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1. INTRODUCTION
We consider the general fourth-order differential equation

(0f’)" + (’)’ +

where x is the independent variable and the prime denotes d/dx. The functions p,(x)(0 _< _< 2) and

q,(x)(i 1,2) are defined on an interval [a, oo) and are not necessarily real-valued and are all nowhere
zero in this interval. Our aim is to identify relations between the coefficients that represent a critical case

for (1.1) and to obtain the asymptotic forms of our linearly independent solutions under this case.

AI-Hammadi [1 considered (1. l) with the case where P0 and P2 are the dominate coefficients and we

give a complete analysis for this case Similar fourth-order equations to (l.1) have been considered

previously by Walker [2, 3] and AI-Hammadi [4]. Eastham [5] considged a critical case for (1 l) with

p q2 0 and showed that this case represents a borderline between situations where all solutions have
a certain exponential character as x oo and where only two solutions have this character.

The critical case for (1.1) that has been referred, is given by:

q (p
const,

p
(i 1,2), -1/2 const P2. (1.2)

q’ q Pql q2

We shall use the recent asymptotic theorem of Eastham [6, section 2] to obtain the solutions of (1.1)
under the above case. The main theorem for (1. l) is given in section 4 with discussion in section 5.

2. A TRANSFORMATION OF TIIE DIFFERENTIAL EQUATION
We write (1. l) in the standard way [7] as a first order system

Y’= AY, (2.1)

where the first component ofY is y and
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A

0 _1/21 0 0
0 qlpl p-I 0

-q2 -Pi+1/4q2Pt -1/2Ptq 10-p --1/2q 0

(2.2)

As in [4], we express A in its diagonal form

T-1AT A, (2.3)

and we therefore re,quire the eigenvalues Aj and eigenvectors vj(1 _< j _< 4) of A.
The characteristic equation ofA is given by

poA + qlA3 + plA2 + q2A + P2 O. (2.4)

An eigenvector % ofA corresponding to Aj is

v. 1, A., + ql A:, . q pA1 (2.5)

where the superscript denotes the transpose. We assume at this stage that the Aj are distinct, and we

define the matrix T in (2.3) by

T (’O ’/)2 V3 ’04). (2.6)

Now from (2.2) we note that EA coincides with its own transpose, where

O 0 0 11E= 0 0 1 0
(2.7)0 1 0 0

1 0 0 0

Hence, by [8, section 2(i)], the vj have the orthogonality property

(Ev,,)’v 0 (k ).

We define the scalars m#(1 <_ j <_ 4) by

m: (E%)vj, (2.9)

and the row vectors

r: (Ev#). (2.10)

Hence, by [8, section 2]

mIrl

m r2

rrtlr3
m r4

(2.11)

and

mj 4p0 + 3q + 2p2Aj + q2. (2.12)

Now we define the matrix U by

U (v v2 vs e v4) TK, (2.13)

where
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PoP (2.14)1--
ql
2

the matrix Kis given by

K dg(1,1,1,1). (2.15)

By (2.3) and (2.13), the transformation

takes (2.1) into

Y UZ (2.16)

Z’= (A U-IU’)Z. (2.17)

Now by (2.13),

U-U K-1T-TK + K-K’,

where

K-1K’= dg(0, 0, 0, e-le), (2.19)

and we use (2.15).
Now we write

u-U’ . (1 <_ i, j < 4), (2.20)

and

T-iT’=,,j (l<i,j<4), (2.21)

then by (2.18) to (2.21), we have

(I <_ i,j <_ 3), (2.22)

44 44 + E’IE, (2.23)

4 b4t (I <_ _< 3), (2.24)

[14 (1 <_ j _< 3). (2.25)

Now to work out (1 <_ i,j <_ 4), it suffices to deal with q of the matrix T-IT’. Thus by (2.6),

(2.10), (2.11) and (2.12) we obtain

1 m
(1 < < 4) (2.26).,= ,-:

and, for :/: j, 1 <_i,j<_4

(( 1 )I 1 )’ 1, .:1 0 + 5’ +’ o + (;)’

Now we n to work out (2.26) d (2.27) in me detl tes of, , , ql d d en
(2.22)-(2.25) in order to deethe fo of(2.17).

