ASYMPTOTIC THEORY FOR A CRITICAL CASE FOR A GENERAL FOURTH-ORDER DIFFERENTIAL EQUATION

A.S.A. AL-HAMMADI

Department of Mathematics College of Science University of Bahrain P.O. Box 32088 Isa Town, BAHRAIN

(Received November 27, 1996 and in revised form November 11, 1997)

ABSTRACT. In this paper we identify a relation between the coefficients that represents a critical case for general fourth-order equations. We obtained the forms of solutions under this critical case

KEY WORDS AND PHRASES: Asymptotic, eigenvalues. 1991 AMS SUBJECT CLASSIFICATION CODES: 34E05.

1. INTRODUCTION

We consider the general fourth-order differential equation

$$(p_0y'')'' + (p_1y')' + \frac{1}{2}\sum_{j=0}^{1} \left[\left\{ q_{2-j}y^{(j+1)} \right\} + \left\{ q_{2-j}y^{(j+1)} \right\}^{(j)} \right] + p_2y = 0$$
 (1.1)

where x is the independent variable and the prime denotes d/dx. The functions $p_i(x)(0 \le i \le 2)$ and $q_i(x)(i = 1, 2)$ are defined on an interval $[a, \infty)$ and are not necessarily real-valued and are all nowhere zero in this interval. Our aim is to identify relations between the coefficients that represent a critical case for (1.1) and to obtain the asymptotic forms of our linearly independent solutions under this case. Al-Hammadi [1] considered (1.1) with the case where p_0 and p_2 are the dominate coefficients and we give a complete analysis for this case. Similar fourth-order equations to (1.1) have been considered previously by Walker [2, 3] and Al-Hammadi [4]. Eastham [5] considered a critical case for (1 1) with $p_1 = q_2 = 0$ and showed that this case represents a borderline between situations where all solutions have a certain exponential character as $x \to \infty$ and where only two solutions have this character.

The critical case for (1.1) that has been referred, is given by:

$$\frac{q_1'}{q_1} \sim \text{const.} \ \frac{p_2}{q_2} \ (i = 1, 2), \quad \frac{\left(p_1 q_1^{-1/2}\right)'}{p_1 q_1^{-1/2}} \sim \text{const} \ \frac{p_2}{q_2}. \tag{1.2}$$

We shall use the recent asymptotic theorem of Eastham [6, section 2] to obtain the solutions of (1.1) under the above case. The main theorem for (1.1) is given in section 4 with discussion in section 5.

2. A TRANSFORMATION OF THE DIFFERENTIAL EQUATION

We write (1.1) in the standard way [7] as a first order system

$$Y' = AY, \tag{2.1}$$

where the first component of Y is y and

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{2}q_1p_0^{-1} & p_0^{-1} & 0 \\ -\frac{1}{2}q_2 & -p_1 + \frac{1}{4}q_1^2p_0^{-1} & -\frac{1}{2}p_0^{-1}q_1 & 1 \\ -p_2 & -\frac{1}{2}q_2 & 0 & 0 \end{bmatrix}.$$
 (2.2)

As in [4], we express A in its diagonal form

$$T^{-1}AT = \Lambda, \tag{2.3}$$

and we therefore require the eigenvalues λ_j and eigenvectors $v_j (1 \le j \le 4)$ of A.

The characteristic equation of A is given by

$$p_0\lambda^4 + q_1\lambda^3 + p_1\lambda^2 + q_2\lambda + p_2 = 0.$$
 (2.4)

An eigenvector v_j of A corresponding to λ_j is

$$v_j = \left(1, \lambda_j, p_0 \lambda_j^2 + \frac{1}{2} q_1 \lambda_j, -\frac{1}{2} q_2 - p_2 \lambda_j^{-1}\right)^t$$
(2.5)

where the superscript t denotes the transpose. We assume at this stage that the λ_j are distinct, and we define the matrix T in (2.3) by

$$T = (v_1 \ v_2 \ v_3 \ v_4). \tag{2.6}$$

Now from (2.2) we note that EA coincides with its own transpose, where

$$E = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$
 (2.7)

Hence, by [8, section 2(i)], the v_j have the orthogonality property

$$(Ev_k)^t v_j = 0 \quad (k \neq j).$$
 (2.8)

We define the scalars $m_j (1 \le j \le 4)$ by

$$m_j = (Ev_j)^t v_j, \tag{2.9}$$

and the row vectors

$$\boldsymbol{r}_j = (\boldsymbol{E}\boldsymbol{v}_j)^t. \tag{2.10}$$

Hence, by [8, section 2]

$$T^{-1} = \begin{bmatrix} m_1^{-1} r_1 \\ m_2^{-1} r_2 \\ m_3^{-1} r_3 \\ m_4^{-1} r_4 \end{bmatrix},$$
 (2.11)

and

$$m_j = 4p_0\lambda_j^3 + 3q_1\lambda_j^2 + 2p_2\lambda_j + q_2.$$
 (2.12)

