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1. INTRODUCTION

The purpose of this paper is to introduce and study some reasonable definitions of a concept of local

compactness in approach spaces. The search for the right notion if such a uniquely determined

generalization exists is motivated, not only by the obvious fact that local compactness is an

important and natural concept in topology and hence, as has been made clear by the development
of the theory so far, will be equally important in approach spaces, but more specifically it is

motivated by the search for a description of the exponential objects in AP. In [1] this problem was

successfully solved in PRAP, the category of pre-approach spaces. As is well-known however the

situation in TOP as compared to PRTOP, the category of pretopological spaces, is considerably

more complicated, and the same pattern presents itself in the theory of approach spaces. The link
between notions of local compactness and exponential object in AP will be the topic of forthcoming
work. Unrelated to this problem however, we found that there are a number of intuitively appealing
concepts in AP which have nice properties and which even allow for quantification in the way

Kuratowski’s and Hausdorff’s measures of non-compactness quantify the topological notion of

compactness. In this first part of our paper we concentrate on a basic study of local compactness
concepts and their relationship.
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2. PRELIMINARIES

Given a set X we denote its power set by 2x and the set of its finite subsets by 2(x). We recall

those concepts and results from Lowen [2, 3] which we require in the sequel. A map

:X x 2x [0, c]

is called a distance if it fulfils

(D1) VA 2X,Vx X x A 5(x,A) O.

(D2) Vx X: 5(x,0)

(D3) VA, B 2x, Vx X: 5(x, A t2 B) 5(x, A) A 6(x, S).

(D4) VA 2X,Vx X, Ve [0, o] :6(x,A) <_ 5(x,A()) + e where

A() := {x[5(x,A) <_ e}.

If is a distance on X and A C X, the function 6A X - [0, oo] is defined by 5A(x) := 5(x,A).
A collection (,4(x))xex of ideals in [0, o]x is called an approach system if it fulfils

(A1) Vx X,V 4(x) v(x) 0.

(A) W e X,V e [0,

(V, N ]0, oc[,3 ,4(x) v A N _< + e) = o A(x).

(AS) Vx X, Vo A(x), VN 10,

3(v,),ex I] A(z), Vz, y X: o(y) A N < x(z) + o,(y).
zEx

The elements of an approach system are called local distances. For ease in notation we shall,

whenever convenient denote an approach system (A(x)),ex also simply A.
If A is an approach system then A := (A(x))ex is called a basis for A if it fulfils the properties

(bl) Vx X A(x) is a basis for an ideal.

(b2) Vx X: .A(x) =/it(z) where

/(x) := { [0, oc]x V,N ]0,o0[,=t h(x): ^N_< +e}.

PROPOSITION 2.1 [3]

1. If 4 is an approach system on X then the map

6t" X x 2x -- [0, oo]" (x, A) sup inf qo(a)

is a distance on X.

$. If 6 is a distance on X then the system At where for all x X

A,(x) { [0, o01x VA c X-inf o(a) < 5(x,A)}
aA

is an approach system on X.
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3..A. .,4 and 6.a 6.

A set X equipped with an approach system or equivalently a distance is called an approach space

and is usually denoted (X, Jl). The associated distance is usually denoted simply 6 instead of

6A and analogously if 5 is the primary defined structure, A is usually simply denoted ,4, unless

confusion might occur.

PROPOSITION 2.2 [3] If A is a basis for ,4 then . is also obtained by

(,a) sup

If (X, ,4) and (X’, 4’) are approach spaces and f X X’ is a map then f is called a contraction

if it fulfils any of the following equivalent (see Lowen [3]) conditions:

(el) Vz X, Vo’ A’(f(x)) o’ o f

(c2) For any basis h’ for Ar, Vx X, re’ A’(f(x)) ’ o f e A(x).

(c3) Vx X, VA C X: ’(f(x), f(A)) <_ (x,A).

Approach spaces and contractions form a topological construct Lowen [3] which we denote AP.

For categorical concepts, in particular topological categories, we refer to Admek et al. [4]. TOP

can be embedded as a bireflective and bicoreflective subconstruct of AP. The embeddingsfunctor

is given by (X, 7") --+ (X, AT) leaving morphisms unaltered and where AT is the approach system

AT(x) := {o [0, c]x o(x) 0, o u.s.c, at x} for every x X, and which has as basis the

collection {Or V neighborhood of x for T} for every x X, where Or(x) 0 if x V and

Oy(x) cx if x V. The associated distance is given by 6(x, A) 0 if x and 6(x, A) if

x . The subconstruct thus obtained is isomorphic to TOP. We recall that the bicoreflection of