3. ESL, T-]TD U-]U

In our ysis, wese abic ndition on the cits, foows:

(I) pi(O 2)dq,(i 1,2)e nowhe zo mmeintefl [a,), d
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(i O, 1) (z --, oo) (3.1)

and

Ifwe write

qq2 P2Pt (3.3)

then by (3.1) and (3.2) for (1 <_ <_ 3)

o(1) (:r oo). (3.4)

Now as in [4], we can solve the characteristic equation (2.4) asymptotically as x --, oo. Using (3.1),
(3.2) and (3.3) we obtain the distinct eigenvalues j as

/I P’2(1 -J-61), (3.5)

,2 q’2(1 + 6,2), (3.6)

,3 ----(1 + 6), (3.7)

and

,4 q--( + 4), (3.8)

where

o(3), 2 o() + o(e), 3 o(x) + o(2), 64 (). (3.9)

Now by (3. I) and (3.2), the ordering ofj is such that

/j O(,,3+I) (X "-+ OO, I _< j __< 3). (3.10)

Now we work out mj(l <_ j <_ 4) asymptotically as z oo, hence by (3.3)-(3.9), (2.12) gives for

(1 <_ j _< 4)

ml q2{l + 0((3)}, (3.11)

rn,,2 q,2{l + 0((2) + (3.12)

m3 -----{I + 0((i)+ 0((2)}, (3.13)
q

and

q
{ + 0(,)}.’4 -- (3.14)

Also on substituting ,(j 1,2,3,4) into (2.12) and using (3.5)-(3.8) respectively and differentiating,

we obtain

m q{1 + O(e3)} + q2 {O(e) + 0((36) + 0((() + O((i((1) }, (3.15)
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, q{ + o() + o()) + {o() + o(_) + o() }, (3.16)

{+o()+o()}+ {o(;)+o()+o()}, (3.17)

and

( + o()} + {o(4) + o()}. (3.18)

At this stage we also require the following conditions

L(a, co) (1 < _< 3). (3.19)

Further, differentiating (3.3) for .i(1 _< <_ 3), we obtain

(3.20)

and

(3.22)

For reference shortly, we note on substituting (3.5)-(3.8) into (2.4) and differentiating, we obtain

; 04/+ 0(4) + 0(;’3’2), (3.23)

o() + o() + o(]), (3.24)

o() + 0(4) + o(),

and

o() + 0(44) + o(44). (3.26)

Hence by (3.19) and (3.20)-(3.26)

L(a, oo). (3.27)

For the diagonal elements qii(1 < j < 4) in (2.26) we can now substitute the estimates (3.11)-(3.18) imo
(2.26). We obtain

lq, () 0(.) 0(.3) + 0(.1.2%), (3.28), + o + +o() +

=+o 2 +o + + + (3.29)
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(3.30)

1[ q --1 (q) (P)0()O()+O(t). (3.31)344 3--ql 2 4-0 --elql 4-0

Now for the non-diagonal elements ,ij(i j, 1 _< i, j _< 4), we consider (2.27). Hence (2.27) gives for
i= 1 andj 2

Now by (3.5), (3.6), (3.3) and (3.11)we have

(3.33)

(3.34)

-lqml=2 -1-q’l-O(-e3)’2q2 (3.35)

and

(3.36)

Hence by (3.33)-(3.36), (3.32) gives

+o 3 +o 3 +o

d-0(e36)-[" 0 (q-i E2e3)"‘ql
(3.37)

Similar work can be done for the other elements ,j, so we obtain

+o +o , +o 1, +o()3
q2

+o(q.)+o(2).
14=-t/2 3 -I-0--e[le3ql -t-0

(3.39)

(3.40)
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(3.41)

(3.42)

(3.43)

(3.45)

(3.46)

(3.47)

(3.48)

Now we need to work out (2.22)-(2.25) in order to determine the form (2.17). Now by (3.28)-(3.31)
and (3.37)-(3.48), (2.22)-(2.25) will give:

1 q:
+0CA3) 44-

p 1 q:
I_0(A4

/h 2 ql Pi 2 ql

(3.49)



486 & S. A. AL-HAMMADI

q
+O(Ae),3

21 -I __q + O(Z8)
2q2

q_i + o(o)
q

}34
1 q2 + 0(A13)
2 ql

45
q
+ o(Ae).

