+3, ,,+3, 3n+3, 5,,+3 (r-2)n+3, rn+4, (r+2)n+4

(k-l)n+4, n+4, 3,,+4, 5n+4 (r-2)n+4, (r+l)n+4, (r+3)n+4 (k-2)n+4, 4, 2,,+4, 4n+4

(4)n+4, (2)n+5, &,+5, (-2)n+5 (k-2)n+5, 5, 2n+5, 4,,+5 (-4)n+5, (l)n+5,

(-I-l)n+5, (g,+3)n+5 (k-1),,+5, n+5, 3,,+5, 5n+5 (r-4)n+5, (r-2)n+6, rn+6, (r+2)n+6

(k-1)n+6, n+6, 5n+6, 7,,+6 (r-4)n+6, (r-l)n+6, (r+l)n+6, (r+3)n+6 (k-2)n+6, 6, 2,,+6,

4,2+6 (&6)n+6, (4)n+7, (2)n+7, 6z+7, (+2)n+7 (k-2)n+7, 7, 2n+7, 4n+7

(-6)n+7, (-3)n+7, (- )n+7, (- ),,+7 (k-1 ),2+7, n+7, 3,,+7, 5,,+7 (r-6)n+7,

(r-4)n+8, (r-2)n+8, rn+8 (k-l)n+8, n+8, 5n+8, 7n+8 (r-6)n+8, (r-3)n+8, (r-l)n+8,

(r+l)n+8, (r+3)n+8 (k-2)n+8 ,,-2 n, 3n (k- l)n, kn, 2n, 4n (k-2)n, kn+ 1, n- 1,

2n-2, 3n-3 (n-2)n-(n-2), (n- l)n+ 1, (n+ l)n+ 1, (n+3)n+ (k-2)n+ 1)

which is a cycle of length kn+ 1. Let ]3 T" 17.X. Therefore 1,2,(k- l)n+2,ka2+ l,(k- )n+ which is

a cycle of length 5. Let 7,= 3Or. Since 7,= (2,n+2,n+l) then using the same method used in Theorem

3.1’above we get H < x, 7, T > Sk,,+" Hence H H 6)( H =_ St,,+ I. In the same way we can

show that, when n is an even integer, H

The above results can be summarised in the following table:

n k G’= <X, Y,T> <X, T> < F>
1 even

2 even

3 odd

4 odd

even

odd

even

odd

Akn+l
Skn+l
Sk,+l
Skn+l

Akn+l
Skn+l
Skn+l
Akn+l

Akn+l
Ak.+l
Skn+l
Akn+l

where

G <X,Y,T <X,Y> S,,7s’ IT,Y] =[T,X2YXI ([X,TI)" (YX)", [X,T]
T T

(T’T-I)5 (T./ [X,T] [X,T] )T-Ilk (T{[X,TJ [X,T] )T-I)6 (T[X,T]X)r= >

where r k(k- 1) when k is odd and r 2k(k+ 1) when k is even for all n, k > 3."

From the above table we can see that in the case when k is an odd integer the set

I-’ To,T T._ cannot generate the symmetric group Sk.+t symmetrically. As a matter of fact, as

we verified using the GAP package, the set /" generates the alternating group At,,,+ symmetrically.

But unfortunately we haven’t found a hand proof of this case yet.
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