(X,A) in TOP is given by idx (X,,4-a) -+ (X, JI) where 7 is the topology on X determined

by the neighborhood system

or equivalently by the closure operator := {x X (x, A) 0} for every A 2x.
The construct pq-MET of extended pq-metric spaces and non-expansive maps too can be

embedded as a bicoreflective subconstruct of AP. The embedding is given by (X, d) -- (X,)leaving morphisms unaltered and where Ad is the approach system

J[d(x) := {o [0, ]x [o _< d(x,-)}, Vx e X

with obvious basis consisting of the single element d(x, .). As to be expected the associated

distance is given by 6(x, A) infaea d(x, a).
As for topological spaces a convergence theory can be developed in AP (see E. and R. Lowen

[5, 6] for more details). The difference with topological spaces however is that with each filter and

each point we can give a distance the point "is away from being a limit point" of the filter. Precisely

this goes as follows. Given a set X, F(X) is the set of all filters on X; if " E F(X), then U(’)
is the set of all ultrafilters finer than ’. If C 2x then stackx := {B C X G E G c B},
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if G consists of a single set G we write stackxG and if moreover G consists of a single point a, we

write stackxa for short. If no confusion can occur, we drop the subscript X. Also, if F C X we

abbreviate U(stack F) by U(F). The set sec " is defined as the union of all ultrafilters finer than

’, which means sec " := {A C X VF E " A A F # 0}. Let (X, 5) be an approach space and

:F F(X), then the limit (-function) of is defined as

’(z) := sup (f(z, A), Vz X.
AEsec

It will be useful also to have a description of 6 not in terms of 6 but in terms of the associated

approach system t.

PROPOSITION 2.3 [7] Let (X, .A) be an approach space. For any yz E F(X) and x E X

we have

AAgV(x)= sup inf_supo(y)

where both .4 and .T may be replaced by bases.

It is worthwile to mention that limits also as in TOP provide yet a third way to describe approach

spaces (see E. and R. Lowen [5] for more details). For us it suffices to mention that the distance

5 can be recovered from 6 by

(x,A)= inf )lJ(x).
uu(A)

Convergence in the topological bicoreflection (X, 7) of an approach space (X, 5) can easily be

derived from the limit associated with 5. If " F(X) then " - x in T if and only if(x) 0.

In the case of cx)-pq-metric spaces the associated limit takes on a more simple and intuitive

form. If " E F(X) then

Y(x) inf sup d(x, y),
F.yF

and in case " is generated by a sequence (x,), this simply means that ’(x) lim sup d(x,

DEFINITION 2.4 Given an approach space (X,A), we define the measure o.f compactness
oI X as

#c(X) sup inf /(x).
uev(x) ex

The idea behind this definition is the following. Compactness means every ulrafilter should

have a convergence point. Therefore the information given by #e is based on the verification for all

ultrafilters what are their "bes convergence" points. Before all else we give a number of equivalent
forms of this definition.

PROPOSITION 2.5 [2] For any approach space (X, riO, we have

(X) sup inf sup inf (x)(z)
pEI’I=x A(=) YE2(x) zEX

sup inf sup inf (x)(z)
cEl-[=x A(x) YE2(X) zEX xEY

where A is a basis for the approach system A.
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THEOREM 2.6 [2]

1. If (X, AT) is a topological approach space then (X, T) is compact if and only if u(X) O.

2. If (X,‘4d) is an o-pq-metric approach space then (X,d) is totally bounded if and only if
u(x) =o.

3. If (X, ‘4d) is a pq-metric approach space then (X, d) is bounded if and only if #(X) < .
THEOREM 2.7 [2]

1. If (X,A) and (X’,A’) are approach spaces and f (X,A) (X’,A’) is a surjective

contraction then #e(X’) < #e(X).

2. If (X, Aj)Ij is a family of approach spaces then

3. SOME NOTIONS OF LOCAL COMPACTNESS IN AP

In this section we will define some notions of local compactness and basis-local compactness in

AP, which on topological spaces coincide with the topological notions of local compactness and

basis-local compactness. We will denote the notions of local compactness by LCn where n is a

number between 1 and 5, and the associated notions of basis-local compactness likewise by BLCn.

DEFINITION 3.1 Let (X,,4) be an approach space.

1. (X, ,4) is LC1 if and only if its topological coreflection is locally compact.

2. Define

(x,.) Lee == Yx X, VY x, 3F Y #(F) 0

,=, v e x,v e v(): o(v) o,

where ])(x) is the neighborhood filter of x in the topological coreflection.

Define

(X, .,4) is LC3 Yx X,.T x- inf (F) 0
F{"

== VxX" inf #c(V)=O
vv(x)

,=, Vx X, Ve > 0,3iv A(z),3 > 0:

({ < 6}) < .
4. (X,‘4) is LC4 if and only if

VxX,’v’e>O: inf (F)<e,
FeV,(x)

where ))e(x):= stack {{iv < } iv ‘4(x)}.
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5. (X, ,4) is LC5 if and only if

VxX,Ve>0" inf pc(F)< inf

It is easily verified that the given definitions of LC2 are equivalent, and likewise are those of LC3.