Now we define the matrix U by

$$U = (v_1 \ v_2 \ v_3 \ \epsilon_1 \ v_4) = TK, \tag{2.13}$$

where

$$\epsilon_1 = \frac{p_0 p_1}{q_1^2},\tag{2.14}$$

the matrix K is given by

$$K = dg(1, 1, 1, \epsilon_1).$$
 (2.15)

By (2.3) and (2.13), the transformation

$$Y = UZ \tag{2.16}$$

takes (2.1) into

$$Z' = (\Lambda - U^{-1}U')Z.$$
 (2.17)

Now by (2.13),

$$U^{-1}U' = K^{-1}T^{-1}T'K + K^{-1}K', (2.18)$$

where

$$K^{-1}K' = dg(0, 0, 0, \epsilon_1^{-1}\epsilon_1'), \qquad (2.19)$$

and we use (2.15).

Now we write

$$U^{-1}U' = \phi_{ij} \quad (1 \le i, j \le 4), \tag{2.20}$$

and

$$T^{-1}T' = \psi_{ij} \quad (1 \le i, j \le 4), \tag{2.21}$$

then by (2.18) to (2.21), we have

$$\phi_{ij} = \psi_{ij},$$
 (1 ≤ i, j ≤ 3), (2.22)

$$\phi_{44} = \psi_{44} + \epsilon_1^{-1} \epsilon_1', \tag{2.23}$$

$$\phi_{i4} = \psi_{i4}\epsilon_1 \qquad (1 \le i \le 3), \qquad (2.24)$$

$$\phi_j = \epsilon_1^{-1} \psi_{4j} \qquad (1 \le j \le 3). \tag{2.25}$$

Now to work out $\phi_{ij} (1 \le i, j \le 4)$, it suffices to deal with ψ_{ij} of the matrix $T^{-1}T'$. Thus by (2.6), (2.10), (2.11) and (2.12) we obtain

$$\psi_{ii} = \frac{1}{2} \frac{m'_i}{m_i} \quad (1 \le i \le 4) \tag{2.26}$$

and, for $i \neq j, 1 \leq i, j \leq 4$

$$\psi_{ij} = m_i^{-1} \left\{ \lambda_j' \left(p_0 \lambda_i^2 + \frac{1}{2} q_1 \lambda_i \right) + \lambda_i \left(p_0 \lambda_j^2 + \frac{1}{2} q_1 \lambda_j \right)' - \frac{1}{2} q_2' - \left(p_2 \lambda_j^{-1} \right)' \right\}.$$
 (2.27)

Now we need to work out (2.26) and (2.27) in some detail in terms of p_0 , p_1 , p_2 , q_1 and q_2 and then (2.22)-(2.25) in order to determine the form of (2.17).

3. THE MATRICES L, $T^{-1}T$ and $U^{-1}U$

In our analysis, we impose a basic condition on the coefficients, as follows:

(I) $p_i(0 \le i \le 2)$ and $q_i(i = 1, 2)$ are nowhere zero in some interval $[a, \infty)$, and

$$\frac{p_i}{q_{i+1}} = o\left(\frac{q_{i+1}}{p_{i+1}}\right) \quad (i = 0, 1) \quad (x \to \infty)$$
(3.1)

and

$$\frac{q_1}{p_1} = o\left(\frac{p_1}{q_2}\right). \tag{3.2}$$

If we write

$$\epsilon_1 = \frac{p_0 p_1}{q_1^2}, \quad \epsilon_2 = \frac{q_1 q_2}{p_1^2}, \quad \epsilon_3 = \frac{p_2 p_1}{q_2^2},$$
 (3.3)

then by (3.1) and (3.2) for $(1 \le i \le 3)$

$$\epsilon_i = o(1) \quad (x \to \infty). \tag{3.4}$$

Now as in [4], we can solve the characteristic equation (2.4) asymptotically as $x \to \infty$. Using (3.1), (3.2) and (3.3) we obtain the distinct eigenvalues λ_j as

$$\lambda_1 = -\frac{p_2}{q_2}(1+\delta_1), \tag{3.5}$$

$$\lambda_2 = -\frac{q_2}{p_1}(1+\delta_2), \tag{3.6}$$

$$\lambda_3 = -\frac{p_1}{q_1}(1+\delta_3), \tag{3.7}$$

and

$$\lambda_4 = -\frac{q_1}{p_0}(1+\delta_4), \tag{3.8}$$

where

$$\delta_1 = 0(\epsilon_3), \quad \delta_2 = 0(\epsilon_2) + 0(\epsilon_3), \quad \delta_3 = 0(\epsilon_1) + 0(\epsilon_2), \quad \delta_4 = (\epsilon_1). \tag{3.9}$$