2 ql

(3 so)

where

Ai is L(a, oo) (1_i_16)

by (3.19) and (3.27).
Now by (3.49)-(3.51), we write the system (2.17) as

z’= (A + + s)z (3.52)

where

r/1 r/1 r/1 0 1R= /1 -/1 -/1 -73 (3.53)0 0
0 0 /3

with

(Piq’l/2) 1 ql
(3.54)

1 q
r/2= -1/ r/3-- 2 ql’r]l ’ ql

and S is L(a, co) by (3.51).

4. THE ASYMPTOTIC FORM OF SOLUTIONS
THEOREM 4.1. Let the coefficients ql, q and p in (1.1) be C(2)[a, oo) and let P0 and/ to be

C(1)[a, co). Let (3.1), (3.2) and (3.19) hold. Let

r/ wk ---(1 + k) (4.1)

where wk(1 _< k _< 3) are "non-zero" constants and bk(z) -* 0 (1 _< k _< 3, z --} co). Also let

(z) is L(a, oo) (l<k<3). (4.2)

Let

Re/’j(z)(j 1,:2) and Re (A3 + A4 + m + r/4 A1 A2) -4-11 4-/

be ofone sign in [a, co) (4.3)

where

11 [4r/21 + (A1 A2)2] 1/2, (4.4)

I2 [4r/23 + (A3 A4)2] 1/2. (4.5)

Then (1.1) has solutions
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lk"q2-1/2exp 1 [1 d-2 +(- 1)k+11]d (k 1, 2) (4.6)

-1/2"-lexp (I (4.7)

PROOF. As in [4] we apply Eastham Theorem [6, section 2] to the system (3.52) provided only

that A and R satisfy the conditions and we shall use (3.53), (3.54), (4.1) and (4.2). We first require that

7k o{(,i hi)} (i :/: j, 1 < i,k,j, < 4,k =/: 3), (4.9)

this being [6, (2.1)] for our system. By (4.1), (3.54), (3.5)-(3.8), this requirement is implied by (3.1) and
(3.2).

We also require that

E L(a, oo) (1 _< k _< 3) (4.10)

for (i : j) this being [9, (2.2)] for our system. By (4.1), (3.54), (3.5)-(3.8), this requirement is implied
by (3.19) and (4.2). Finally we require the eigenvalues ftk(1 _< k _< 4) of A q- R satisfy the dichotomy

condition [10], as in [4], the dichotomy condition holds if- f+g( # k, < ,k < 4) (4.1)

where f has one sign in [a, oo) and g . L(a, oo) [6, (1.5)]. Now by (2.3) and (3.53)

1 1
( += =) + (- )/, ( ,=) (.2)

1 1
/k =(’3 + )4 2) + X(- 1)k+112, (k 3,4). (4.13)

Thus by (4.3), (4.11) holds since (3.52) satisfies all the conditions for the asymptotic result [6, section 2],
it follows that as z -, oo, (2.17) has four linearly independent solutions,

Zk(z) {ek + o(1)}exp pk(g)dt (4.14)

where ek is the coordinate vector with k-th component unity and other componems zero. We now

transform back to Y by means of(2.13) and (2.16). By taking the first component on each side of(2.16)

and making use of (4.12) and (4.13) and carrying out the integration of - and q/,-1 for

(1 <_ k _< 4) respectively we obtain (4.6), (4.7) and (4.8) alter an adjustment of a constant multiple in

k( _< k _< 3).

5. DISCUSSION
(i) In the familiar case the coefficients which are covered by Theorem 4.1 are

pi(z) Gza’(i 0,1,2,), qi(z) c+2za’+’(i 1,2)

with real constants a, and c/(0 < <_ 4). Then the critical case (4.1) is given by

a4 -a2 1. (5.1)

The values of(1 <_ k <_ 3) in (4.1) are given by
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1
0.) 04C2C41’- (i)2 (1 3 C2C-1

1 -1
(.)3 c3c2c4

where

() 0 ( _< _< 4).

(ii) More general coefficients are

P0 C0xae-2zb, -z
Pl C12:1 e C2a2exb

with real constants c./, a, (0

_ _
4) and b( > 0). Then the critical case (4.1) is given by

a2 a4 b 1

and the values ofwk (1 _< k _< 4) are given by

1 bc4c21 3 1- -, 3 -,th b--, b-’(- 1/2 )-, 3 2b--. Hre it i ear that, e L(a, oo) because b > 0.

(iii) We note that in both critical cases (5.1) and (5.4) represent an equation of line in the c2a4-

plane.
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