We have the following obvious relations between the different LCn.

PROPOSITION 3.2 LC1 LC2 LC3 LC4 LC5.

PROPOSITION 3.3 Let (X, T) be a topological space.

Then (X, T) is locally compact

(X, AT-) is LC (X, AT-) is LC5.

This is a straightforward result and it shows the LCn can be considered as generalizations of

topological local compactness in the context of approach spaces. Notice that for a topological

space, Ve(x) V(x) for every e > 0 and every x X.

PROPOSITION 3.4 1. Let (X, d) be an oc-pq-metric space. Then (X, d) is LC2 if and
only if every point possesses a totally bounded neighborhood.

2. Every c-pq-metric space is LC3 and LC4.

PROOF.

1. Let (X, d) be an x-pq-metric space. Then (X, d) is LC2 if and only if Vx X, 3V l)(x)
#c(V) 0. Denote the open ball with center y and radius e by B(y,), then pc(V) 0 if

and only if Ve > 0, 3Y 2(v) V C [.Jy B(y, ), if and only if V is totally bounded.

2. Since LC4 implies LC3 we only have to show every c-pq-metric space (X, d) is LC4. Now
(X, d) is LC4 if and only if for every x X and every e > 0, inffev,(x)pc(F) _< . But
B(x,e) belongs to ])e(x) and by adapting the first part of the proof we see #c(B(x,e)) <_ .

For every LCn, we will introduce a corresponding notion BLCn of basis-local compactness.

DEFINITION 3.5 Let (X,.4) be an approach space.

1. (X,A) is BLC1 if and only if its TOP-coreflection is basis-locally compact.

2. (X, ,4) is BLC2 if and only if

Vx X, VV 12(x), SW V(x) W C V and #c(W) O.

3. (X, ‘4) is BLC3 if and only if

VxX- sup inf #(W)=0.
VV(x) wv()WCV

4- (X,A) is BLC if and only if

VxX,Ve>0,VFre(z),Ve’<e- inf #c(G) <
GE(z)
GCF
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5. (X, .,4) is BLG5 if and only if

Vx fi X,V > O, VF V(z) V’ < e" inf #(G) < inf SVe(x)(y).
GCF

If an approh space is BLCn, then it is also LCn. In order to see this, notice that we have

Ye(x) ,<e,(x) for eve x X and > 0. The relations between the different BLCn are

for the LCn:

PROPOSITION 3.6 BLC1 BLC2 BLC3

PROPOSITION 3.7 Let (X, T) be a topologil sce.
Then (X, T) bas-locally compact (X, AT) BLC1 (X, Av) BLC2 (X, AT) BLC3

(X,A) u BLC4 (X,A) is BLC5.

This rult illustrates the BLCn can be ewed generalizations of topological bis-local com-

ptness in the context of approach spaces. For --metric spaces, we get the following result.

PROPOSITION 3.8 1. Let (X, d) be an -pq-metric space. Then (X, d)
and only i/every point possesses a neighborhoodb coisting of totally bounded neighbor-

hoo&.

2. Eve --metc space is BLC3 and BLC.

For some notions of local compactness in AP we can introduce a meure of local comptns

which is a generalization in which all the nice properti are preserved.

DEFINITION 3.9 Let (X, A) be an approach space.

Lc3(X) := sup inf pc(V).
x vv()

UBZC(X) := sup sup inf
xX V() wv()

WCV

:= ( v o.
zeX >0

.BLc4(X) := supsup sup sup ( inf ,c(G) e’) V O.
GCF

U5cs(X) := supsup ( inf u(F) inf AV(x)(y)) V 0.
xx >0

Lcs(X) := supsup sup sup ( inf c(G) inf AV,, (x) (y)) v 0.
xx >0 FV,(x)’< av(,) yx

GCF

For n {3, 4, 5}, ()Lcn(X) is called the meure of (b-) local compactness of X. This is

justified by the follong proposition.

PROPOSITION 3.10 I (X,A) an approach space and n {3, 4, 5},
then ()Lc(X) 0 if and oy if (X,A) (B)L.

The following inualities can eily be check.

PROPOSITION 3.11 Let (X,A) be an appwach space. Then

1. For all n. [A(B)LC3(X)

__
](B)Lc4(X)

__
I(B)Lcs(X). B



436 R. LOWEN AND C. VERBEECK

4. COUNTEREXAMPLES

Proposition 3.2 gives some relations between the different notions of local compactness in AP. In
this section, we will show these relations are really all there is to find, except perhaps LC4 = LCb.