Now by (3.1) and (3.2), the ordering of λ_j is such that

$$\lambda_j = o(\lambda_{j+1}) \quad (x \to \infty, 1 \le j \le 3). \tag{3.10}$$

Now we work out $m_j(1 \le j \le 4)$ asymptotically as $x \to \infty$, hence by (3.3)-(3.9), (2.12) gives for $(1 \le j \le 4)$

$$m_1 = q_2 \{1 + 0(\epsilon_3)\}, \tag{3.11}$$

$$m_2 = -q_2\{1+0(\epsilon_2)+0(\epsilon_3)\}, \qquad (3.12)$$

$$m_3 = \frac{p_1^2}{q_1} \{ 1 + 0(\epsilon_1) + 0(\epsilon_2) \}, \qquad (3.13)$$

and

$$m_4 = -\frac{q_1^3}{p_0^2} \{1 + 0(\epsilon_1)\}.$$
(3.14)

Also on substituting λ_j (j = 1, 2, 3, 4) into (2.12) and using (3.5)-(3.8) respectively and differentiating, we obtain

$$m_1' = q_2' \{ 1 + 0(\epsilon_3) \} + q_2 \{ 0(\epsilon_3') + 0(\epsilon_3 \delta_1') + 0(\epsilon_2' \epsilon_3^2) + 0(\epsilon_1' \epsilon_2^2 \epsilon_3^3) \},$$
(3.15)

$$m_2' = -q_2' \{ 1 + 0(\epsilon_2) + 0(\epsilon_3) \} + q_2 \{ 0(\delta_2') + 0(\epsilon_2') + 0(\epsilon_1' \epsilon_2^2) \},$$
(3.16)

$$m'_{3} = \left(\frac{p_{1}^{2}}{q_{1}}\right)' \{1 + 0(\epsilon_{1}) + 0(\epsilon_{2})\} + \frac{p_{1}^{2}}{q_{1}} \{0(\delta'_{3}) + 0(\epsilon'_{2}) + 0(\epsilon'_{1})\},$$
(3.17)

and

$$m'_{4} = -\left(\frac{q_{1}^{3}}{p_{0}^{2}}\right)'\{1+0(\epsilon_{2})\} + \frac{q^{3}}{p_{0}^{2}}\{0(\epsilon'_{2}\epsilon_{1}^{2})+0(\epsilon'_{1})\}.$$
(3.18)

At this stage we also require the following conditions

(II)
$$\frac{p'_0}{p_0}\epsilon_i, \quad \frac{p'_1}{p_1}\epsilon_i, \quad \frac{q'_1}{q_1}\epsilon_i, \quad \frac{q'_2}{q_2}\epsilon_i, \quad \frac{p'_2}{p_2}\epsilon_2, \quad \frac{p'_2}{p_2}\epsilon_3 \quad \text{are all}$$
$$L(a,\infty) \quad (1 \le i \le 3). \tag{3.19}$$

Further, differentiating (3.3) for $\epsilon_i (1 \le i \le 3)$, we obtain

$$\epsilon_1' = 0\left(\frac{\underline{p}_0'}{p_0}\epsilon_1\right) + 0\left(\frac{\underline{p}_1'}{p_1}\epsilon_1\right) + 0\left(\frac{\underline{q}_1'}{q_1}\epsilon_1\right), \tag{3.20}$$

$$\epsilon_2' = 0\left(\frac{q_1'}{q_1}\epsilon_2\right) + 0\left(\frac{q_2'}{q_2}\epsilon_2\right) + 0\left(\frac{p_1'}{p_1}\epsilon_2\right),\tag{3.21}$$

and

$$\epsilon'_{3} = 0\left(\frac{p'_{2}}{p_{2}}\epsilon_{3}\right) + 0\left(\frac{p'_{1}}{p_{1}}\epsilon_{3}\right) + 0\left(\frac{q'_{2}}{q_{2}}\epsilon_{3}\right).$$
(3.22)

For reference shortly, we note on substituting (3.5)-(3.8) into (2.4) and differentiating, we obtain

$$\delta_1' = \mathbf{0}(\epsilon_3') + \mathbf{0}(\epsilon_2'\epsilon_3^2) + \mathbf{0}(\epsilon_1'\epsilon_3^3\epsilon_2^2), \qquad (3.23)$$

$$\delta_2' = 0(\epsilon_2') + 0(\epsilon_3') + 0(\epsilon_1'\epsilon_3^2), \tag{3.24}$$

$$\delta'_3 = 0(\epsilon'_1) + 0(\epsilon'_2) + 0(\epsilon'_3\epsilon^2), \qquad (3.25)$$

and

$$\delta'_4 = \mathbf{0}(\epsilon'_1) + \mathbf{0}(\epsilon'_2\epsilon_1^2) + \mathbf{0}(\epsilon'_3\epsilon_1^2\epsilon_2^2). \tag{3.26}$$

Hence by (3.19) and (3.20)-(3.26)

$$\epsilon'_j$$
 and δ'_j are $L(a,\infty)$. (3.27)

For the diagonal elements $\psi_{ii}(1 \le j \le 4)$ in (2.26) we can now substitute the estimates (3.11)-(3.18) into (2.26). We obtain

$$\psi_{11} = \frac{1}{2} \frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2} \epsilon_3\right) + 0(\epsilon_3') + 0(\epsilon_3\delta_1') + 0(\epsilon_2'\epsilon_3^2) + 0(\epsilon_1'\epsilon_2^2\epsilon_3^3), \tag{3.28}$$

$$\psi_{22} = \frac{1}{2} \frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2} \epsilon_2\right) + 0\left(\frac{q_2'}{q_2} \epsilon_3\right) + 0(\delta_2') + 0(\epsilon_2') + 0(\epsilon_1' \epsilon_2^2), \tag{3.29}$$

$$\psi_{33} = \frac{1}{2} \left[2 \frac{p_1'}{p_1} - \frac{q_1'}{q_1} \right] + 0 \left(\frac{p_1'}{p_1} \epsilon_1 \right) + 0 \left(\frac{p_1'}{p_1} \epsilon_2 \right) \\ + 0 \left(\frac{q_1'}{q_1} \epsilon_1 \right) + 0 \left(\frac{q_1'}{q_1} \epsilon_2 \right) + 0(\delta_3') + 0(\epsilon_2') + 0(\epsilon_1'),$$
(3.30)

$$\psi_{44} = \frac{1}{2} \left[3 \frac{q_1'}{q_1} - 2 \frac{p_0'}{p_0} \right] + 0 \left(\frac{q_1'}{q_1} \epsilon_1 \right) + 0 \left(\frac{p_0'}{p_0} \epsilon_1 \right) + 0(\delta_4') + 0(\epsilon_2' \epsilon_1^2) + 0(\epsilon_1').$$
(3.31)

Now for the non-diagonal elements $\psi_{ij} (i \neq j, 1 \leq i, j \leq 4)$, we consider (2.27). Hence (2.27) gives for i = 1 and j = 2

$$\psi_{12} = m_1^{-1} \left\{ \lambda_2' \left(p_0 \lambda_1^2 + \frac{1}{2} q_1 \lambda_1 \right) + \lambda_1 \left(p_0 \lambda_2^2 + \frac{1}{2} q_1 \lambda_2 \right)' - \frac{1}{2} q_2' - \left(p_2 \lambda_2^{-1} \right)' \right\}.$$
(3.32)

Now by (3.5), (3.6), (3.3) and (3.11) we have

$$m_1^{-1}\lambda_2'\left(p_0\lambda_1^2 + \frac{1}{2}q_1\lambda_1\right) = \frac{1}{2}\left[\frac{q_2'}{q_2} - \frac{p_1'}{p_1}\right]\epsilon_2\epsilon_3\{1 + 0(\epsilon_3)\} + 0(\epsilon_2\epsilon_3\delta_2'),$$
(3.33)

$$m_{1}^{-1}\lambda_{1}\left(p_{0}\lambda_{2}^{2}+\frac{1}{2}q_{1}\lambda_{2}\right)'=0(\epsilon_{2}\epsilon_{3}\delta_{2}')+0(\epsilon_{2}^{2}\epsilon_{1}\epsilon_{3})\left[\frac{p_{0}'}{p_{0}}+2\frac{q_{2}'}{q_{2}}-2\frac{p_{1}'}{p_{1}}\right]$$
$$+0(\epsilon_{2}\epsilon_{3})\left[\frac{q_{1}'}{q_{1}}+\frac{q_{2}'}{q_{2}}-\frac{p_{1}'}{p_{1}}\right],$$
(3.34)

$$-\frac{1}{2}q_2'm_1^{-1} = -\frac{1}{2}\frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2}\epsilon_3\right), \qquad (3.35)$$

and

$$m_1^{-1}(p_2\lambda_2^{-1})' = 0\left(\frac{p_2'}{p_2}\epsilon_3\right) + 0\left(\frac{p_1'}{p_1}\epsilon_3\right) + 0\left(\frac{q_2'}{q_2}\epsilon_3\right) + 0(\epsilon_3\delta_2').$$
(3.36)

Hence by (3.33)-(3.36), (3.32) gives

$$\psi_{12} = -\frac{1}{2} \frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2}\epsilon_3\right) + 0\left(\frac{p_1'}{p_1}\epsilon_3\right) + 0\left(\frac{p_2'}{p_2}\epsilon_3\right) + 0\left(\frac{p_0'}{p_0}\epsilon_1\epsilon_2^2\epsilon_3\right) + 0(\epsilon_3\delta_2') + 0\left(\frac{q_1'}{q_1}\epsilon_2\epsilon_3\right).$$
(3.37)