1. Note that there exist approach spaces which are not LC3, for instance, every topological

space which does not possess local compactness.

2. To prove LC2 :) LC1, just consider the metric space (d, d) of rational numbers with the

euclidean metric. Every point possesses a totally bounded neighborhood, so ((, d) is LC2.

But clearly the topological coreflection is not locally compact, so ((, d) is not LC1.

3. We shall now show LC5 LC2. To this end, consider the metric (Hilbert) space (12, d).
Since it is a metric space, (l2, d) is LC4. We already know that for all x 6 and all e > 0,

infet2 Ar(x)(y) < 6. We shall prove that also inft2 Ar(x)(y) > 6:

infAVe(z)(y) inf sup 6(y,A)
Y6-.12 Y12 A.sec Ve(x)

inf sup inf d(y,a).
Y6--12 ACB(z,e)#$ a6..A

Now take y 6 12. Ify 9 B(x,e), define A := {x}, then it is obvious that ACIB(x,e) :/:. and

infaeA d(y,a) d(y,x) >_ 6. If y 6_. B(x,e) \ {x}, we can find some y’ 6 B(x,e) such that

d(y, y’) _> e. In that case, choose A := {y’}. If y x then supanB(,e)# infaeA d(x, a) 6.

Hence we can conclude infet AVe(x)(y) e. This implies (/2, d) is also LCb. Since no point

in (/, d) has a totally bounded neighborhood, (/, d) is not LC2.

4. In order to see LC1 LC4, consider the following approach space (X, A): Let X be a set,- a filter on X and f" X [0, oo] a function. If ; is a filter on X and x 6 X, we define

f(x) ifY stack x C O and ; # stack x
Ag;(x) A(j);(x):= oo if’ stackx g ;

0 if ; stack x.

In E. and R. Lowen [6] it was shown that (X, A) is an approach space. Moreover, if H is an

ultrafilter on X and x 6 X,

f(x) if’CHandH#stackx
AH(x) o if " /2 and H # stack x

0 if H stack x.

If there exists an x 6 X such that H stackx, then inf,x A/g(x) 0. If for every element

x e X, H # stack x and Y C , then inf,ex AH(x) infzex f(x). If for every element x ofX,
/4 # stack x and " fZ H, then infzx A/4(x) oo. So we get the following three cases. If X is

finite (i.e., all ultrafilters on X are point filters), then #c(X) supuev(x) inf,ex AH(X) 0.
If X is infinite and if for every ultratilter H on X, not being a point filter, " C H, then

p(X) influx f(x). Finally, if X is infinite and there exists some ultrafilter/4 on X,
not a point filter, such that " if H, then #(X) oo. Let B be the intersection of all
ultrafilters on X which are not a point filter. A straightforward verification shows that
B {X \ A A is finite}. Using this fact, we can state

0 if X is finite
#c(X) inf,x f(x) if X is infinite and Y C {X \ A A is finite}

c if X is infinite and 9v {X \ A A is finite}.
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In the sequel we will suppose X is infinite, is an ultrafilter on X with only infinite elements,

and f o. Then for every ultrafilter L/on X,

f(x) if’=L/

AL/(x) if .T /2 and L/# stackx
0 if/,/= stack x.

In order to know VE(x) we need to find A(x).

A(x) * Vbl U(X) sup inf (z) < M2(x)
UEbl zEU

sup in[ (z) < f(x) and sup inf (z) 0
FzF Ustk zU

sup inf (z) </(x) and (x) 0.
FzF

We infer

V(x) stack {{qa < e} sup inf (z) < f(x) and q(x) 0}.
F6.. z6.F

Notice that for any G C X the initial structure on G is given by A(yG,I,a and consequently

the expression for #c(G) is obtained by replacing X by G in the expression for #c(X). Hence

we get

inf #c(G) 0 if there exists some finite G V(x),

inf #e(G) inf inf f(z) if every G VE(x)
{C\A A is finite}D.’l

is infinite and there exists some G l)(x) such that

(G \ A IA is finite} D ’IG, and

inf #c(G) oc if every G Ve(x) is infinite and satisfies
aev(x)

{G \ A[A is finite} ;fi -O-

Consider some x X such that f(x) < . If we take e > f(z) then V(z) contains only

infinite elements: if qa satisfies supF.infzFp(z < f(x) and (x) 0, then for every

F " and for every O > 0, there exists some z F such that (z) < f(z) + g, so { < }
is infinite, for " is an ultrafilter containing only infinite elements. The fact that " is an

ultrafilter also implies that {G \ A A is finite} -G for every G V(x), So we can

conclude infGv,(x)#,(G) c > s, whence (X, A) is not LC4.

Now choose a function f as before, but moreover satisfying f > 0. For every x X,
(z) stack x, so {x} is a compact neighborhood of z. This means (X, ) is LC1.
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