Similar work can be done for the other elements ψ_{ij} , so we obtain

$$\psi_{13} = -\frac{1}{2} \frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2} \epsilon_3\right) + 0\left(\frac{p_1'}{p_1} \epsilon_3\right) + 0\left(\frac{q_1'}{q_1} \epsilon_3\right) + 0(\epsilon_3 \delta_3') \\ + 0\left(\frac{p_0'}{p_0} \epsilon_1 \epsilon_3\right) + 0\left(\frac{p_2'}{p_2} \epsilon_2 \epsilon_3\right).$$
(3.38)

$$\psi_{14} = -\frac{1}{2} \frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2} \epsilon_3\right) + 0\left(\frac{q_1'}{q_1} \epsilon_1^{-1} \epsilon_3\right) + 0\left(\frac{p_0'}{p_0} \epsilon_1^{-1} \epsilon_3\right) \\ + 0(\epsilon_1^{-1} \epsilon_3 \delta_{4'}') + 0\left(\frac{p_2'}{p_2} \epsilon_1 \epsilon_2 \epsilon_3\right).$$
(3.39)

$$\psi_{21} = -\frac{1}{2} \frac{q_2'}{q_2} + 0\left(\frac{q_2'}{q_2}\epsilon_2\right) + 0\left(\frac{q_2'}{q_2}\epsilon_3\right) + 0(\delta_1') + 0\left(\epsilon_2 \frac{p_2'}{p_2}\right) \\ + 0\left(\epsilon_3 \frac{p_2'}{p_2}\right) + 0\left(\frac{q_1'}{q_1}\epsilon_2\epsilon_3\right) + 0\left(\frac{p_0'}{p_0}\epsilon_1\epsilon_2^2\epsilon_3^2\right)$$
(3.40)

$$\begin{split} \psi_{23} &= \left[\frac{1}{2} \frac{q_1'}{q_1} - \frac{p_1'}{p_1} + \frac{1}{2} \frac{q_2'}{q_2} \right] + 0 \left(\frac{q_1'}{q_1} \epsilon_1 \right) + 0 \left(\frac{q_1'}{q_1} \epsilon_2 \right) + 0 \left(\frac{q_1'}{q_1} \epsilon_3 \right) \\ &+ 0 \left(\frac{p_1'}{p_1} \epsilon_1 \right) + 0 \left(\frac{p_1'}{p_1} \epsilon_2 \right) + 0 \left(\frac{p_1'}{p_1} \epsilon_3 \right) + 0 \left(\frac{q_2'}{q_2} \epsilon_2 \right) + 0 \left(\frac{q_2'}{q_2} \epsilon_3 \right) \\ &+ 0 (\delta_3') + 0 \left(\frac{p_0'}{p_0} \epsilon_1 \right) + 0 \left(\epsilon_2 \epsilon_3 \frac{p_2'}{p_2} \right), \end{split}$$
(3.41)

$$\psi_{24} = \epsilon_1^{-1} \left[\frac{1}{2} \frac{q_1'}{q_1} + 0\left(\frac{q_1'}{q_1} \epsilon_1\right) + 0\left(\frac{q_1'}{q_1} \epsilon_2\right) + 0\left(\frac{q_1'}{q_1} \epsilon_3\right) + 0\left(\frac{p_0'}{p_0} \epsilon_1\right) + 0\left(\frac{p_0'}{p_0} \epsilon_2\right) + 0\left(\frac{p_0'}{p_0} \epsilon_3\right) + 0(\delta_4') + 0\left(\frac{q_2'}{q_2} \epsilon_1\right) + 0\left(\frac{p_2'}{p_2} \epsilon_1^2 \epsilon_2 \epsilon_3\right) \right]$$
(3.42)

$$\psi_{31} = 0\left(\frac{p_2'}{p_2}\epsilon_2\right) + 0\left(\frac{q_2'}{q_2}\epsilon_2\right) + 0(\delta_1'\epsilon_2) + 0\left(\frac{q_1'}{q_1}\epsilon_2\epsilon_3\right) + 0\left(\frac{p_0'}{p_0}\epsilon_1\epsilon_2^2\epsilon_3^2\right)$$
(3.43)

$$\psi_{32} = 0\left(\frac{q_2'}{q_2}\epsilon_2\right) + 0\left(\frac{p_1'}{p_1}\epsilon_2\right) + 0(\epsilon_2\delta_2') + 0\left(\epsilon_1\epsilon_2'\frac{p_0'}{p_0}\right) + 0\left(\frac{q_1'}{q_1}\epsilon_2\right) + 0\left(\epsilon_2\epsilon_3\frac{p_2'}{p_2}\right), \quad (3.44)$$

$$\psi_{34} = \epsilon_1^{-1} \left[-\frac{1}{2} \frac{q_1'}{q_1} + 0\left(\frac{q_1'}{q_1} \epsilon_1\right) + 0\left(\frac{q_1'}{q_1} \epsilon_2\right) + 0\left(\frac{p_0'}{p_0} \epsilon_1\right) + 0\left(\frac{p_0'}{p_0} \epsilon_2\right) + 0\left(\delta_4'\right) + 0\left(\frac{q_1'}{q_1} \epsilon_1 \epsilon_2\right) + 0\left(\frac{p_2'}{p_2} \epsilon_1^2 \epsilon_2^2 \epsilon_3\right) \right]$$
(3.45)

$$\psi_{41} = \epsilon_1 \left[0 \left(\frac{q_1'}{q_1} \epsilon_2 \epsilon_3 \right) + 0 \left(\frac{q_2'}{q_2} \epsilon_1 \epsilon_2 \right) + 0 \left(\frac{p_2'}{p_2} \epsilon_1 \epsilon_2 \right) + 0 (\delta_1' \epsilon_1 \epsilon_2) + 0 \left(\frac{p_0'}{p_0} \epsilon_1 \epsilon_2^2 \epsilon_3^2 \right) \right]$$
(3.46)

$$\psi_{42} = 0\left(\frac{q_2'}{q_2}\epsilon_1\epsilon_2\right) + 0\left(\frac{p_1'}{p_1}\epsilon_1\epsilon_2\right) + 0(\delta_2'\epsilon_1\epsilon_2) + 0\left(\frac{q_1'}{q_1}\epsilon_1\epsilon_2\right) \\ + 0\left(\frac{p_0'}{p_0}\epsilon_1^2\epsilon_2^2\right) + 0\left(\frac{p_2'}{p_2}\epsilon_1^2\epsilon_2\epsilon_3\right),$$
(3.47)

$$\psi_{43} = \epsilon_1 \left[-\frac{1}{2} \frac{q_1'}{q_1} + 0\left(\frac{p_1'}{p_1}\epsilon_1\right) + 0\left(\frac{q_1'}{q_1}\epsilon_1\right) + 0\left(\frac{q_1'}{q_1}\epsilon_2\right) + 0(\delta_3'\epsilon_1) \\ 0\left(\frac{p_0'}{p_0}\epsilon_1\right) + 0\left(\frac{p_2'}{p_2}\epsilon_1\epsilon_2^2\epsilon_3\right) + 0\left(\frac{q_2'}{q_2}\epsilon_1\epsilon_2\right).$$
(3.48)

Now we need to work out (2.22)-(2.25) in order to determine the form (2.17). Now by (3.28)-(3.31) and (3.37)-(3.48), (2.22)-(2.25) will give:

$$\phi_{11} = \frac{1}{2} \frac{q_2'}{q_2} + 0(\Delta_1), \qquad \phi_{22} = \frac{1}{2} \frac{q_2'}{q_2} + 0(\Delta_2)$$

$$\phi_{33} = \frac{p_1'}{p_1} - \frac{1}{2} \frac{q_1'}{q_1} + 0(\Delta_3), \qquad \phi_{44} = \frac{p_1'}{p_1} - \frac{1}{2} \frac{q_1'}{q_1} + 0(\Delta_4)$$
(3.49)

$$\begin{split} \phi_{12} &= -\frac{1}{2} \frac{q_2'}{q_2} + 0(\Delta_5), & \phi_{13} &= -\frac{1}{2} \frac{q_2'}{q_2} + 0(\Delta_6) \\ \phi_{14} &= 0(\Delta_7), & \phi_{21} &= -\frac{1}{2} \frac{q_2'}{q_2} + 0(\Delta_8) \\ \phi_{23} &= \frac{1}{2} \left(\frac{q_1'}{q_1} + \frac{q_2'}{q_2} \right) - \frac{p_1'}{p_1} + 0(\Delta_9), & \phi_{24} &= \frac{1}{2} \frac{q_1'}{q_1} + 0(\Delta_{10}) \\ \phi_{31} &= 0(\Delta_{11}), & \phi_{32} &= 0(\Delta_{12}), & \phi_{34} &= -\frac{1}{2} \frac{q_1'}{q_1} + 0(\Delta_{13}) \\ \phi_{41} &= 0(\Delta_{14}), & \phi_{42} &= 0(\Delta_{15}), & \phi_{43} &= -\frac{1}{2} \frac{q_1'}{q_1} + 0(\Delta_{16}). \end{split}$$
(3 50)

where

$$\Delta_i \quad \text{is} \quad L(a,\infty) \quad (1 \le i \le 16) \tag{3.51}$$

by (3.19) and (3.27).

Now by (3.49)-(3.51), we write the system (2.17) as

$$Z' = (\Lambda + R + S)Z \tag{3.52}$$

where

$$R = \begin{bmatrix} -\eta_1 & \eta_1 & \eta_1 & 0\\ \eta_1 & -\eta_1 & \eta_2 - \eta_1 & -\eta_3\\ 0 & 0 & -\eta_2 & \eta_3\\ 0 & 0 & \eta_3 & -\eta_2 \end{bmatrix}$$
(3.53)

with

$$\eta_1 = \frac{1}{2} \frac{q_2'}{q_2}, \quad \eta_2 = \frac{\left(p_1 q_1^{-1/2}\right)'}{p_1 q_1^{-1/2}}, \quad \eta_3 = \frac{1}{2} \frac{q_1'}{q_1},$$
 (3.54)

and S is $L(a, \infty)$ by (3.51).

4. THE ASYMPTOTIC FORM OF SOLUTIONS

THEOREM 4.1. Let the coefficients q_1 , q_2 and p_1 in (1.1) be $C^{(2)}[a, \infty)$ and let p_0 and p_2 to be $C^{(1)}[a, \infty)$. Let (3.1), (3.2) and (3.19) hold. Let

$$\eta_k = \omega_k \, \frac{p_2}{q_2} (1 + \psi_k) \tag{4.1}$$

where $\omega_k (1 \le k \le 3)$ are "non-zero" constants and $\psi_k(x) \to 0 (1 \le k \le 3, x \to \infty)$. Also let

$$\psi'_k(x)$$
 is $L(a,\infty)$ $(1 \le k \le 3)$. (4.2)

Let

$$\operatorname{Re} I_{j}(x)(j=1,2) \quad \text{and} \quad \operatorname{Re} \left[\frac{1}{2}(\lambda_{3}+\lambda_{4}+\eta_{2}+\eta_{4}-\lambda_{1}-\lambda_{2})\pm I_{1}\pm I_{2}\right]$$

be of one sign in $[a,\infty)$ (4.3)

where

$$I_1 = \left[4\eta_1^2 + (\lambda_1 - \lambda_2)^2\right]^{1/2},$$
(4.4)

$$I_2 = \left[4\eta_3^2 + (\lambda_3 - \lambda_4)^2\right]^{1/2}.$$
(4.5)

Then (1.1) has solutions

$$y_k \sim q_2^{-1/2} \exp\left(\frac{1}{2} \int_a^x \left[\lambda_1 + \lambda_2 + (-1)^{k+1} I_1\right] dt\right), \ (k = 1, 2)$$
(4.6)

$$y_3 \sim q_1^{1/2} p_1^{-1} \exp\left(\frac{1}{2} \int_a^x [\lambda_3 + \lambda_4 + I_2] dt\right),$$
 (4.7)

$$y_4 = o\left\{q_1^{1/2}p_1^{-1}\exp\left(\frac{1}{2}\int_a^x [\lambda_3 + \lambda_4 - I_2]dt\right)\right\}.$$
(4.8)

PROOF. As in [4] we apply Eastham Theorem [6, section 2] to the system (3.52) provided only that Λ and R satisfy the conditions and we shall use (3.53), (3.54), (4.1) and (4.2). We first require that

$$\eta_k = o\{(\lambda_i - \lambda_i)\} \ (i \neq j, 1 \le i, k, j, \le 4, k \ne 3),$$
(4.9)

this being [6, (2.1)] for our system. By (4.1), (3.54), (3.5)-(3.8), this requirement is implied by (3.1) and (3.2).

We also require that

$$\left\{\eta_k(\lambda_i-\lambda_j)^{-1}\right\}'\in L(a,\infty) \ (1\leq k\leq 3),\tag{4.10}$$

for $(i \neq j)$ this being [9, (2.2)] for our system. By (4.1), (3.54), (3.5)-(3.8), this requirement is implied by (3.19) and (4.2). Finally we require the eigenvalues $\mu_k (1 \le k \le 4)$ of $\Lambda + R$ satisfy the dichotomy condition [10], as in [4], the dichotomy condition holds if

$$\mu_j - \mu_k = f + g \, (j \neq k, 1 \le j, k \le 4) \tag{4.11}$$

where f has one sign in $[a, \infty)$ and $g \in L(a, \infty)$ [6, (1.5)]. Now by (2.3) and (3.53)

$$\mu_{k} = \frac{1}{2}(\lambda_{1} + \lambda_{2} - 2\eta_{1}) + \frac{1}{2}(-1)^{k+1}I_{1}, \quad (k = 1, 2)$$
(4.12)

$$\mu_{k} = \frac{1}{2}(\lambda_{3} + \lambda_{4} - 2\eta_{2}) + \frac{1}{2}(-1)^{k+1}I_{2}, \quad (k = 3, 4).$$
(4.13)

Thus by (4.3), (4.11) holds since (3.52) satisfies all the conditions for the asymptotic result [6, section 2], it follows that as $x \to \infty$, (2.17) has four linearly independent solutions,

$$Z_k(x) = \{e_k + o(1)\}\exp\left(\int_a^x \mu_k(t)dt\right), \qquad (4.14)$$

where e_k is the coordinate vector with k-th component unity and other components zero. We now transform back to Y by means of (2.13) and (2.16). By taking the first component on each side of (2.16) and making use of (4.12) and (4.13) and carrying out the integration of $-\frac{1}{2}\frac{q_2}{q_2}$ and $\frac{(q_1^{1/2}p_1^{-1})}{q_1^{1/2}p_1^{-1}}$ for $(1 \le k \le 4)$ respectively we obtain (4.6), (4.7) and (4.8) after an adjustment of a constant multiple in $y_k(1 \le k \le 3)$.

5. DISCUSSION

(i) In the familiar case the coefficients which are covered by Theorem 4.1 are

$$p_i(x) = c_i x^{\alpha_i} (i = 0, 1, 2,), \quad q_i(x) = c_{i+2} x^{\alpha_{i+2}} (i = 1, 2)$$

with real constants α_i and $c_i (0 \le i \le 4)$. Then the critical case (4.1) is given by

$$\alpha_4 - \alpha_2 = 1. \tag{5.1}$$

The values of $\omega_k (1 \le k \le 3)$ in (4.1) are given by

$$\omega_1 = \frac{1}{2} \alpha_4 c_2 c_4^{-1}, \quad \omega_2 = \left(\alpha_1 - \frac{1}{2} \alpha_3\right) c_2 c_4^{-1}, \quad \omega_3 = \frac{1}{2} \alpha_3 c_2 c_4^{-1}, \tag{5.2}$$

where

$$\psi_k(x) = 0 \ (1 \le k \le 4). \tag{5.3}$$

(ii) More general coefficients are

$$p_0 = c_0 x^{\alpha_0} e^{-2x^b}, \quad p_1 = c_1 x_1^{lpha} e^{\frac{1}{2}x^b}, \quad p_2 = c_2 x^{a_2} e^{x^b},$$

 $q_1 = c_3 x^{\alpha_3} e^{-\frac{1}{2}x^b}, \quad q_2 = c_4 x^{lpha_4} e^{x^b}.$

with real constants c_i , α_i ($0 \le i \le 4$) and b(>0). Then the critical case (4.1) is given by

$$\alpha_2 - \alpha_4 = b - 1 \tag{5.4}$$

and the values of $\omega_k (1 \le k \le 4)$ are given by

$$\omega_1=rac{1}{2}\,bc_4c_{72}^{-1},\ \ \omega_2=rac{3}{2}\,\omega_1,\ \ \omega_3=\,-rac{1}{2}\,\omega_1,$$

with $\psi_1 = \alpha_4 b^{-1} x^{-b}$, $\psi_2 = \frac{4}{3} b^{-1} (\alpha_1 - \frac{1}{2} \alpha_3) x^{-b}$, $\psi_3 = -2\alpha_3 b^{-1} x^{-b}$. Here it is clear that $\psi_k \in L(a, \infty)$ because b > 0.

(iii) We note that in both critical cases (5.1) and (5.4) represent an equation of line in the $\alpha_2 \alpha_4$ -plane.

REFERENCES

- AL-HAMMADI, A.S., Asymptotic formula of Liouville-Green type for general fourth-order differential equation, Accepted by Rocky Mountain Journal of Mathematics.
- [2] WALKER, PHILIP W., Asymptotics of the solutions to $[(ry'')' py']' + qy = \sigma y$, J. Diff. Eqs. (1971), 108-132.
- [3] WALKER, PHILIP W., Asymptotics for a class of fourth order differential equations, J. Diff. Eqs. 11 (1972), 321-324.
- [4] AL-HAMMADI, A.S., Asymptotic theory for a class of fourth-order differential equations, Mathematika 43 (1996), 198-208.
- [5] EASTHAM, M.S., Asymptotic theory for a critical class of fourth-order differential equations, Proc. Royal Society London, A383 (1982), 173-188.
- [6] EASTHAM, M.S., The asymptotic solution of linear differential systems, *Mathematika* 32 (1985), 131-138.
- [7] EVERITT, W.N. and ZETTL, A., Generalized symmetric ordinary differential expressions I, the general theory, *Nieuw Arch. Wisk.* 27 (1979), 363-397.
- [8] EASTHAM, M.S., On eigenvectors for a class of matrices arising from quasi-derivatives, Proc. Roy. Soc. Edinburgh, Ser. A97 (1984), 73-78.
- [9] AL-HAMMADI, A.S., Asymptotic theory for third-order differential equations of Euler type, Results in Mathematics, Vol. 17 (1990), 1-14.
- [10] LEVINSON, N., The asymptotic nature of solutions of linear differential equations, Duke Math. J. 15 (1948), 111-126.